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Convolution equation and Transfer functions

Consider a state-space system

ẋ = Ax+Bu,

y = Cx+Du
(1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp.

▶ The solution to the state-space system (1) is given by

y(t) = CeAtx(0) + C

∫ t

0

eA(t−τ)Bu(τ)dτ +Du(t). (2)

Transfer functions:

▶ We apply the convolution equation to u = est

y(t) = CeAt (x(0)− (sI −A)−1B
)︸ ︷︷ ︸

transient

+
(
C(sI −A)−1B +D

)
est︸ ︷︷ ︸

steady-state

▶ The transfer function for the state-space system (1) is

G(s) = C(sI −A)−1B +D
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Transfer functions - overview

▶ Transfer functions — A compact description of the input/output relation
for a linear time-invariant (LTI) system.

▶ Combining transfer functions with block diagrams gives a powerful
algebraic method to analyze linear systems with many blocks.

▶ The transfer function allows new interpretations of system dynamics.

▶ Many graphical tools, such as the Bode plot (a powerful graphical

representation of the transfer function that was introduced by Bode.)

Figure: A block diagram for a feedback control system
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Response to periodic inputs

The basic idea of the transfer function comes from looking at the frequency
response of a system.

G(s) = C(sI −A)−1B +D ← Transfer function

▶ Suppose that we have an input signal that is periodic. We can then
decompose it

u(t) =
∞∑

k=0

(ak sin(kωft) + bk cos(kωf t))

▶ The output will be sine and cosine waves, with possibly shifted
magnitude and phase, which can be determined by

G(iω) = C(iω −A)−1B +D,

where ω = kωf , k = 1, . . . ,∞.

▶ Thanks to linearity (superposition), the final steady-state response will be
a sum of these signals.
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The exponential input est

▶ The transfer function generalizes this notion to allow a broader class of
input signals besides periodic ones.

▶ The transfer function can also be introduced as the ratio of the Laplace
transforms of the output and the input.

Figure: Examples of exponential signals. The top row: exponential signals with a real
exponent, and the bottom row: those with complex exponents.
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Frequency-domain modeling

Frequency domain modeling: Modeling a system through its response to
sinusoidal and exponential signals.

▶ We represent the dynamics of the system in terms of the generalized
frequency s rather than the time domain variable t.

▶ The transfer function provides a complete representation of a linear
system in the frequency domain.

Some benefits of transfer functions:

▶ Provide a particularly convenient representation in manipulating and
analyzing complex linear feedback systems.

▶ Graphical representations (Bode and Nyquist plots) that capture
interesting properties of the underlying dynamics — Weeks 5/6

▶ We can introduce concepts that express the degree of stability of a system
– stability margins, Week 6

▶ Express the changes/uncertainty in a system because of modeling error,
considering sensitivity to process variations – robustness, Week 9
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Linear ODEs

Consider a linear system described by the controlled differential equation

dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ a0y = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . .+ b0u, (3)

where u is the input, and y is the output.

▶ We aim to determine the transfer function of (3) (i.e., input/output
relationship in frequency domain);

▶ Let the input u(t) = est, and since the system is linear, the output is
y(t) = y0e

st.

▶ Plug u(t) = est and y(t) = y0e
st into (3),

(sn + an−1s
n−1 + . . .+ a0)y0e

st = (bmsm + bm−1s
m−1 + . . .+ b0)e

st

▶ We now have

y(t) = y0e
st =

bmsm + bm−1s
m−1 + . . .+ b0

sn + an−1sn−1 + . . .+ a0︸ ︷︷ ︸
G(s)

est.
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Example: Cruise control

Example
The system dynamics are given by

ṗ = v(t), v̇(t) =
1

m
u(t).

where p denotes the position, v denotes the velocity of the vehicle.

▶ It is the same as

p̈ =
1

m
u(t).

▶ Applying an exponential input u = est leads to

s2p0e
st =

1

m
est ⇒ s2y(t) =

1

m
u(t).

▶ The input/output relationship between p(t) and u(t) (i.e., transfer
function) in the frequency domain is

G(s) =
1

ms2
.
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Example: spring-mass system

Example
The system dynamics are given by

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) = u(t),

where x(t) denotes the position of the mass, ζ is the damping coefficient, and
ω0 denotes the natural frequency.

▶ Applying an exponential input u = est leads to

s2x0e
st + 2ζω0sx0e

st + ω2
0x0e

st = est

⇒ (s2 + 2ζω0s+ ω2
0)x(t) = u(t).

▶ The input/output relationship between x(t) and u(t) (i.e., transfer
function) in the frequency domain is

G(s) =
1

s2 + 2ζω0s+ ω2
0

.
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Example: Vibration damper

Figure: A vibration damper. Vibrations of the mass m1 can be damped by
providing it with an auxiliary mass m2, attached to m1 by a spring with
stiffness k2. The parameters m2 and k2 are chosen so that the frequency√

k2/m2 matches the frequency of the vibration.
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Example: Vibration damper

Example
The system dynamics are given by

m1q̈1 + c1q̇1 + k1q1 + k2(q1 − q2) = F,

m2q̈2 + k2(q2 − q1) = 0.

▶ Objective: determine the transfer function from the force F to the
position q1.

▶ We first find particular exponential solutions

(m1s
2 + c1s+ k1)q1 + k2(q1 − q2) = F

m2s
2q2 + k2(q2 − q1) = 0.

▶ Eliminate q2 and we have the transfer function

Gq1F (s) =
m2s

2 + k2
m1m2s4 +m2c1s3 + (m1k2 +m2(k1 + k2))s2 + k2c1s+ k1k2

▶ The transfer function has a zero at s = ±i
√

k2/m2 — Blocking property
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Blocking property

Parameters m1 = 1, c1 = 1, k1 = 1,m2 = 1, k2 = 1.

▶ Case 1: external input

u = sin(ωt), with ω = 1.

(a) Input u = sin(t)

⇒

(b) Position of mass 1

(c) Postion of mass 2
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Other frequencey responses

▶ Case 2: external input u = sin(ωt), with ω = 1.1.

(a) Input u = sin(1.1t)

⇒

(b) Position of mass 1

▶ Case 3: external input u = sin(ωt), with ω = 0.578.

(a) Input u = sin(1.1t)

⇒

(b) Position of mass 1
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Common transfer functions

Type System Transfer function

Integrator ẏ = u
1

s
Differentiator y = u̇ s

First-order system ẏ + ay = u
1

s+ a

Double integrator ÿ = u
1

s2

Damped oscillator ÿ + 2ζω0ẏ + ω2
0y = u

1

s2 + 2ζω0s+ ω2
0

State-space system
ẋ = Ax+Bu

y = Cx+Du
C(sI −A)−1B +D

PID controller y = kpu+ kdu̇+ ki

∫
u kp + kds+

ki
s

Time delay y(t) = u(t− τ) e−τs

Table: Transfer functions for some common linear time-invariant systems.
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Block diagrams

The combination of block diagrams and transfer functions is a powerful way to
represent control systems.

▶ Input-output relationship can be derived by algebraic manipulations of
the transfer functions.

Figure: Interconnections of linear systems. Series (a), parallel (b), and
feedback (c) connections are shown.
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Feedback connection

▶ It is easy to see the relationship

y = G1e, e = u−G2y

▶ Elimination of e gives

y = G1(u−G2y) ⇒ (1 +G1G2)y = G1u

⇒ y =
G1

1 +G1G2
u

▶ The transfer function of the feedback connection is thus

G =
G1

1 +G1G2
.

These three basic interconnections can be used as the basis for computing
transfer functions for more complicated systems.
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Summary

▶ Frequency domain modeling: Modeling a system through its response to
sinusoidal and exponential signals.

– We represent the dynamics of the system in terms of the generalized
frequency s rather than the time domain variable t.

– The transfer function provides a complete representation of a linear
system in the frequency domain.

▶ Transfer function for linear ODEs

dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ a0y = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . .+ b0u,

G(s) =
bmsm + bm−1s

n−1 + . . .+ b0
sn + an−1sn−1 + . . .+ a0

.

▶ Block diagram with transfer functions
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