ECE 171A: Linear Control System Theory

Discussion 3: Review on Eigenvalues and
Eigenvectors

Yang Zheng

Assistant Professor, ECE, UCSD

April 11, 2022



Outline

Eigenvalues and Eigenvectors

Diagonalization

Cayley-Hamilton Theorem

2/19



Outline

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 3/19



Eigenvalues and Eigenvectors

Let A € R™ ™. If we have
Az = Mz, AER,z#0€eR",

then X is called an eigenvalue and z is called an eigenvector of A.

> Geometrical interpretation: if we start along vector z, transforming by A
simply scales the vector without affecting its direction.

» How do we find an eigenvalue and eigenvector?

» Observation 1:
Az =Xz = (A— M)z =0.

It means that A — Al is rank deficient (rank(A — A\I) < n).

» Then, we have
det(A — AI) =0.

which gives n eigenvalues (multiplicity is counted).
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Example 1

Example
Let

» Step 1: determinant

det(A—)J):det(F;/\ ;AD

=(1-NB-XN-8=X-4r-5=0

> Step 2: solving the characteristic polynomial

Mo —5=A=5)A4+1)=0= X\ =5 = —1.

> Step 3: find the eigenvector associated with each eigenvalue.
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Example 1

Example
» Case 1: A\ =5

(A= M)z =0= {’4 4} [‘”1} =0

2 —2 X2

{—41‘1 +4x, =0
= = Ty = T1,

2:1:'1 — 2332 = O.

1
then {1

» Case 2: A1 = —1

] is an eigenvector of A associated with Ay = 5.

(A= XDz =0= [2 4} [ml} =0

2 4 i)
2x1 +422 =0
= —2x2 = x1,
2x1 +4x2 = 0.
then {_1 ] is an eigenvector of A associated with Ao = —1.
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Example 2

Example
Consider a second-order ODE
Z(t) — 32(t) — 182(t) =0, 2(0)=3, 2(0)=9 (1)

» The characteristic polynomial is s> — 3s — 18 = (s — 6)(s + 3) which has
roots 6 and —3.

> |t is equivalent to

= {108 ;] z  with 2(0) = B]

» In this case, we have the eigenvalues and eigenvectors of A as

o[- el el
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Examples in Matlab

Matlab eig function:

[V,D] = eig(A)

» |t returns diagonal matrix D of eigenvalues and matrix V' whose columns
are the corresponding right eigenvectors, so that A X V =V x D.

» Useful information can be found here
https://www.mathworks.com/help/matlab/ref/eig.html

What are the eigenvalues and eigenvectors of

12 3
A2—{2 7}, Az =

- o
S oot
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https://www.mathworks.com/help/matlab/ref/eig.html

2nd ODE and its matrix form

A homogeneous second-order linear ODEs (with constant coefficients) is in
the form
Z(t) + az(t) + bz(t) =0 (2)

where a € R and b € R are constants.

» Let us define
T = 2, XTo = Z.

» Then (2) is equivalent to a first-order matrix ODE
. 0 1 1
T=1p —q Ta
[ —

» What are the eigenvalues of A?

A 1

det(A — AI) = det ({—b g

D =X t+a\+b=0

which is identical to the characteristic polynomial of (2).
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Review on solving 2nd ODE

We guess the solution to (2) is in the form of z(t) = e*’.
> Substituting the (2) by z(¢) = e*', we obtain that
2(t) + az(t) + bz(t) = s°e® + ase™ + be*" = e (s* +as+b) =0

» The value of s must satisfy

F(s):=s"+as+b=0. (3)

> F(s) is called the characteristic polynomial associated with a
homogeneous second-order ODE.

Solving the original ODE is reduced to solving an algebraic equation.
Three cases:

1. F(s) has two distinct roots;
2. F(s) has a double root;

3. F(s) has a pair of complex roots;
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Why do we care?

In control theory, we can use the eigenvalues of a system to make a statement
about its stability.

» The precise definition of stability is discussed in Lecture 7.

Theorem (Stability of a linear system)
The system
&= Ax
> s asymptotically stable if and only if all eigenvalues of A have a strictly
negative real part, i.e., Re(\;) <0
» s unstable if any eigenvalues A has a strictly positive real part.
Remark: This result works for any LTI system (beyond 2nd ODE). If

Re(Ai) <0,i=1,...,n and some Re()\;) = 0, the stability conditions are
more complicated, which is beyond the scope of this class.
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Unstable systems

Example (Unstable systems)
Consider the system ¢ = 0. It can be written in state-space form as

i T1| 0 1 T
dt |za| |0 0Of |x2|’
» The system has eigenvalues A\ = 0, but the solutions are not bounded

331(75) = l‘l(O) + 332(0)757
Z‘Q(t) = 1‘2(0)
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Matrix form

As discussed in Lecture 2, any nth linear ODE can be rewritten into
T = Az
for which we have a general solution z(t) = e**z(0).
» For the second-order ODE in (2), we define
z1(t) = z(t), x2(t) = 2(t).
» Then the second-order ODE in (2) becomes

= [_Ob —1a} z, with z(0) = zo € R”. (4)

Definition
Given a matrix A € R™*™, the exponential of A, denoted by e?, is defined by

A 1,5 1 n 1
e .fI+A+2A +...+mA +"'*;)k!‘4'
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Diagonal matrix

For diagonal matrices, we have

A Loz 1ys
=T A+ AT A

I Dt P Vi 0
0 T4+ + 2A3 4+ 325+ ...

_fer 0
- 0 6)\2 ’

P> Let v, v2 satisfy

A =)\
{ V1 11, — A ['[)1 U2] = [Ul ’1)2] |:)E)l )(\)2:|

A’Ug = )\Q’Uz N——
P ——
A
» Thus, we have

1 M0

piap i Y]

——

A
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Diagonalization

We have
eh=eP AP = T4 plAP 4 %(P‘lAP)z 4 é(P‘lAP)?’ ¥
=p! (I+A+;A2+;A3+...> P
=P lefP

This leads to
ed = perpt
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Diagonalization

We can use eigenvectors and eigenvalues to diagonalize A in special cases

In this class, we will deal with diagonalizable matrices often. Some examples of
diagonalizable matrices are

» Symmetric matrices;
> All eigenvalues are distinct;

» The matrix A has n linearly independent eigenvectors.

eMt 0 0
0 et 0
M=V , v
0 0 ent

If there is an eigenvalue with Re(A;) > 0, the system state will be growing
unboundedly along that eigenvector.
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Cayley-Hamilton Theorem

Theorem
Let A" 4+ an_1 A" 1 4. .. a1\ + ao = 0 be the characteristic equation of A, i.e.,
det(A] — A) = 0. Then, we have

A"+ an 1 A" b a1 A+ a0l =0

Some implications:

» Cayley-Hamilton Theorem says that I, A, A%, A% ... A™ are linearly
dependent.

» It also shows that the inverse of A is a linear combination of its power
sequences up to A" !

_ | P n—
A 1:—a—(A Y 1AM 4 ).
0
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