ECE 171A: Linear Control System Theory Discussion 5: Review on Complex numbers, rational functions, and laplace transform

Yang Zheng

Assistant Professor, ECE, UCSD

April 25, 2022

Outline

[Complex numbers](#page-2-0)

[Complex functions and Rational functions](#page-9-0)

[Laplace transform](#page-15-0)

Outline

[Complex numbers](#page-2-0)

[Complex functions and Rational functions](#page-9-0)

[Laplace transform](#page-15-0)

[Complex numbers](#page-2-0) 3/21

Complex numbers

A complex number $z \in \mathbb{C}$ has a real and an imaginary part, and can be represented in either Cartesian or Polar coordinates.

- \triangleright Cartesian form: z is represented as a linear combination of basis vectors in the complex plane, i.e., the sum of the real part and imaginary part.
- **► Polar form**: z is represented by a magnitude r and phase θ .

Figure: An illustration of the complex plane. The real part of a complex number $z = x + iy$ is x, and its imaginary part is y.

[Complex numbers](#page-2-0) 4/21

Operations

 \blacktriangleright In this course, we typically express the frequency variable s as a complex number $s = \sigma + i\omega$:

Euler's Formula

Definition

For any real number t , we define $e^{it} = \cos t + i \sin t$

Figure: Euler's definition of $e^{i\theta}$.

Euler's formula: A famous example is $e^{\pi i} = \cos \pi + i \sin \pi = -1$, leading to

$$
e^{\pi i} + 1 = 0.
$$

This combines the five most basic quantities in mathematics $e, \pi, i, 1$ and 0.

[Complex numbers](#page-2-0) 6/21

Computation

▶ Addition and subtraction in Cartesian form tend to be simpler:

$$
z_1 = a + bi, \quad z_2 = c + di,
$$

\n
$$
\Rightarrow \quad z_1 + z_2 = a + c + (b + d)i,
$$

\n
$$
\Rightarrow \quad z_1 - z_2 = a - c + (b - d)i.
$$

 \triangleright On the other hand, multiplication and division tend to be simpler in polar form:

$$
z_1 = r_1 e^{i\theta_1}, \quad z_2 = r_2 e^{i\theta_2},
$$

\n
$$
\Rightarrow \quad z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)},
$$

\n
$$
\Rightarrow \quad \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}.
$$

Multiplication and division and in the complex plane correspond to

- \triangleright scaling the magnitude by the original magnitudes,
- ▶ and shifting phase by the sum or difference of the original phases.

Example

Let $z_1 = -1 + \sqrt{3}i$ and $z_2 = \bar{z}_1$. Find polar forms for z_1 and z_2 . Calculate $z_1 + z_2$, $z_1 z_2$, and $\frac{z_1}{z_2}$.

 \blacktriangleright In polar form, we have the magnitude is given by

$$
|z| = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2.
$$

 \blacktriangleright The phase is given by

$$
\theta = \arctan\left(\frac{\sqrt{3}}{-1}\right) = \frac{2\pi}{3}.
$$

 \blacktriangleright Then, we have

$$
z_1 = 2e^{\frac{2\pi}{3}i}, \quad z_2 = 2e^{\frac{-2\pi}{3}i}.
$$

▶ In the Cartesian form, we have

$$
z_2 = \bar{z}_1 = -1 - \sqrt{3}i
$$
, $z_1 + z_2 = -2$, $z_1 - z_2 = 2\sqrt{3}i$.

[Complex numbers](#page-2-0) 8/21

▶ In the Cartesian form, we have

$$
z_1 z_2 = (-1 + \sqrt{3}i)(-1 - \sqrt{3}i) = 1 - \sqrt{3}i + \sqrt{3}i - 3i^2 = 4,
$$

$$
\frac{z_1}{z_2} = \frac{-1 + \sqrt{3}i}{-1 - \sqrt{3}i} \cdot \frac{-1 + \sqrt{3}i}{-1 + \sqrt{3}i} = \frac{1 - 2\sqrt{3}i + 3i^2}{4} = \frac{-1 - \sqrt{3}i}{2}.
$$

 \blacktriangleright In the polar form, we have

$$
z_2 = \bar{z}_1 = 2e^{\frac{-2\pi}{3}i},
$$

\n
$$
z_1 + z_2 = 2\left(e^{\frac{2\pi}{3}i} + e^{\frac{-2\pi}{3}i}\right) = 2\left(2\cos\left(\frac{2\pi}{3}\right)\right) = -2,
$$

\n
$$
z_1 - z_2 = 2\left(e^{\frac{2\pi}{3}i} - e^{\frac{-2\pi}{3}i}\right) = 2\left(2\sin\left(\frac{2\pi}{3}\right)\right)i = 2\sqrt{3}i,
$$

and
$$
z_1 \cdot z_2 = 2e^{\frac{2\pi}{3}i} \cdot 2e^{\frac{-2\pi}{3}i} = 4e^{\left(\frac{2\pi}{3}i - \frac{2\pi}{3}i\right)} = 4,
$$

$$
\frac{z_1}{z_2} = \frac{2e^{\frac{2\pi}{3}i}}{2e^{\frac{-2\pi}{3}i}} = e^{\frac{4\pi}{3}i}.
$$

[Complex numbers](#page-2-0) 9/21

Outline

[Complex numbers](#page-2-0)

[Complex functions and Rational functions](#page-9-0)

[Laplace transform](#page-15-0)

[Complex functions and Rational functions](#page-9-0) 10/21

Complex functions

A complex valued function¹ on some interval $I=(a,b)\subseteq\mathbb{R}$ is $f:I\to\mathbb{C}.$

 \triangleright Such a function can be written as in terms of its real and imaginary parts,

 $f(t) = u(t) + iv(t),$

in which $u, v: I \to \mathbb{R}$ are two real valued functions.

A complex valued function of a complex variable is a function $f(z): \mathbb{C} \to \mathbb{C}$.

If $z = x + iy$, then $f(z)$ corresponds to a function

$$
F(x, y) = u(x, y) + iv(x, y)
$$

of the two real variables x and y .

 \blacktriangleright We can consider $f(z)$ is a function from \mathbb{R}^2 to \mathbb{R}^2 .

¹See <https://www.math.columbia.edu/~rf/complex2.pdf>. [Complex functions and Rational functions](#page-9-0) 11/21

Example

- 1. $f(z) = z$ corresponds to $F(x, y) = x + iy$ $(u = x, v = y);$
- 2. $f(z) = \overline{z}$ corresponds to $F(x, y) = x iy$ $(u = x, v = -y);$
- 3. $f(z) = \text{Re}(z)$ corresponds to $F(x, y) = x$ $(u = x, v = 0)$:
- 4. $f(z)=|z|$ corresponds to $F(x,y)=\sqrt{x^2+y^2} \quad (u=\sqrt{x^2+y^2}, v=0);$

5.
$$
f(z) = z^2
$$
 corresponds to $F(x, y) = (x^2 - y^2) + i(2xy)$
\n $(u = x^2 - y^2, v = 2xy);$

6. $f(z) = e^z$ corresponds to $F(x, y) = e^x \cos y + i(e^x \sin y)$ $(u = e^x \cos y, v = e^x \sin y);$

7.
$$
f(z) = \frac{1}{z}
$$
 corresponds to $F(x, y) = \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}$
\n $(u = \frac{x}{x^2 + y^2}, v = \frac{-y}{x^2 + y^2});$

[Complex functions and Rational functions](#page-9-0) 12/21

Polynomials

A polynomial of a complex variable $z = x + iy$ is a function of the form

$$
P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0,
$$

where a_i , $i = 0, 1, \ldots, n$ are complex numbers.

- ▶ We focus on polynomials with real coefficient $(a_i \in \mathbb{R}, i = 1, \ldots, n)$.
- \blacktriangleright The real and imaginary parts of a polynomial $P(z)$ are polynomials in x, y : $P_1(z) = z^2 = (x^2 - y^2) + i(2xy),$ $P_2(z) = (1+i)z^2 - 3iz = (x^2 - y^2 - 2xy + 3y) + (x^2 - y^2 + 2xy - 3x)i.$ In the polar form $z = re^{i\theta}$, we have $z^n = r^n e^{in\theta}, \qquad (\bar{z})^n = r^n e^{-in\theta}.$

 \blacktriangleright Thus, we have $\overline{(z^n)} = (\bar{z})^n$.

In general, for any polynomial $p(z)$ with real coefficients, we have

$$
\overline{p(z)} = p(\bar{z}), \qquad \overline{p(i\omega)} = p(-i\omega)
$$

[Complex functions and Rational functions](#page-9-0) 13/21

Fundamental Theorem of Algebra

Fundamental Theorem of Algebra (first proved by Gauss in 1799): if $P(z)$ is a non-constant polynomial, then $P(z)$ has a complex root. In other words, there exists a complex number c such that $P(c) = 0$.

If $P(z)$ is a polynomial of degree $n > 0$, then $P(z)$ can be factorized into linear factors:

$$
P(z) = a(z - \lambda_1) \cdots (z - \lambda_n),
$$

for complex numbers a and $\lambda_1, \ldots, \lambda_n$.

Every non-constant polynomial $P(z)$ with real coefficients can be factorized into (real) polynomials of degree one or two.

In other words, the roots of polynomial $P(z)$ with real coefficients come with pairs $\lambda_i = x + yi$ and $\lambda_{i+1} = x - yi$.

Rational functions

A rational function $G(z)$ is a quotient of two polynomials

$$
G(z) = \frac{P(z)}{Q(z)},
$$

where $P(z)$ and $Q(z)$ are polynomials and $Q(z)$ is not identically zero.

Example

Here are some examples

$$
G_1(z) = \frac{1}{z},
$$

\n
$$
G_2(z) = \frac{1}{z+1},
$$

\n
$$
G_3(z) = \frac{z+1}{z^2 + z + 1}.
$$

[Complex functions and Rational functions](#page-9-0) 15/21

Outline

[Complex numbers](#page-2-0)

[Complex functions and Rational functions](#page-9-0)

[Laplace transform](#page-15-0)

[Laplace transform](#page-15-0) 16/21

Laplace transform

Definition

The Laplace transform of a function $f(t)$ is defined by the integral

$$
F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt,
$$

for those complex variable s where the integral converges.

The Laplace transform 2 takes a function of time and transforms it to a function of a complex variable s.

- \triangleright Because the transform is invertible, no information is lost
- It is reasonable to think of a function $f(t)$ and its Laplace transform $F(s)$ as two views of the same phenomenon.
- ▶ Each view has its uses and some features of the phenomenon are easier to understand in one view or the other.

²See <https://math.mit.edu/~jorloff/18.04/notes/topic12.pdf>. [Laplace transform](#page-15-0) 17/21

Example

Calculate the Laplace transform of the step function

$$
f(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0. \end{cases}
$$

Give the region in the complex s-plane where the integral converges. We have

$$
F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt
$$

$$
= \int_0^\infty e^{-st} dt
$$

$$
= \frac{e^{-st}}{-s} \Big|_0^\infty
$$

$$
= \frac{1}{s},
$$

if $Re(s) > 0$, otherwise it is undefined.

[Laplace transform](#page-15-0) 18/21

Example

Calculate the Laplace transform of the shifted delta function

$$
\delta(t-a) = \begin{cases} \infty & t = a \\ 0 & \text{otherwise} \end{cases}, \qquad \int_{-\infty}^{\infty} \delta(t-a)dt = 1.
$$

By definition, we have

$$
F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st} \delta(t - a) dt
$$

=
$$
\int_0^\infty e^{-sa} \delta(t - a) dt
$$

=
$$
e^{-sa} \int_0^\infty \delta(t - a) dt
$$

=
$$
e^{-sa}.
$$

In particular, when $a = 0$, we have

$$
F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st} \delta(t) dt = 1.
$$

[Laplace transform](#page-15-0) 19/21

Example

Calculate the Laplace transform of the exponential function

$$
f(t) = e^{at}.
$$

 \triangleright Given the region in the complex *s*-plane where the integral converges.

$$
\begin{aligned} \n\blacktriangleright \text{ We have }\\
F(s) = \mathcal{L}(f(t)) &= \int_0^\infty e^{-st} e^{at} dt \\
&= \int_0^\infty e^{(a-s)t} dt \\
&= \frac{e^{(a-s)t}}{a-s} \Big|_0^\infty \\
&= \frac{1}{s-a},\n\end{aligned}
$$

if $Re(s) > Re(a)$, otherwise, it is undefined.

Example

Compute the Laplace transform of the cosine function

 $f(t) = \cos(\omega t).$

$$
\blacktriangleright
$$
 We use the formula

$$
\cos(\omega t) = \frac{e^{i\omega t} + e^{-i\omega t}}{2}.
$$

 \blacktriangleright So we have

$$
F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st} \left(\frac{e^{i\omega t} + e^{-i\omega t}}{2} \right) dt
$$

$$
= \frac{1}{2} \left(\frac{1}{s - i\omega} + \frac{1}{s + i\omega} \right)
$$

$$
= \frac{s}{s^2 + \omega^2}.
$$

[Laplace transform](#page-15-0) 21/21