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Second-order linear ODEs

A homogeneous second-order linear ODEs (with constant coefficients) is in
the form

Z(t) + az(t) + bz(t) =0 (1)
where a € R and b € R are constants.

» Candidate solutions: exponential functions e**

Example

Consider z(t) = €', we have

2(t) = 2e*,
3(t) = 4e?*
= E(t) — (1) —22(t) =4e® — 2 —2e*' =0

> 2(t) = €' is a particular solution to (1) with a = —1,b = —2.
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Ansatz

» What we just did - guess a simple form of a solution and plug it in and

see where that leads us - is a fairly common technique in the study of
differential equations.

» Such a guess-solution is called an ansatz, a word of German origin (from
Google, it means “approach” or “attempt”) 1

Definition (Ansatz)

An educated guess or an additional assumption made to help solve a problem,
and which may later be verified to be part of the solution by its results?.

We will use them (ansatzes) in this discussion note.

Ihttps://www.maths.usyd.edu.au/u/UG/IM/MATH2921/r/PDF/Matrix0DEs . pdf

2Taken from wikipedia https://en.wikipedia.org/wiki/Ansatz
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Characteristic polynomial

We guess the solution to (1) is in the form of z(t) = e*’.
> Substituting the (1) by z(¢) = e*', we obtain that
2(t) + az(t) + bz(t) = s°e® + ase™ + be*" = e (s* +as+b) =0

» The value of s must satisfy

F(s):=s"+as+b=0. (2

> F(s) is called the characteristic polynomial associated with a
homogeneous second-order ODE.

Solving the original ODE is reduced to solving an algebraic equation.
Three cases:

1. F(s) has two distinct roots;
2. F(s) has a double root;

3. F(s) has a pair of complex roots;
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Case 1: two distinct roots

If a® — 4b > 0, we have two distinct real roots s1 and sa,

S1 :%(—a—i— \/a2—4b),

82:%(—0,— a2—4b).

» In this case, the general solution to (1) is
2(t) = c1e™" + cae®?’

where ¢1 € R, c2 € R are real constants determined by the initial
conditions.
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Example 1

Example
Consider a second-order ODE
Z(t) —32(t) — 182(t) =0, 2(0)=3, 2(0)=9 3

» The characteristic polynomial is s> — 35 — 18 = (s — 6)(s 4 3) which has
roots 6 and —3.

» Thus, the general solution is z(t) = c1e5® + coe™3" where ¢; and ¢ satisfy

Cl+62:3,
— 01:2,02:1.
601—302:97

> The solution to (3) is z(t) = 2¢% + ¢ 73", We can verify this solution by
2(t) = 12 — 373 5(t) = 725 + 973
5(t) — 35(t) — 182(t)
= =72" 4 9¢7¥ —3(12% — 3¢7%) — 18(2¢% + 1e7%)
=0.
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Case 2: a double root

If a2 — 4b = 0, we have a double root, i.e.,
a
S1 = 82 = ——.

2
> In this case, z(t) = e~ 2! is a solution for the ODE (1).

We show that z(t) = te” 2t is another solution for (1), by observing that

leading to

5(t) + as(t) + bz(t) = —ae 2 + bte 2 +a (e_ 2

» Therefore, the general solution to (1) is

at
2

z(t) = cie + CQte_%t,

where c1, ca are real constants determined by the initial values.
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Example 2

Example
Consider a second-order ODE

56+ 62(8) + 92() =0, 2(0) =2, £(0) = —4 4)
» 5%+ 65+ 9= (s+3)? has a double root —3.
» The general solution is z(t) = cie ™" 4 cate ™", where ¢; and ¢, satisfy

=2
“ ’ = c1 = 2,62 = 2.
—3c1 + ¢ = 74,

» Thus, the solution to (4) is z(t) = 2¢ 3" 4 2te ™.
» We can verify this solution by

A(t) = —4e” " —6te ", E(t) = 6e” ¥ 4 18t
Z(t) + 62(t) + 92(t)
= =6e Y+ 18te ¥ + 6 (—4e ¥ —6te” ) +9 (2 + 2te” )
=0.
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Case 3: A pair of complex roots

If a®> — 4b < 0, we have a pair of complex roots

—a + 1v/4b — a? —a — 1\/4b — a?

S1 = — 7 — ", S2 = 2

2

» The general solution to (1) can be written

2(t) = Cred (VIR | o b (—amiv/imaR)s

» The Euler's identity: _
e’ = cos(t) + isin(t).
» Using this identity and substituting
Ci+Cy=nc,
—i(C1 — CQ) = C2,

we have the general solution is

2

where c1, ca are real constants determined by the initial values.
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Example 3

Example
Consider a second-order ODE

5(t) — 65(t) + 132(t) =0, 2(0) =3, 2(0)=17 (5)

» 52— 6s+ 13 =0 has a pair of complex roots: 3 + 2i and 3 — 2i.

» Hence, the general solution is
2(t) = c1€ cos(2t) + coe® sin(2t)

where ¢1 and ¢ satisfy

=3
c ’ :>C1=3702=4.
3c1 4 2¢c2 = 17,

» We can verify this solution by observing that

2(t) = e (17 cos(2t) 4 6sin(2t)),  2(t) = * (63 cos(2t) — 16sin(2t))
= 3(t) — 62(t) + 132(t) = 0.
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Matrix form

As discussed in Lecture 2, any nth linear ODE can be rewritten into
T = Az
for which we have a general solution z(t) = e**z(0).
» For the second-order ODE in (1), we define
z1(t) = z(t), x2(t) = 2(t).
» Then the second-order ODE in (1) becomes

&= [_Ob ja} x,  with 2(0) = zo € R, (6)

Definition
Given a matrix A € R™*™, the exponential of A, denoted by e?, is defined by

A 1,5 1 n 1
e .fI+A+2A +...+mA +"'*;)k!‘4'
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Diagonal matrix

For diagonal matrices, we have

A Loz 1ys
=T A+ AT A

I Dt P Vi 0
0 T4+ + 2A3 4+ 325+ ...

_fer 0
- 0 6)\2 ’

P> Let v, v2 satisfy

A =)\
{ V1 11, — A ['[)1 U2] = [Ul ’1)2] |:)E)l )(\)2:|

A’Ug = )\Q’Uz N——
P ——
A
» Thus, we have

1 M0

piap i Y]

——

A
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Diagonalization

We have
eh=eP AP = T4 plAP 4 %(P‘lAPF 4 é(P‘lAP)?’ ¥
=p! (I+A+%A2+3A3+...> P
=P lefP

This leads to
ed = perpt
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Example 4

Example
Consider the ODE (3). It is equivalent to

= [108 ;} x with z(0) = B}

» In this case, we have
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ode45 Matlab

» Matlab ODE45 function:

[t,y] = ode45(odefun,tspan,y0)

» Many useful information can be found here

https://www.mathworks.com/help/matlab/ref/ode45.html

h=——- Example 1 -------
% \dot x = x,

% with x(0) = 10
—

f1 = @(t,x) (x); % vector field
[ts,ys] = ode45(£f1,[0,10],10);

ode45 in Matlab
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ode45 Matlab

\dot x = -x,
with x(0) = 10

2 = @(t,x)(-x); % vector field
ts,ys] = ode45(£2,[0,5],10);
—————— Example 3 --------
\ddot z - 3 \dot z - 18 z = 0
with z(0) = 3, \dot z(0) =9
ts,ys] = ode45(@f3,[0,5],[3;9]1);
unction dotx = £3(t,x)

dotx = zeros(2,1);

dotx(1) = x(2);

dotx(2) = 18*x(1)+3*x(2);
nd

ode45 in Matlab

Example 2 & 3
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ode45 Matlab - Example 4 & 5

Hh=————= Example 4 -——----————-—-
% \ddot z + 6 \dot z + 9z
% with z(0) = 2, \dot z(0

- 4 1
Y \ ,

[ts,ys] = ode4b5(@f4,[0,5],10);

o

~ |

(t)

function dotx = f4(t,x) 2l
dotx = zeros(2,1); :
dotx(1) = x(2);

dotx(2) = -9*x(1)-6%x(2); 40 —
end t
hom——=== Example 5 --—----- e
% \ddot z - 6 \dot z + 13z =0 4
% with z(0) = 3, \dot z(0) = 17 2 [
h i
bV

[ts,ys] = oded4b5(@f5,[0,20],[3;17]); |

-2
L]
function dotx = £5(t,x) 4
dotx = zeros(2,1);
dotx(1) = x(2); N
dotx(2) = -13*x(1)+6%x(2); -8

0 5 10 15 20
end ¢
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