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Bode plot

The frequency response of a stable linear system can be computed from its
transfer function by setting s = iω, i.e.,

u(t) = eiωt = cos(ωt) + i sin(ωt).

▶ The resulting steady-state output is

y(t) = G(iω)eiωt = Mei(ωt+θ) = M cos(ωt+ θ) + iM sin(ωt+ θ)

▶ Thus, we have cos(ωt) → M cos(ωt+ θ) and sin(ωt) → M sin(ωt+ θ)

The frequency response G(iω) can be represented by two curves — Bode plot

▶ Gain curve: gives |G(iω)| as a function of frequency ω — log/log scale
(traditionally often in dB — 20 log |G(iω)|; but we mainly use log |G(iω)|)

▶ Phase curve: gives ∠G(iω) as a function of frequency ω — log/linear
scale in degrees
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Sketching Bode1 plots

Hendrik Wade Bode (1905 - 1982): a pioneer of modern
control theory and electronic telecommunications.

▶ Part of the popularity of Bode plots is that they are
easy to sketch and interpret.

▶ Since the frequency scale is logarithmic, they cover
the system behavior over a wide frequency range.

Consider a transfer function

G(s) =
b1(s)b2(s)

a1(s)a2(s)
▶ Gain curve: simply adding and subtracting gains corresponding to terms

in the numerator and denominator

log |G(s)| = log |b1(s)|+ log |b2(s)| − log |a1(s)| − log |a2(s)|.

▶ Phase curve: similarly we have

∠G(s) = ∠b1(s) + ∠b2(s)− ∠a1(s)− ∠a2(s).

1https://en.wikipedia.org/wiki/Hendrik_Wade_Bode
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Bode plot — Blocks

A polynomial can be written as a product of terms of the type

k, s, s+ a, s2 + 2ζω0s+ ω2
0

▶ Sketch Bode diagrams for these terms;

▶ Complex systems: add the gains and phases of the individual terms

Case 1: G(s) = sk — Two special cases: k = 1, a differentiator; k = −1, an
integrator

log |G(s)| = k × logω, ∠G(iω) = k × 90◦

▶ The gain curve is a straight line with slope k, and the phase curve is a
constant at k × 90◦

▶ The case when k = 1 corresponds to a differentiator and has slope 1 with
phase 90◦

▶ The case when k = −1 corresponds to an integrator and has slope −1
with phase −90◦
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Case 1: G(s) = sk

Figure: Bode plots of the transfer functions G(s) = sk for k = −2,−1, 0, 1, 2.
On a log-log scale, the gain curve is a straight line with slope k. The phase
curves for the transfer functions are constants, with phase equal to k × 90◦.
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Case 1: G(s) = sk

G0 = tf([1],[1]); % create a transfer function

G1 = tf([1 0],[1]); % create a transfer function

W = {0.1,10}; bode(G0,G1,W); % Bode plot

-40

-20

0

20

40

M
a

g
n

it
u

d
e

 (
d

B
)

10
-1

10
0

10
1

-180

-135

-90

-45

0

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency  (rad/s)

(a) sk, k < 0
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(b) sk, k > 0

Figure: Bode plots of the transfer functions G(s) = sk for k = −2,−1, 0, 1, 2
— from Matlab
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Case 2: first-order system

Consider the transfer function of a first-order system

G(s) =
a

s+ a
, a > 0.

▶ We have

|G(s)| = |a|
|s+ a| , ∠G(s) = ∠a− ∠(s+ a).

▶ The gain curve is

|G(iω)| = log a− 1

2
log(ω2 + a2) ≈

{
0, if ω < a

log a− logω, if ω > a

▶ The phase curve is

∠G(iω) = −180

π
arctan

ω

a
≈


0, if ω < a

10

−45− 45(logω − log a), if a/10 < ω < 10a

−90, if ω > 10a
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Case 2: first-order system

Figure: Bode plot of the first-order system G(s) = a/(s + a), which can be approximated by
asymptotic curves (dashed) in both the gain and the frequency, with the breakpoint in the gain
curve at ω = a and the phase decreasing by 90◦ over a factor of 100 in frequency.

A first-order system behaves like a constant for low frequencies and like an
integrator for high frequencies.
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Case 3: second-order system

Consider the transfer function of a first-order system

G(s) =
ω2
0

s2 + 2ζω0s+ ω2
0

, 0 < ζ < 1.

▶ The gain curve is

|G(iω)| = 2 logω0 −
1

2
log(ω4 + 2ω2

0ω
2(2ζ2 − 1) + ω4

0)

≈

{
0, if ω ≪ ω0

2 logω0 − 2 logω, if ω ≫ ω0

▶ The largest gain Q = maxω |G(iω)| ≈ 1/(2ζ), called the Q-value, is
obtained for ω ≈ ω0 – Resonant frequency

▶ The phase curve is

∠G(iω) = −180

π
arctan

2ζω0ω

ω2
0 − ω

≈

{
0, if ω ≪ ω0

−180, if ω ≫ ω0
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Case 3: Second-order system

Figure: Bode plot of the second-order system G(s) = ω2
0/(s

2 + 2ζω0s + ω2
0), which has a

peak at frequency ω0 and then a slope of −2 beyond the peak; the phase decreases from 0◦ to
−180◦. The height of the peak and the rate of change of phase depending on the damping ratio ζ
(ζ = 0.02, 0.1, 0.2, 0.5, and 1.0 shown).

The asymptotic approximation is poor near ω = ω0 and that the Bode plot
depends strongly on ζ near this frequency.
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Poles and zeros in the right Half Plane

Example
Consider the transfer functions

G(s) =
s+ 1

(s+ 0.1)(s+ 10)
,

Grhpp(s) =
s+ 1

(s− 0.1)(s+ 10)
,

Grhpz(s) =
−s+ 1

(s+ 0.1)(s+ 10)
.

▶ The gain curve of a transfer function remains the same if a pole or a zero
is shifted from the left half-plane to the right half-plane.

▶ The phase will, however, change significantly as is illustrated by the
example above.
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Example

▶ Time delay G(s) = e−sτ represents a even more striking example of a
change in phase than a right half-plane zero.

▶ Extra phase will cause difficulties for control since there is a delay between
applying an input and seeing its effect — fundamental limits in Week 10
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System insights

The Bode plot gives a quick overview of a stable linear system. Since many
useful signals can be decomposed into a sum of sinusoids, it is possible to
visualize the behavior of a system for different frequency ranges.

u(t) = sin(ωt) → yss = |G(iω)| sin(ωt+ ∠G(iω))

▶ The system can be viewed as a filter: change the input signals according
to frequency range

▶ Type 1: Lower-pass filter, for example

G(s) =
ω2
0

s2 + 2ζω0s+ ω2
0

▶ Type 2: Band-pass filter, for example

G(s) =
2ζω0s

s2 + 2ζω0s+ ω2
0

▶ Type 3: High-pass filter, for example

G(s) =
s2

s2 + 2ζω0s+ ω2
0
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Filters

Figure: Bode plots for low-pass, band-pass, and high-pass filters. The upper
plots are the gain curves and the lower plots are the phase curves. Each system
passes frequencies in a different range and attenuates frequencies outside of
that range.
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Example: Spring-mass system

Example
Consider a spring-mass with input u (force) and output q (position) as follows

mq̈ + cq̇ + kq = u → G(s) =
1

ms2 + cs+ k

▶ Case 1: When s is small, we have

G(s) ≈ 1

k
→ q =

u

k

which implies that for low-frequency inputs, the system behaves like a
spring driven by a force.

▶ Case 2: When s is large, we have

G(s) ≈ 1

ms2
→ q̈ =

u

m

which implies that the system behaves like a mass driven by a force
(double integrator).
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Example: Spring-mass system

Figure: Bode plot for a spring–mass system. At low frequency the system
behaves like a spring with G(s) ≈ 1/k and at high frequency the system
behaves like a pure mass with G(s) ≈ 1/(ms2)
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Example: Spring-mass system

Consider parameters m = 1; k = 1; c = 0.2;

(a) Low frequency (b) High frequency

(c) Mixed frequencies
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Determine Transfer function experimentally

Model a given application by measuring the frequency response

▶ Apply a sinusoidal signal at a fixed frequency.

▶ Measure the amplitude ratio and phase lag when steady state is reached.

▶ The complete frequency response is obtained by sweeping over a range of
frequencies.

Figure: A frequency response (gain only) computed by measuring the response of
individual sinusoids.
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Stability

Theorem (Stability of a linear system (Lyapunov sense))
The system ẋ = Ax is

▶ asymptotically stable if and only if all eigenvalues of A have a strictly
negative real part, i.e., Re(λi) < 0

▶ unstable if any eigenvalues A has a strictly positive real part.

Consider an LTI system

ẋ = Ax+Bu,

y = Cx+Du
⇐⇒ G(s) = C(sI −A)−1B +D

Poles (eigenvalues) of the matrix A = Poles of the transfer function G(s)

▶ A system is bounded-input bounded-output (BIBO) stable if every
bounded input u(t) leads to a bounded output y(t).

▶ BIBO stable: if all poles of G(s) are in the open left half-plane in the s
domain (i.e., having negative real parts).
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Routh-Hurwitz Criterion

▶ Eigenvalues or poles

G(s) =
b(s)

a(s)
, a(s) = det(sI −A)

▶ In the 1870s-1890s, Edward Routh (English
Mathematician, 1831 – 1907) and Adolf Hurwitz
(German Mathematician, 1859 – 1919) independently

– developed a method for determining the locations
in the s plane but not the actual values of the
roots of a polynomial with constant real coefficients

▶ Characteristic polynomial:

a(s) = ans
n + an−1s

n−1 + · · ·+ a2s
2 + a1s+ a0

▶ The Routh-Hurwitz method

– constructs a table with n+ 1 rows from the
coefficients ai of a polynomial a(s)

– relates the number of sign changes in the first
column of the table to the number of roots in the
closed right half-plane

E. Routh

A. Hurwitz
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Routh Table

▶ a(s) = ans
n + an−1s

n−1 + · · ·+ a2s
2 + a1s+ a0

sn an an−2 an−4 · · · a0

sn−1 an−1 an−3 an−5 · · · 0

sn−2 bn−1 = −

∣∣∣∣∣∣∣∣∣
an an−2

an−1 an−3

∣∣∣∣∣∣∣∣∣
an−1

bn−3 = −

∣∣∣∣∣∣∣∣∣
an an−4

an−1 an−5

∣∣∣∣∣∣∣∣∣
an−1

bn−5 · · · 0

sn−3 cn−1 = −

∣∣∣∣∣∣∣∣∣
an−1 an−3

bn−1 bn−3

∣∣∣∣∣∣∣∣∣
bn−1

cn−3 = −

∣∣∣∣∣∣∣∣∣
an−1 an−5

bn−1 bn−5

∣∣∣∣∣∣∣∣∣
bn−1

cn−5 · · · 0

...
...

...
... · · ·

...

s0 a0 0 0 · · · 0

▶ Any row can be multiplied by a positive constant without changing the
result
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Routh-Hurwitz BIBO Stability Criterion

Theorem
Consider a Routh table from the polynomial a(s) in

G(s) =
b(s)

a(s)
.

▶ The number of sign changes in the first column of the Routh table is
equal to the number of roots of a(s) in the closed right half-plane.

Corollary (BIBO Stability of LTI Systems)
The system G(s) is BIBO stable if and only if there are no sign changes in the
first column of its Routh table.

There are two special cases related to the Routh table:

1. The first element of a row is 0 but some of the other elements are not

– Solution: replace the 0 with an arbitrary small ϵ

2. All elements of a row are 0 (not required in this course)
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Example: Second-order System

Example
Consider the characteristic polynomial of a second-order system:

a(s) = as2 + bs+ c

▶ The Routh table is:

s2 a c

s1 b 0

s0 −1

b
(0− bc) = c 0

▶ A necessary and sufficient condition for BIBO stability of a second-order
system is that all coefficients of the characteristic polynomial are non-zero
and have the same sign.
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Example: Third-order System

Example
Consider the characteristic polynomial of a third-order system:

a(s) = a3s
3 + a2s

2 + a1s+ a0

▶ The Routh table is:

s3 a3 a1

s2 a2 a0

s1 − 1

a2
(a3a0 − a1a2) 0

s0 a0 0

▶ If a3 > 0, then a sufficient and necessary condition for BIBO stability
(all eigenvalues have strictly negative real parts) is

a3 > 0, a2 > 0, a1a2 > a0a3, a0 > 0

▶ If a1a2 = a0a3, one pair of roots lies on the imaginary axis in the s plane
and the system is marginally stable. This results in an all zero row in the
Routh table.
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