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Eigenvalues and Eigenvectors

Let A ∈ Rn×n. If we have

Ax = λx, λ ∈ R, x ̸= 0 ∈ Rn,

then λ is called an eigenvalue and x is called an eigenvector of A.

▶ Geometrical interpretation: if we start along vector x, transforming by A
simply scales the vector without affecting its direction.

▶ How do we find an eigenvalue and eigenvector?

▶ Observation 1:
Ax = λx ⇒ (A− λI)x = 0.

It means that A− λI is rank deficient (rank(A− λI) < n).

▶ Then, we have
det(A− λI) = 0.

which gives n eigenvalues (multiplicity is counted).
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Example 1

Example
Let

A =

[
1 4
2 3

]
▶ Step 1: determinant

det (A− λI) = det

([
1− λ 4
2 3− λ

])
= (1− λ)(3− λ)− 8 = λ2 − 4λ− 5 = 0

▶ Step 2: solving the characteristic polynomial

λ2 − 4λ− 5 = (λ− 5)(λ+ 1) = 0 ⇒ λ1 = 5, λ2 = −1.

▶ Step 3: find the eigenvector associated with each eigenvalue.
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Example 1

Example

▶ Case 1: λ1 = 5

(A− λI)x = 0 ⇒
[
−4 4
2 −2

] [
x1

x2

]
= 0

⇒

{
−4x1 + 4x2 = 0

2x1 − 2x2 = 0.
⇒ x2 = x1,

then

[
1
1

]
is an eigenvector of A associated with λ2 = 5.

▶ Case 2: λ1 = −1

(A− λI)x = 0 ⇒
[
2 4
2 4

] [
x1

x2

]
= 0

⇒

{
2x1 + 4x2 = 0

2x1 + 4x2 = 0.
⇒ −2x2 = x1,

then

[
−2
1

]
is an eigenvector of A associated with λ2 = −1.
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Example 2

Example
Consider a second-order ODE

z̈(t)− 3ż(t)− 18z(t) = 0, z(0) = 3, ż(0) = 9 (1)

▶ The characteristic polynomial is s2 − 3s− 18 = (s− 6)(s+ 3) which has
roots 6 and −3.

▶ It is equivalent to

ẋ =

[
0 1
18 3

]
x with x(0) =

[
3
9

]
▶ In this case, we have the eigenvalues and eigenvectors of A as

A×
[
− 1

3

1

]
= −3

[
− 1

3

1

]
, A×

[
1
6

1

]
= 6

[
1
6

1

]
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Examples in Matlab

Matlab eig function:

[V,D] = eig(A)

▶ It returns diagonal matrix D of eigenvalues and matrix V whose columns
are the corresponding right eigenvectors, so that A× V = V ×D.

▶ Useful information can be found here
https://www.mathworks.com/help/matlab/ref/eig.html

What are the eigenvalues and eigenvectors of

A2 =

[
12 3
2 7

]
, A3 =

1 5 4
2 5 1
7 4 1

 ,
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2nd ODE and its matrix form

A homogeneous second-order linear ODEs (with constant coefficients) is in
the form

z̈(t) + aż(t) + bz(t) = 0 (2)

where a ∈ R and b ∈ R are constants.

▶ Let us define
x1 = z, x2 = ż.

▶ Then (2) is equivalent to a first-order matrix ODE

ẋ =

[
0 1
−b −a

]
︸ ︷︷ ︸

A

[
x1

x2

]

▶ What are the eigenvalues of A?

det(A− λI) = det

([
−λ 1
−b −a− λ

])
= λ2 + aλ+ b = 0

which is identical to the characteristic polynomial of (2).
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Review on solving 2nd ODE

We guess the solution to (2) is in the form of z(t) = est.

▶ Substituting the (2) by z(t) = est, we obtain that

z̈(t) + aż(t) + bz(t) = s2est + asest + best = est(s2 + as+ b) = 0

▶ The value of s must satisfy

F (s) := s2 + as+ b = 0. (3)

▶ F (s) is called the characteristic polynomial associated with a
homogeneous second-order ODE.

Solving the original ODE is reduced to solving an algebraic equation.
Three cases:

1. F (s) has two distinct roots;

2. F (s) has a double root;

3. F (s) has a pair of complex roots;
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Why do we care?

In control theory, we can use the eigenvalues of a system to make a statement
about its stability.

▶ The precise definition of stability is discussed in Lecture 7.

Theorem (Stability of a linear system)
The system

ẋ = Ax

▶ is asymptotically stable if and only if all eigenvalues of A have a strictly
negative real part, i.e., Re(λi) < 0

▶ is unstable if any eigenvalues A has a strictly positive real part.

Remark: This result works for any LTI system (beyond 2nd ODE). If
Re(λi) ≤ 0, i = 1, . . . , n and some Re(λi) = 0, the stability conditions are
more complicated, which is beyond the scope of this class.
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Unstable systems

Example (Unstable systems)
Consider the system q̈ = 0. It can be written in state-space form as

d

dt

[
x1

x2

]
=

[
0 1
0 0

] [
x1

x2

]
.

▶ The system has eigenvalues λ = 0, but the solutions are not bounded

x1(t) = x1(0) + x2(0)t,

x2(t) = x2(0).

Eigenvalues and Eigenvectors 12/19



Outline

Eigenvalues and Eigenvectors

Diagonalization

Cayley-Hamilton Theorem

Diagonalization 13/19



Matrix form

As discussed in Lecture 2, any nth linear ODE can be rewritten into

ẋ = Ax

for which we have a general solution x(t) = eAtx(0).

▶ For the second-order ODE in (2), we define

x1(t) = z(t), x2(t) = ż(t).

▶ Then the second-order ODE in (2) becomes

ẋ =

[
0 1
−b −a

]
x, with x(0) = x0 ∈ R2. (4)

Definition
Given a matrix A ∈ Rn×n, the exponential of A, denoted by eA, is defined by

eA := I +A+
1

2
A2 + . . .+

1

n!
An + . . . =

∞∑
k=0

1

k!
Ak.
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Diagonal matrix
For diagonal matrices, we have

eΛ = I + Λ+
1

2
Λ2 +

1

3!
Λ3 + . . .

=

[
1 + λ1 +

1
2
λ2
1 +

1
3!
λ3
1 + . . . 0

0 1 + λ2 +
1
2
λ2
2 +

1
3!
λ3
2 + . . .

]
=

[
eλ1 0

0 eλ2

]
,

▶ Let v1, v2 satisfy{
Av1 = λ1v1,

Av2 = λ2v2
=⇒ A

[
v1 v2

]︸ ︷︷ ︸
P

=
[
v1 v2

] [λ1 0
0 λ2

]
︸ ︷︷ ︸

Λ

▶ Thus, we have

P−1AP =

[
λ1 0
0 λ2

]
︸ ︷︷ ︸

Λ

.
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Diagonalization

We have

eΛ = eP
−1AP = I + P−1AP +

1

2
(P−1AP )2 +

1

3
(P−1AP )3 + . . .

= P−1

(
I +A+

1

2
A2 +

1

3
A3 + . . .

)
P

= P−1eAP

This leads to
eA = PeΛP−1
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Diagonalization

We can use eigenvectors and eigenvalues to diagonalize A in special cases

In this class, we will deal with diagonalizable matrices often. Some examples of
diagonalizable matrices are

▶ Symmetric matrices;

▶ All eigenvalues are distinct;

▶ The matrix A has n linearly independent eigenvectors.

eAt = V


eλ1t 0 . . . 0

0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt

V −1

If there is an eigenvalue with Re(λi) > 0, the system state will be growing
unboundedly along that eigenvector.
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Cayley-Hamilton Theorem

Theorem
Let λn + an−1λ

n−1 + . . . a1λ+ a0 = 0 be the characteristic equation of A, i.e.,
det(λI −A) = 0. Then, we have

An + an−1A
n−1 + · · ·+ a1A+ a0I = 0

Some implications:

▶ Cayley-Hamilton Theorem says that I, A,A2, A3, . . . , An are linearly
dependent.

▶ It also shows that the inverse of A is a linear combination of its power
sequences up to An−1

A−1 = − 1

a0
(An−1 + an−1A

n−2 + · · ·+ a1I).
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