ECE 171A: Linear Control System Theory Discussion 6: Bode plot - Examples

Yang Zheng

Assistant Professor, ECE, UCSD

May 02, 2022

Bode plot

First-order and second-order examples

High-order examples

Bode plot

First-order and second-order examples

High-order examples

Bode plot — Blocks

A polynomial can be written as a product of terms of the type

$$k, \qquad s, \qquad s+a, \qquad s^2+2\zeta\omega_0s+\omega_0^2$$

Sketch Bode diagrams for these terms;

Complex systems: add the gains and phases of the individual terms

Case 1: $G(s) = s^k$ — Two special cases: k = 1, a differentiator; k = -1, an integrator

$$\log |G(s)| = k \times \log \omega, \qquad \angle G(i\omega) = k \times 90^{\circ}$$

- ▶ The gain curve is a straight line with slope k, and the phase curve is a constant at $k \times 90^{\circ}$
- ▶ The case when k = 1 corresponds to a differentiator and has slope 1 with phase 90°
- \blacktriangleright The case when k=-1 corresponds to an integrator and has slope -1 with phase -90°

Case 1: $G(s) = s^k$

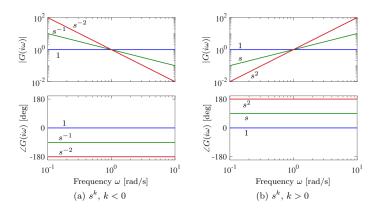


Figure: Bode plots of the transfer functions $G(s) = s^k$ for k = -2, -1, 0, 1, 2. On a log-log scale, the gain curve is a straight line with slope k. The phase curves for the transfer functions are constants, with phase equal to $k \times 90^\circ$.

Bode plot

Case 1: $G(s) = s^k$

G0 = tf([1],[1]); % create a transfer function
G1 = tf([1 0],[1]); % create a transfer function
W = {0.1,10}; bode(G0,G1,W); % Bode plot

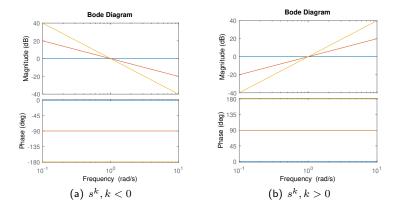


Figure: Bode plots of the transfer functions $G(s)=s^k$ for k=-2,-1,0,1,2 — from Matlab

Bode plot

Bode plot

First-order and second-order examples

High-order examples

The Routh–Hurwitz Criterion: Examples

Case 2: first-order system

Consider the transfer function of a first-order system

$$G(s) = \frac{a}{s+a}, \qquad a > 0.$$

We have

$$|G(s)| = \frac{|a|}{|s+a|}, \qquad \angle G(s) = \angle a - \angle (s+a).$$

The gain curve is

$$|G(i\omega)| = \log a - \frac{1}{2}\log(\omega^2 + a^2) \approx \begin{cases} 0, & \text{if } \omega < a\\ \log a - \log \omega, & \text{if } \omega > a \end{cases}$$

The phase curve is

$$\angle G(i\omega) = -\frac{180}{\pi} \arctan \frac{\omega}{a} \approx \begin{cases} 0, & \text{if } \omega < \frac{a}{10} \\ -45 - 45(\log \omega - \log a), & \text{if } a/10 < \omega < 10a \\ -90, & \text{if } \omega > 10a \end{cases}$$

Case 2: first-order system

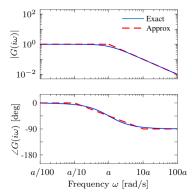


Figure: Bode plot of the first-order system G(s) = a/(s + a), which can be approximated by asymptotic curves (dashed) in both the gain and the frequency, with the breakpoint in the gain curve at $\omega = a$ and the phase decreasing by 90° over a factor of 100 in frequency.

A first-order system behaves like a constant for low frequencies and like an integrator for high frequencies.

Case 3: second-order system

Consider the transfer function of a first-order system

$$G(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}, \qquad 0 < \zeta < 1.$$

The gain curve is

$$\begin{aligned} |G(i\omega)| &= 2\log\omega_0 - \frac{1}{2}\log(\omega^4 + 2\omega_0^2\omega^2(2\zeta^2 - 1) + \omega_0^4) \\ &\approx \begin{cases} 0, & \text{if } \omega \ll \omega_0 \\ 2\log\omega_0 - 2\log\omega, & \text{if } \omega \gg \omega_0 \end{cases} \end{aligned}$$

▶ The largest gain $Q = \max_{\omega} |G(i\omega)| \approx 1/(2\zeta)$, called the Q-value, is obtained for $\omega \approx \omega_0$ – Resonant frequency

The phase curve is

$$\angle G(i\omega) = -\frac{180}{\pi} \arctan \frac{2\zeta\omega_0\omega}{\omega_0^2 - \omega} \approx \begin{cases} 0, & \text{if } \omega \ll \omega_0\\ -180, & \text{if } \omega \gg \omega_0 \end{cases}$$

Case 3: Second-order system

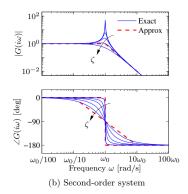


Figure: Bode plot of the second-order system $G(s) = \omega_0^2/(s^2 + 2\zeta\omega_0 s + \omega_0^2)$, which has a peak at frequency ω_0 and then a slope of -2 beyond the peak; the phase decreases from 0° to -180° . The height of the peak and the rate of change of phase depending on the damping ratio ζ ($\zeta = 0.02, 0.1, 0.2, 0.5$, and 1.0 shown).

The asymptotic approximation is poor near $\omega = \omega_0$ and that the Bode plot depends strongly on ζ near this frequency.

Determine Transfer function experimentally

Model a given application by measuring the frequency response

- Apply a sinusoidal signal at a fixed frequency.
- Measure the amplitude ratio and phase lag when steady state is reached.
- The complete frequency response is obtained by sweeping over a range of frequencies.

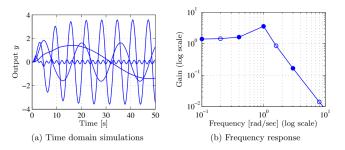


Figure: A frequency response (gain only) computed by measuring the response of individual sinusoids.

Bode plot

First-order and second-order examples

High-order examples

The Routh–Hurwitz Criterion: Examples

High-order examples

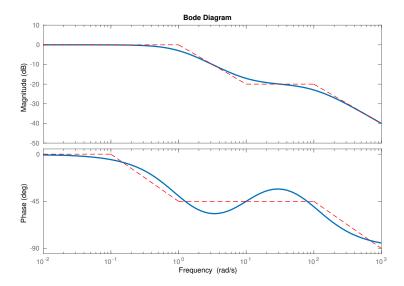
High-order Example I

Example

Draw a Bode plot for $G(s) = 10 \frac{s+10}{(s+1)(s+100)} \label{eq:general}$

- Step 1: find break points (poles and zeros): 1, 10, 100.
- ▶ Step 2: Calculate |G(i0)| and $\angle G(i0)$ to determine the starting points
- Step 3: Sketch the bode plot by the rules
 - Magnitude increases with a zero: if the zero is a first-order real zero, the slop is +1; if the zero is a second-order zero (or complex zero), the slop is +2
 - Magnitude decreases with a pole: If there pole is a first-order real pole, the slop is -1; if the pole is a second-order pole (or complex pole), the slop is -2
 - Phases changes by +90 with a first order real zero; +180 with a second order zero (or complex zero). The change starts around a/10 and ends around 10a.
 - Phases changes by -90 with a first order real pole; -180 with a second order pole (or complex pole). Similarly, the change starts around a/10 and ends around 10a.

High-order Example I



Another example II

Example

Draw bode plot for

$$G(s) = \frac{k(s+b)}{(s+a)(s^2 + 2\zeta\omega_0 s + \omega_0^2)}, \qquad a \ll b \ll \omega_0.$$

Gain curve:

- Begin with low frequency $G(0) = \frac{kb}{a\omega_o^2}$.
- Reach $\omega=a,$ the effect of the pole begins and the gain decreases with slope -1
- At $\omega = b$, the zero comes into play and we increase the slope by 1, leaving the asymptote with net slope 0.
- This slope is used until the effect of the second-order pole is seen at $\omega = \omega_0$, at which point the asymptote changes to slope -2.

Phase curve:

- The approximation process is similar, but slightly more complicated since the effect of the phase stretches out much further.

Another example II

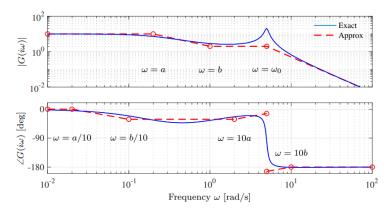


Figure 9.15: Asymptotic approximation to a Bode plot. The solid curve is the Bode plot for the transfer function $G(s) = k(s+b)/(s+a)(s^2+2\zeta\omega_0s+\omega_0^2)$, where $a \ll b \ll \omega_0$. Each segment in the gain and phase curves represents a separate portion of the approximation, where either a pole or a zero begins to have effect. Each segment of the approximation is a straight line between these points at a slope given by the rules for computing the effects of poles and zeros.

High-order examples

Bode plot

First-order and second-order examples

High-order examples

The Routh-Hurwitz Criterion: Examples

Stability

Theorem (Stability of a linear system (Lyapunov sense)) The system $\dot{x} = Ax$ is

- ► asymptotically stable if and only if all eigenvalues of A have a strictly negative real part, i.e., Re(\u03c6_i) < 0</p>
- unstable if any eigenvalues A has a strictly positive real part.

Consider an LTI system

$$\dot{x} = Ax + Bu,$$

 $y = Cx + Du$
 \iff
 $G(s) = C(sI - A)^{-1}B + D$

Poles (eigenvalues) of the matrix A = Poles of the transfer function G(s)

- A system is **bounded-input bounded-output (BIBO)** stable if every bounded input u(t) leads to a bounded output y(t).
- BIBO stable: if all poles of G(s) are in the open left half-plane in the s domain (i.e., having negative real parts).

Routh Table

•
$$a(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_2 s^2 + a_1 s + a_0$$

s^n	a_n	a_{n-2}	a_{n-4}	 a_0
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	 0
	$a_n a_{n-2}$	$a_n a_{n-4}$		
s^{n-2}	$b_{n-1} = -\frac{\left a_{n-1} a_{n-3}\right }{a_{n-1}}$	$b_{n-3} = -\frac{\left a_{n-1} a_{n-5}\right }{a_{n-1}}$	b_{n-5}	 0
	a_{n-1} a_{n-3}	a_{n-1} a_{n-5}		
s^{n-3}	$c_{n-1} = -\frac{\left b_{n-1} \ b_{n-3}\right }{b_{n-1}}$	$c_{n-3} = -\frac{\left b_{n-1} - b_{n-5}\right }{b_{n-1}}$	c_{n-5}	 0
:	:	:	:	 :
s^0	a_0	0	0	 0

Any row can be multiplied by a positive constant without changing the result

Example: Higher-order System

Example

Consider the characteristic polynomial of a fifth-order system:

$$a(s) = s^5 + s^4 + 10s^3 + 72s^2 + 152s + 240$$

► The Routh table is:

s^5	1	10	152
s^4	1	72	240
s^3	-62	-88	0
s^2	70.6	240	0
s^1	122.6	0	0
s^0	240	0	0

- Since there are two sign changes in the first column, there are two roots in the right half-plane and the system is unstable
- ▶ The roots of *a*(*s*) are:

$$a(s) = (s+3)(s+1 \pm j\sqrt{3})(s-2 \pm j4)$$

Example: Special Case

Example

Consider the polynomial:

$$a(s) = s^4 + s^3 + 2s^2 + 2s + 3$$

► The Routh table is:

s^4	1	2	3
s^3	1	2	0
s^2	ø	3	0
s^1	$2 - \frac{3}{\epsilon}$	0	0
s^0	3	0	0

For $0 < \epsilon \ll 1$, we see that $2 - \frac{3}{\epsilon} < 0$

Since there are two sign changes in the first column, there are two roots in the right half-plane and the system is unstable

The roots are $p_{1,2} = 0.4057 \pm 1.2928i$, $p_{3,4} = -0.9057 \pm 0.9020i$

Example: Special Case 2

Example

Consider the polynomial:

$$a(s) = s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10$$

The Routh table is:

s^5	1	2	11
s^4	2	4	10
s^3	ø	6	0
s^2	$c_4 = \frac{1}{\epsilon} (4\epsilon - 12)$	10	0
s^1	$d_4 = \frac{1}{c_4} (6c_4 - 10\epsilon)$	0	0
s^0	10	0	0

- For $0 < \epsilon \ll 1$, we see that $c_4 < 0$ and $d_4 > 0$
- Since there are two sign changes in the first column, there are two roots in the right half-plane and the system is unstable
- The roots are $\lambda_{1,2} = 0.8950 \pm 1.4561i, \lambda_{3,4} = -1.2407 \pm 1.0375i, \lambda_5 = -1.3087.$