ECE 171A: Linear Control System Theory Lecture 13: Transfer functions (II)

Yang Zheng

Assistant Professor, ECE, UCSD

April 27, 2022

Reading materials: Ch 9.2, 9.3, 9.4

[Frequency-domain modeling](#page-2-0)

[Transfer functions for linear ODEs](#page-8-0)

[Block Diagrams and Transfer Functions](#page-17-0)

[Summary](#page-20-0)

[Frequency-domain modeling](#page-2-0)

[Transfer functions for linear ODEs](#page-8-0)

[Block Diagrams and Transfer Functions](#page-17-0)

[Summary](#page-20-0)

Convolution equation and Transfer functions

Consider a state-space system

$$
\begin{aligned}\n\dot{x} &= Ax + Bu, \\
y &= Cx + Du\n\end{aligned} \tag{1}
$$

where $x \in \mathbb{R}^n, u \in \mathbb{R}^m, y \in \mathbb{R}^p$.

 \blacktriangleright The solution to the state-space system (1) is given by

$$
y(t) = Ce^{At}x(0) + C \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Du(t).
$$
 (2)

Transfer functions:

 \blacktriangleright We apply the convolution equation to $u = e^{st}$

$$
y(t) = \underbrace{Ce^{At} (x(0) - (sI - A)^{-1}B)}_{\text{transient}} + \underbrace{(C(sI - A)^{-1}B + D) e^{st}}_{\text{steady-state}}
$$

$$
\blacktriangleright
$$
 The transfer function for the state-space system (1) is

$$
G(s) = C(sI - A)^{-1}B + D
$$

[Frequency-domain modeling](#page-2-0) 4/22

Transfer functions - overview

- **Transfer functions** A compact description of the input/output relation for a linear time-invariant (LTI) system.
- ▶ Combining transfer functions with **block diagrams** gives a powerful algebraic method to analyze linear systems with many blocks.
- ▶ The transfer function allows new interpretations of system dynamics.
- \triangleright Many graphical tools, such as the Bode plot (a powerful graphical representation of the transfer function that was introduced by Bode.)

Figure: A block diagram for a feedback control system

[Frequency-domain modeling](#page-2-0) 5/22

Response to periodic inputs

The basic idea of the transfer function comes from looking at the frequency response of a system.

 $G(s) = C(sI - A)^{-1}B + D$ ← Transfer function

▶ Suppose that we have an input signal that is periodic. We can then decompose it

$$
u(t) = \sum_{k=0}^{\infty} (a_k \sin(k\omega_t t) + b_k \cos(k\omega_f t))
$$

▶ The output will be sine and cosine waves, with possibly shifted magnitude and phase, which can be determined by

$$
G(i\omega) = C(i\omega - A)^{-1}B + D,
$$

where $\omega = k\omega_f, k = 1, \ldots, \infty$.

▶ Thanks to linearity (superposition), the final steady-state response will be a sum of these signals.

[Frequency-domain modeling](#page-2-0) 6/22

The exponential input e^{st}

- ▶ The transfer function generalizes this notion to allow a broader class of input signals besides periodic ones.
- ▶ The transfer function can also be introduced as the ratio of the Laplace transforms of the output and the input.

Figure: Examples of exponential signals. The top row: exponential signals with a real exponent, and the bottom row: those with complex exponents.

[Frequency-domain modeling](#page-2-0) 7/22

Frequency-domain modeling

Frequency domain modeling: Modeling a system through its response to sinusoidal and exponential signals.

- ▶ We represent the dynamics of the system in terms of the generalized frequency s rather than the time domain variable t .
- ▶ The transfer function provides a complete representation of a linear system in the frequency domain.

Some benefits of transfer functions:

- ▶ Provide a particularly convenient representation in manipulating and analyzing complex linear feedback systems.
- \triangleright Graphical representations (Bode and Nyquist plots) that capture interesting properties of the underlying dynamics — Weeks 5/6
- \triangleright We can introduce concepts that express the degree of stability of a system – stability margins, Week 6
- \triangleright Express the changes/uncertainty in a system because of modeling error, considering sensitivity to process variations – robustness, Week 9

[Frequency-domain modeling](#page-2-0)

[Transfer functions for linear ODEs](#page-8-0)

[Block Diagrams and Transfer Functions](#page-17-0)

[Summary](#page-20-0)

[Transfer functions for linear ODEs](#page-8-0) 9/22

Linear ODEs

Consider a linear system described by the controlled differential equation

$$
\frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_0 y = b_m \frac{d^m u}{dt^m} + b_{m-1} \frac{d^{m-1} u}{dt^{m-1}} + \ldots + b_0 u, \quad (3)
$$

where u is the input, and y is the output.

- \triangleright We aim to determine the transfer function of [\(3\)](#page-9-0) (i.e., input/output relationship in frequency domain);
- In Let the input $u(t) = e^{st}$, and since the system is linear, the output is $y(t) = y_0 e^{st}.$

$$
\blacktriangleright \text{ Plug } u(t) = e^{st} \text{ and } y(t) = y_0 e^{st} \text{ into (3),}
$$

$$
(sn + an-1sn-1 + ... + a0)y0est = (bmsm + bm-1sm-1 + ... + b0)est
$$

▶ We now have

$$
y(t) = y_0 e^{st} = \underbrace{\frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}}_{G(s)} e^{st}.
$$

[Transfer functions for linear ODEs](#page-8-0) 10/22

Example: Cruise control

Example

The system dynamics are given by

$$
\dot{p} = v(t), \qquad \dot{v}(t) = \frac{1}{m}u(t).
$$

where p denotes the position, v denotes the velocity of the vehicle.

 \blacktriangleright It is the same as

$$
\ddot{p} = \frac{1}{m}u(t).
$$

Applying an exponential input $u = e^{st}$ leads to

$$
s^{2} p_{0} e^{st} = \frac{1}{m} e^{st} \qquad \Rightarrow \qquad s^{2} y(t) = \frac{1}{m} u(t).
$$

 \blacktriangleright The input/output relationship between $p(t)$ and $u(t)$ (i.e., transfer function) in the frequency domain is

$$
G(s) = \frac{1}{ms^2}.
$$

[Transfer functions for linear ODEs](#page-8-0) 11/22

Example: spring-mass system

Example

The system dynamics are given by

$$
\ddot{x}(t) + 2\zeta\omega_0 \dot{x}(t) + \omega_0^2 x(t) = u(t),
$$

where $x(t)$ denotes the position of the mass, ζ is the damping coefficient, and ω_0 denotes the natural frequency.

Applying an exponential input $u = e^{st}$ leads to

$$
s^{2}x_{0}e^{st} + 2\zeta\omega_{0}s x_{0}e^{st} + \omega_{0}^{2}x_{0}e^{st} = e^{st}
$$

\n
$$
\Rightarrow \qquad (s^{2} + 2\zeta\omega_{0}s + \omega_{0}^{2})x(t) = u(t).
$$

 \blacktriangleright The input/output relationship between $x(t)$ and $u(t)$ (i.e., transfer function) in the frequency domain is

$$
G(s) = \frac{1}{s^2 + 2\zeta\omega_0 s + \omega_0^2}.
$$

[Transfer functions for linear ODEs](#page-8-0) 12/22

Example: Vibration damper

Figure: A vibration damper. Vibrations of the mass m_1 can be damped by providing it with an auxiliary mass m_2 , attached to m_1 by a spring with stiffness $k_2.$ The parameters m_2 and k_2 are chosen so that the frequency $\sqrt{k_2/m_2}$ matches the frequency of the vibration.

Example: Vibration damper

Example

The system dynamics are given by

$$
m_1\ddot{q}_1 + c_1\dot{q}_1 + k_1q_1 + k_2(q_1 - q_2) = F,
$$

$$
m_2\ddot{q}_2 + k_2(q_2 - q_1) = 0.
$$

- \triangleright Objective: determine the transfer function from the force F to the position q_1 .
- \triangleright We first find particular exponential solutions

$$
(m_1s^2 + c_1s + k_1)q_1 + k_2(q_1 - q_2) = F
$$

$$
m_2s^2q_2 + k_2(q_2 - q_1) = 0.
$$

 \blacktriangleright Eliminate q_2 and we have the transfer function

$$
G_{q_1F}(s) = \frac{m_2s^2 + k_2}{m_1m_2s^4 + m_2c_1s^3 + (m_1k_2 + m_2(k_1 + k_2))s^2 + k_2c_1s + k_1k_2}
$$

 \blacktriangleright The transfer function has a zero at $s=\pm i\sqrt{k_2/m_2}$ — Blocking property

[Transfer functions for linear ODEs](#page-8-0) 14/22

Blocking property

Parameters $m_1 = 1, c_1 = 1, k_1 = 1, m_2 = 1, k_2 = 1$.

\triangleright Case 1: external input

$$
u = \sin(\omega t), \qquad \text{with} \ \omega = 1.
$$

Other frequencey responses

▶ Case 3: external input $u = sin(\omega t)$, with $\omega = 0.578$.

Common transfer functions

Table: Transfer functions for some common linear time-invariant systems.

[Transfer functions for linear ODEs](#page-8-0) 17/22

[Frequency-domain modeling](#page-2-0)

[Transfer functions for linear ODEs](#page-8-0)

[Block Diagrams and Transfer Functions](#page-17-0)

[Summary](#page-20-0)

[Block Diagrams and Transfer Functions](#page-17-0) 18/22

Block diagrams

The combination of block diagrams and transfer functions is a powerful way to represent control systems.

▶ Input-output relationship can be derived by algebraic manipulations of the transfer functions.

Figure: Interconnections of linear systems. Series (a), parallel (b), and feedback (c) connections are shown.

[Block Diagrams and Transfer Functions](#page-17-0) 19/22

Feedback connection

 \blacktriangleright It is easy to see the relationship

$$
y = G_1 e, \qquad e = u - G_2 y
$$

 \blacktriangleright Elimination of e gives

$$
y = G_1(u - G_2y) \Rightarrow (1 + G_1G_2)y = G_1u
$$

$$
\Rightarrow y = \frac{G_1}{1 + G_1G_2}u
$$

 \blacktriangleright The transfer function of the feedback connection is thus

$$
G = \frac{G_1}{1 + G_1 G_2}.
$$

These three basic interconnections can be used as the basis for computing transfer functions for more complicated systems.

[Frequency-domain modeling](#page-2-0)

[Transfer functions for linear ODEs](#page-8-0)

[Block Diagrams and Transfer Functions](#page-17-0)

[Summary](#page-20-0)

[Summary](#page-20-0) 21/22

Summary

- \blacktriangleright Frequency domain modeling: Modeling a system through its response to sinusoidal and exponential signals.
	- We represent the dynamics of the system in terms of the generalized frequency s rather than the time domain variable t .
	- The transfer function provides a complete representation of a linear system in the frequency domain.
- ▶ Transfer function for linear ODEs

$$
\frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_0 y = b_m \frac{d^m u}{dt^m} + b_{m-1} \frac{d^{m-1} u}{dt^{m-1}} + \ldots + b_0 u,
$$

$$
G(s) = \frac{b_m s^m + b_{m-1} s^{n-1} + \ldots + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_0}.
$$

 \blacktriangleright Block diagram with transfer functions

