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Announcements

▶ Office hours

– Recall from Lecture 1: “Ideally, I would like most of you, if not all,
go to the office hours together even if you don’t have questions. You
can even help us answering questions to others. It is important to
have a community for this class!”

▶ Piazza: Check it regularly, and feel free to ask questions (Lectures,
textbook, HW etc.)

▶ Midterm I: Many of you did well (Send us an email if you want to chat)

– Maximum: 102
– Above 90: 10; 80 - 90: 10
– Mean: 67.3; Median: 69

▶ Anonymous survey on workload and feedback; Please spend 2 minutes
filling it out by Thursday night.

https://forms.gle/pfBzhbjDpC3A9rWr5

Recall from Lecture 1: You will need to invest a significant amount of time, so
that you will enjoy this course and learn a lot.
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The convolution equation

Consider a state-space system

ẋ = Ax+Bu,

y = Cx+Du
(1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp.

Theorem
The solution to the linear differential equation (1) is given by

y(t) = CeAtx(0) + C

∫ t

0

eA(t−τ)Bu(τ)dτ +Du(t). (2)

Some observations:

▶ Control design is to design an input signal u(t) to shape y(t) (stability,
tracking performance, less overshot, less oscillation, robustness, etc.);

▶ The solution (2) is too complex to use for designing a controller;

▶ We look for some elegant and simple tools: make the mapping from u(t)
to y(t) easier to compute — Transfer functions
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Steady-state response

A common practice in evaluating the response of a linear system is to separate
out the short-term response from the long-term response.

▶ Transient response: which occurs in the first period of time after the
input is applied.

It reflects the mismatch between the initial condition and the steady-state
solution

▶ Steady-state response: which is the portion of the output response that
reflects the long-term behavior of the system under the given inputs.

– For inputs that are periodic, the steady-state response will often be
periodic (e.g., frequency response)

– For constant inputs, the response will often be constant (e.g., step
response)

▶ Mathematical derivation will be discussed in Lecture 12.
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Example
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Step response

Step input (also known as Heaviside step function)

u(t) =

{
0 if t ≤ 0

1 if t > 0

▶ Let’s assume x(0) = 0

▶ Solve the step response

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t)

=

∫ t

0

CeA(t−τ)Bdτ +D = −
∫ 0

t

CeAρBdρ+D

= C

∫ t

0

eAρdρB +D = C

(
A−1eAρ

∣∣∣ρ=t

ρ=0

)
B +D

= CA−1eAtB︸ ︷︷ ︸
transient

+D − CA−1B︸ ︷︷ ︸
steady-state
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Frequency response

The frequency response of an input/output system measures the way in which
the system responds to a sinusoidal excitation.

▶ The particular solution associated with a sinusoidal excitation is itself a
sinusoid at the same frequency.

▶ We can compare the magnitude and phase of the output sinusoid to the
input (— Transfer function and Bode plot).

Let us consider a sinusoid input

u(t) = cosωt.

▶ Evaluating (2) with input u(t) = cosωt can be very messy.

▶ We use the fact that the system is linear to simplify the derivation.

▶ In particular, Euler’s formula tells us that

cosωt =
1

2

(
eiωt + e−iωt

)
▶ Thanks to the linearity, we can use the exponential input u(t) = est, and

then construct the solution by letting s = iω and s = −iω.
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Frequency response - derivation

▶ We apply the convolution equation to u = est

y(t) = CeAtx(0) + C

∫ t

0

eA(t−τ)Besτdτ +Dest

= CeAtx(0) + CeAt

∫ t

0

e(sI−A)τdτB +Dest

▶ We assume (sI −A) is invertible, then

y(t) = CeAtx(0) + CeAt

(
(sI −A)−1e(sI−A)τ

∣∣∣τ=t

τ=0

)
B +Dest

= CeAtx(0) + CeAt(sI −A)−1
(
e(sI−A)t − I

)
B +Dest

= CeAtx(0) + C(sI −A)−1estB − CeAt(sI −A)−1B +Dest

▶ Finally, we obtain

y(t) = CeAt (x(0)− (sI −A)−1B
)︸ ︷︷ ︸

transient

+
(
C(sI −A)−1B +D

)
est︸ ︷︷ ︸

steady-state
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Frequency response - steady-state component

The solution corresponding to the exponential input est is

y(t) = CeAt (x(0)− (sI −A)−1B
)︸ ︷︷ ︸

transient

+
(
C(sI −A)−1B +D

)
est︸ ︷︷ ︸

steady-state

▶ If the system matrix A is stable, the transient component decays to zero

▶ The steady-state component is proportional to the exponential input est.

▶ We can write the steady-state response as

yss(t) = Meiθest = Mest+iθ,

where G(s) = C(sI −A)−1B +D ← Transfer function

▶ When s = iω, we call

– M = |G(iω)| the gain, and
– θ = arg(G(iω)) the phase of the system at the forcing frequency ω
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Frequency response - steady-state component

The steady-state solution for a sinusoid u = cosωt is given by

yss(t) = Re
(
G(iω)eiωt

)
= |G(iω)| cos(ωt+ ∠G(iω))
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Some terminology

▶ Zero frequency gain: The gain of a system at ω, corresponds to the ratio
between a constant input and the steady output

M0 = G(0) = −CA−1B +D.

– The zero frequency gain is well defined only if A is invertible.
– Zero frequency gain is a relevant quantity only for stable systems.
– In EE, the zero frequency gain is often called the DC gain.

▶ The bandwidth ωb of a system is the frequency range over which the gain
has decreased by no more than a factor 1/

√
2 from its reference value

(either zero-frequency gain or high-frequency gain)

▶ Resonant peak Mr, the largest value of the frequency response

▶ Peak frequency ωmr, the frequency where the maximum occurs

– The frequency of the sinusoidal input that produce the largest
possible output and the gain at the frequency.
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Transfer functions

Transfer functions: transmission of exponential Signals est with s = σ + iω

est = eσteiωt = eσt(cosωt+ i sinωt)

where σ ≤ 0: decay rate.

▶ Find the transfer function for the state-space system

ẋ = Ax+Bu, y = Cx+Du. (3)

▶ The output y(t) of system (3) to the input eσt is

y(t) = CeAt (x(0)− (sI −A)−1B
)︸ ︷︷ ︸

transient

+
(
C(sI −A)−1B +D

)
est︸ ︷︷ ︸

steady-state

▶ The transfer function from u to y of the system (3) is the coefficient of
the term est, i,e,,

G(s) = C(sI −A)−1B +D.
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Example: calculating transfer function

Example
Consider an LTI system

ẋ1 = −a1x1 − a2x2 + u

ẋ2 = x1

y = x2

▶ The system matrices are

A =

[
−a1 −a2

1 0

]
, B =

[
1
0

]
, C =

[
0 1

]
, D = 0.

▶ Compute its transfer function

G(s) = C(sI −A)−1B +D =
[
0 1

] [s+ a1 a2

−1 s

]−1 [
1
0

]
=

[
0 1

] 1

s2 + a1s+ a2

[
s −a2

1 s+ a1

] [
1
0

]
=

1

s2 + a1s+ a2
.
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Example: computing steady-state responses

Example

▶ Suppose a1 = 1, a2 = 2. Its transfer function is

G(s) =
1

s2 + s+ 2
.

▶ The steady-state response to a step input u(t) = 1 is est with s = 0, i.e.

yss = G(0)u =
1

2
.
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Example: computing steady-state responses

Example

▶ The steady-state response to a sin input u(t) = sinωt is

y = M sin(ωt+ ϕ), whereM = |G(iω)|, θ = arg(G(iω))

▶ Case 1: u(t) = sin t → y(t)?

G(iω) =
1

(iω)2 + iω + 2
, M = |G(i)| = 1√

2
, θ = −45◦
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Example: computing steady-state responses

Example

▶ The steady-state response to a sin input u(t) = sinωt is

y = M sin(ωt+ ϕ), whereM = |G(iω)|, θ = arg(G(iω))

▶ Case 2: u(t) = sin 2t → y(t)?

G(i2) =
1

−2 + i2
, M = |G(i2)| = 1

2
√
2
, θ = −135◦
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Summary

▶ Transient response and steady-state response

y(t) = CeAt (x(0)− (sI −A)−1B
)︸ ︷︷ ︸

transient

+
(
C(sI −A)−1B +D

)
est︸ ︷︷ ︸

steady-state

▶ Transfer function
G(s) = C(sI −A)−1B +D.

– Express the steady-state solution of a stable linear system forced by a
sinusoidal input

u(t) = sin(ωt)→ yss = |G(iω)| sin(ωt+ ∠G(iω))

▶ Frequency domain modeling: Modeling a system through its response to
sinusoidal and exponential signals.

– We represent the dynamics of the system in terms of the generalized
frequency s rather than the time domain variable t.

– The transfer function provides a complete representation of a linear
system in the frequency domain.
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