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Convolution equation and Transfer functions

Consider a state-space system

& = Ax + Bu,
_ (1)
y=Cz+ Du
where x € R", u € R™,y € RP.
» The solution to the state-space system (1) is given by
t
y(t) = Ce™z(0) + C’/ e Bu(r)dr 4 Du(t). 2
0

Transfer functions:

» We apply the convolution equation to u = e

y(t) = Ce™ (2(0) — (sI — A)"'B) + (C(sI — A)"'B+ D) e

transient steady-state

» The transfer function for the state-space system (1) is
G(s)=C(sI — A 'B+D
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Transfer functions - overview

» Transfer functions — A compact description of the input/output relation
for a linear time-invariant (LTI) system.

» Combining transfer functions with block diagrams gives a powerful
algebraic method to analyze linear systems with many blocks.

» The transfer function allows new interpretations of system dynamics.

» Many graphical tools, such as the Bode plot (a powerful graphical
representation of the transfer function that was introduced by Bode.)

| Reference Feedback
|
1 shaping controller
1
!
1

v Process w
dynamics

Y

Figure: A block diagram for a feedback control system
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Response to periodic inputs

The basic idea of the transfer function comes from looking at the frequency
response of a system.

G(s) =C(sI — A)le + D <+ Transfer function

» Suppose that we have an input signal that is periodic. We can then
decompose it

u(t) = Z (ar sin(kwst) + by cos(kwyt))
k=0

» The output will be sine and cosine waves, with possibly shifted
magnitude and phase, which can be determined by
G(iw) = Cliw — A)"'B+ D,

where w = kwe, k =1,...,00.

» Thanks to linearity (superposition), the final steady-state response will be
a sum of these signals.
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The exponential input e

» The transfer function generalizes this notion to allow a broader class of
input signals besides periodic ones.

» The transfer function can also be introduced as the ratio of the Laplace
transforms of the output and the input.
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Figure: Examples of exponential signals. The top row: exponential signals with a real
exponent, and the bottom row: those with complex exponents.
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Frequency-domain modeling

Frequency domain modeling: Modeling a system through its response to
sinusoidal and exponential signals.

» We represent the dynamics of the system in terms of the generalized
frequency s rather than the time domain variable t.

» The transfer function provides a complete representation of a linear
system in the frequency domain.

Some benefits of transfer functions:

» Provide a particularly convenient representation in manipulating and
analyzing complex linear feedback systems.

> Graphical representations (Bode and Nyquist plots) that capture
interesting properties of the underlying dynamics — Weeks 5/6

» We can introduce concepts that express the degree of stability of a system
— stability margins, Week 6

> Express the changes/uncertainty in a system because of modeling error,
considering sensitivity to process variations — robustness, Week 9
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Linear ODEs

Consider a linear system described by the controlled differential equation

dny n—ly B dm dm—lu
dtin—Fan—lw“r---‘Faoyfb e 4 bim— 1dtm 1

where u is the input, and y is the output.

+ ...+ bou, (3)

» We aim to determine the transfer function of (3) (i.e., input/output
relationship in frequency domain);

> Let the input u(t) = !, and since the system is linear, the output is
y(t) = yoe™
> Plug u(t) = e** and y(t) = yoe®" into (3),
1

(8" 4+ an_15" "+ ... +ao)yoe® = (bms™ + bo18™ L.+ bo)e®

» We now have

(t) = o™t = b S™ 4 bm_18™ L+ ...+ b ot
Y Yo S" 4+ Ap_18" 1 + ...+ ao ’

G(s)
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Example: Cruise control

Example
The system dynamics are given by

1

) = u(t), o(t) = —uft).

p=u(t) o(t) = —u(t)

where p denotes the position, v denotes the velocity of the vehicle.
> It is the same as
.1 )
= —u(t).
P=m

» Applying an exponential input u = e leads to
2 st 1 st 2
s'poe” = e = sTy(t) = —ul(t).

» The input/output relationship between p(t) and u(t) (i.e., transfer
function) in the frequency domain is
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Example: spring-mass system

Example
The system dynamics are given by

&(t) + 20wod(t) + woe(t) = ult),
where z(t) denotes the position of the mass, ¢ is the damping coefficient, and

wo denotes the natural frequency.

» Applying an exponential input u = e leads to

2 t t 2 t t
s zoe® + 2Cwoszoe® + wpzoe® = e’

= (5" + 2Cwos + wi)a(t) = u(t).
» The input/output relationship between z(t) and u(t) (i.e., transfer
function) in the frequency domain is

1
Gls) = 82 + 2Cwos + wi
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Example: Vibration damper
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Figure: A vibration damper. Vibrations of the mass m can be damped by
providing it with an auxiliary mass mg, attached to m, by a spring with
stiffness k2. The parameters ms and k2 are chosen so that the frequency

\/k2/mz2 matches the frequency of the vibration.
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Example: Vibration damper

Example
The system dynamics are given by

>

migi +ca1qi + kg + k2(q1 — q2)

magz + k2(g2 — q1) = 0.
Objective: determine the transfer function from the force F' to the
position qi.

We first find particular exponential solutions

(mis® +ers + k)q + ka(qn —q2) = F
mas’qe + ka(q2 — q1) = 0.
Eliminate g2 and we have the transfer function

meo 82 + ko

Gar(s) = mamast + macis® + (mika + ma(ks + k2))s2 + kacis + ki ko

The transfer function has a zero at s = +iy/k2/m2 — Blocking property
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Blocking property

Parameters m1 = 1,c1 = 1,k1 = 1,ma = 1,ks = 1.
» Case 1: external input

u = sin(wt), with w = 1.
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Other frequencey responses

»> Case 2: external input u = sin(wt), with w =1.1.
T
fNH’/\ = §l "
L Il I I \' I = A

(a) Input u = sin(l.lt) (b) Position of mass 1

> Case 3: external input u = sin(wt), with w = 0.578.
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(a) Input u = sin(l.lt) (b) Position of mass 1
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Common transfer functions

Type System Transfer function
. 1
Integrator Yy=1u —
S
Differentiator y=10 s
. . 1
First-order system Yy+ay =u
s+a
. .. 1
Double integrator j=u —
s

1

amped oscillator  §j 4 2¢woy + woy = u 2+ 2Cwos + w3

T = Az + Bu

State-space system C(sI—A)"'B+D
P Y y=Czx+ Du ( )

PID controller y = kpu + kqu + ki/u kp + kas + %

Time delay y(t) =u(t —1) e "*

Table: Transfer functions for some common linear time-invariant systems.
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Block diagrams

The combination of block diagrams and transfer functions is a powerful way to
represent control systems.

» Input-output relationship can be derived by algebraic manipulations of
the transfer functions.

Gy
].-I-Gle

(a) Gyu = G2Gh (b) Gyu =G1+ G2 (C) Gyu =

Figure: Interconnections of linear systems. Series (a), parallel (b), and
feedback (c) connections are shown.
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Feedback connection
> It is easy to see the relationship
y = Gie, e=u— Gay

» Elimination of e gives

y=Gi(u—Gay) = (14 GiG2)y=Giu

— Gl u
v= 1+ G1Gs
» The transfer function of the feedback connection is thus
Gy
G =
1+ G1G2

These three basic interconnections can be used as the basis for computing
transfer functions for more complicated systems.
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Summary

» Frequency domain modeling: Modeling a system through its response to
sinusoidal and exponential signals.
— We represent the dynamics of the system in terms of the generalized
frequency s rather than the time domain variable t.
— The transfer function provides a complete representation of a linear
system in the frequency domain.
» Transfer function for linear ODEs
m mn—1 m m—1
MJranfldi?#quaoy:bm% +bm,1cfitm7_?+...+bou,
b 8™ 4 bm—15" "t + ...+ bo
S+ ap 15" 1 +...+ay

» Block diagram with transfer functions

G(s) =

(a) Gyu = G2G1 (b) Gyu = G1 + G2 (c) Gyu =

1+ GG
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