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Stability of feedback systems

▶ Lyapunov stability — eigenvalue test of the closed-loop matrix; e.g.,

Dynamics → ẋ = Ax+Bu,

Feedback controller → u = −Kx
⇒ ẋ = (A−BK)x.

▶ Poles or The Routh–Hurwitz Criterion;
P (s) =

np(s)

dp(s)

C(s) =
nc(s)

dc(s)

⇒ Gyr(s) =
PC

1 + PC
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)

They are straightforward but give little guidance for design: it is not easy to
tell how the controller should be modified to make an unstable system stable.
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Nyquist’s idea

▶ Nyquist’s idea was to first investigate conditions under which oscillations
can occur in a feedback loop.

▶ The Loop transfer function:

L(s) = P (s)C(s).

▶ Assume that a sinusoid of frequency ω0 is injected at point A. In steady
state, the signal at point B will also be a sinusoid with the frequency ω0.

Very intuitive idea: It seems reasonable that an oscillation can be maintained
if the signal at B has the same amplitude and phase as the injected signal!

Nyquist stability criterion 5/22



Nyquist contour

The (standard or simplest) Nyquist contour, also
known as “Nyquist D contour” (Γ ⊂ C), is made
up of three parts:

▶ Contour C1: points s = iω on the
positive imaginary axis, as ω ranges from
0 to ∞

▶ Contour C2: points s = Reiθ on a
semi-circle as R → ∞ and θ ranges from
π
2
to −π

2

▶ Contour C3: points s = iω on the
negative imaginary axis, as ω ranges from
−∞ to 0

The image of L(s) when s traverses Γ gives a closed curve in the complex
plane and is referred to as the Nyquist plot for L(s).

▶ Nyquist’s stability criterion utilizes contours in the complex plane to
relate the locations of the open-loop and closed-loop poles.
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Simplified Nyquist Criterion

Theorem (Simplified Nyquist Criterion)
Let L(s) be the loop transfer function for a negative feedback system, and
assume that L has no poles in the closed right half-plane ( Re(s) ≥ 0) except
possibly at the origin. Then the closed loop system

Gcl(s) =
L(s)

1 + L(s)

is stable if and only if the image of L(s) along the closed contour Γ has no net
encirclements of the critical point s = −1 + i0.
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Winding number

The following conceptual procedure can be used to determine that there are no
net encirclements.

▶ Step 1: Fix a pin at the critical point s = −1, orthogonal to the plane.

▶ Step 2: Attach a string with one end at the critical point and the other on
the Nyquist plot.

▶ Step 3: Let the end of the string attached to the Nyquist curve traverse
the whole curve.

There are no net encirclements if the
string does not wind up on the pin
when the curve is encircled.

▶ The number of net encirclements
is called the winding number.

Nyquist plot for L(s) = 1
(s+a)3

with a = 0.6

▶ Closed-loop system

Gcl(s) =
L(s)

1 + L(s)
=

1

(s+ 0.6)3 + 1
, λ1 = −1.6000, λ2,3 = −0.1±0.8660i
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Nyquist’s Stability Criterion

Theorem (Nyquist’s Stability Criterion)
Consider a unity feedback control system with open-loop transfer function
L(s). Let Γ be a Nyquist contour. The system is stable if and only if the
number of counterclockwise encirclements of −1 + i0 by the Nyquist plot
L(Γ) is equal to the number of poles of L(s) inside Γ.

Classical robustness measures: stability margin, phase margin, gain margin
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Example 1: a third-order system

Draw a Nyquist plot for L(s) = 1
(s+a)3

.

▶ Counter C1: s = iω with ω from 0 to ∞

L(i0) =
1

a3
∠0◦, L(i∞) = 0∠− 270◦

▶ for 0 < ω < ∞

L(iω) =
1

(iω + a)3
=

(a− iω)3

(a2 + ω2)3
=

a3 − 3aω2

(a2 + ω2)3
+ i

ω3 − 3a2ω

(a2 + ω2)3

▶ Counter C2: s = Reiθ for R → ∞ and θ from π
2
to −π

2
.

L(Reiθ) =
1

(Reiθ + a)3
→ 0

▶ Counter C3: s = iω with ω ∈ (−∞, 0)

L(−iω) = L(̄iω) = L(iω)

which is a reflection (complex conjugate) of L(C1) about the real axis.
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Example 1: a third-order system
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Example 2: a second-order system

Draw a Nyquist plot for

L(s) =
100

(1 + s)(1 + s/10)
.

▶ Contour C1: L(i0) = 100∠0◦, L(i∞) = 0∠−180◦

▶ Contour C2: limR→∞ L(Reiθ) = 0
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Pole/Zero on the Imaginary Axis

▶ When the loop transfer function has
poles on the imaginary axis, the gain is
infinite at the poles.

▶ The Nyquist contour needs to be
modified to take a small detour around
such poles or zeros

▶ So, we add another part: Contour C4

– plot L(ϵeiθ) for ϵ → 0 and

θ ∈
(
−π

2
,
π

2

)
– substitute s = ϵeiθ into L(s) and

examine what happens as

ϵ → 0
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Example 3

Draw a Nyquist plot for a loop transfer system:

L(s) =
κ

s(1 + τs)

▶ Since there is a pole at the origin, we need to use a modified Nyquist
contour
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Example 3

▶ Contour C4 with s = ϵeiθ for ϵ → 0 and θ ∈ (−π
2
, π
2
):

lim
ϵ→0

L(ϵeiθ) = lim
ϵ→0

κ

ϵeiθ
= lim

ϵ→0

κ

ϵ
e−iθ = ∞∠−θ

– The phase of L(s) changes from
π

2
at ω = 0− to −π

2
at ω = 0+

▶ Contour C1 with ω ∈ (0,∞):

L(i0+) = ∞∠−90◦

L(i∞) = lim
ω→∞

κ

iω(1 + iωτ)
= lim

ω→∞

∣∣∣ κ

τω2

∣∣∣∠−π/2− tan−1(ωτ)

= 0∠−180◦

▶ Contour C2 with s = reiθ for r → ∞ and θ from π
2
to −π

2
:

lim
r→∞

L(reiθ) = lim
r→∞

∣∣∣ κ

τr2

∣∣∣ e−2iθ = 0∠−2θ

– The phase of L(s) changes from −π at ω = ∞ to π at ω = −∞
▶ Contour C3 with ω ∈ (−∞, 0):

– L(C3) is a reflection of L(C1) about the real axis
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Summary - Nyquist contour

▶ Open-loop transfer function: L(s) = P (s)C(s)

▶ Close-loop transfer function

Gyr =
L(s)

1 + L(s)

Nyquist Contour is a D-shape curve in the complex domain, avoiding all the
poles of L(s) on the imaginary axis.

▶ Only poles on the imaginary axis needs to be avoided.

▶ The default orientation of traveling along the contour is clockwise.

▶ The semi-circle centered at pole p on the imaginary axis, rotating in
counter clockwise direction, is represented by p+Reiθ, θ ∼ −π

2
→ π

2
.

▶ The big semi-circle of the contour, rotating in clockwise direction, is
represented by Reiθ, θ : +π

2
→ −π

2
, R → ∞
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Summary - Nyquist plots

The Nyquist Plot is the image of the Nyquist Contour after going through
the function L(s). Nyquist Contour D ⇒ Nyquist PlotL(D).

▶ Start with the expression of L(s) when s is on the imaginary axis s = iω.

▶ When drawing the plot, it is helpful to first think about how Re(L(s)) will
change, then think about how Im(L(s)) will change.

▶ In many cases, |L(s)| → 0 when |s| → ∞. Many Nyquist plots stuck at 0
as you travel along the big semi-circle of the Nyquist Contour.

▶ The part of the Nyquist Plot corresponding to the lower half of imaginary
axis in the Nyquist Contour is symmetrical (reflection) to the other half.

▶ Cautions with using MATLAB

– MATLAB doesn’t generate the portion of plot for corresponding to
the poles on imaginary axis

– These must be drawn in by hand (get the orientation right!)

Theorem (Nyquist stability theorem)
1 + L(s) has Z = N + P zeros in the right half plane.

Nyquist plot - examples 18/22



Example 4

L(s) =
1

s+ 1

Figure: Nyquist plot for L(s) = 1
s+1

Z = N + P = 0

Then,

Gyr =
L(s)

1 + L(s)

=
1

s+ 2
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Example 5

L(s) =
1

(s+ 1)2

Figure: Nyquist plot for L(s) = 1
(s+1)2

Z = N + P = 0

Then,

Gyr =
L(s)

1 + L(s)

=
1

s2 + 2s+ 2

Closed-loop poles

p1,2 = −1± 1i
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Example 6

L(s) =
1

s(s+ 1)

Figure: Nyquist plot for L(s) = 1
s(s+1)

Z = N + P = 0

Then,

Gyr =
L(s)

1 + L(s)

=
1

s2 + s+ 1

Closed-loop poles

p1,2 = −0.5± 0.866i
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Example 7

L(s) =
1

s(s+ 1)(s+ 0.5)

Figure: Nyquist plot for
L(s) = 1

s(s+1)(s+0.5)

Z = N + P = 2

Then,

Gyr =
L(s)

1 + L(s)

=
1

s3 + 1.5s2 + 0.5s+ 1

Closed-loop poles

p1,2 = 0.0416± 0.7937i

p3 = −1.5832
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