ECE 171A: Linear Control System Theory Lecture 15: Bode plot and Routh-Hurwitz stability

Yang Zheng

Assistant Professor, ECE, UCSD

May 02, 2022

Reading materials: Ch 9.6, Ch 2.2

Outline

[Bode plot](#page-2-0)

[System Insights from the Bode Plot](#page-14-0)

[Stability: The Routh–Hurwitz Criterion](#page-21-0)

Outline

[Bode plot](#page-2-0)

[System Insights from the Bode Plot](#page-14-0)

[Stability: The Routh–Hurwitz Criterion](#page-21-0)

Bode plot

The **frequency response** of a **stable** linear system can be computed from its transfer function by setting $s = i\omega$, i.e.,

$$
u(t) = e^{i\omega t} = \cos(\omega t) + i\sin(\omega t).
$$

 \blacktriangleright The resulting steady-state output is

$$
y(t) = G(i\omega)e^{i\omega t} = Me^{i(\omega t + \theta)} = M\cos(\omega t + \theta) + iM\sin(\omega t + \theta)
$$

▶ Thus, we have $\cos(\omega t) \rightarrow M \cos(\omega t + \theta)$ and $\sin(\omega t) \rightarrow M \sin(\omega t + \theta)$

The frequency response $G(i\omega)$ can be represented by two curves — **Bode plot**

- **Gain curve**: gives $|G(i\omega)|$ as a function of frequency ω log/log scale (traditionally often in dB — $20 \log |G(i\omega)|$; but we mainly use $\log |G(i\omega)|$)
- ▶ Phase curve: gives $\angle G(i\omega)$ as a function of frequency ω log/linear scale in degrees

Sketching $Bode¹$ plots

Hendrik Wade Bode (1905 - 1982): a pioneer of modern control theory and electronic telecommunications.

- ▶ Part of the popularity of Bode plots is that they are easy to sketch and interpret.
- \triangleright Since the frequency scale is logarithmic, they cover the system behavior over a wide frequency range.

$$
G(s) = \frac{b_1(s)b_2(s)}{a_1(s)a_2(s)}
$$

▶ Gain curve: simply adding and subtracting gains corresponding to terms in the numerator and denominator

$$
\log |G(s)| = \log |b_1(s)| + \log |b_2(s)| - \log |a_1(s)| - \log |a_2(s)|.
$$

 \blacktriangleright Phase curve: similarly we have

$$
\angle G(s) = \angle b_1(s) + \angle b_2(s) - \angle a_1(s) - \angle a_2(s).
$$

¹https://en.wikipedia.org/wiki/Hendrik_Wade_Bode [Bode plot](#page-2-0) 5/28

Bode plot — Blocks

A polynomial can be written as a product of terms of the type

$$
k, \qquad s, \qquad s + a, \qquad s^2 + 2\zeta\omega_0 s + \omega_0^2
$$

▶ Sketch Bode diagrams for these terms;

 \triangleright Complex systems: add the gains and phases of the individual terms

Case 1: $G(s) = s^k$ — Two special cases: $k = 1$, a differentiator; $k = −1$, an integrator

$$
\log|G(s)| = k \times \log \omega, \qquad \angle G(i\omega) = k \times 90^{\circ}
$$

- \blacktriangleright The gain curve is a straight line with slope k, and the phase curve is a constant at $k \times 90^\circ$
- \blacktriangleright The case when $k = 1$ corresponds to a differentiator and has slope 1 with phase 90°
- ▶ The case when $k = -1$ corresponds to an integrator and has slope -1 with phase -90°

Case 1: $G(s) = s^k$

Figure: Bode plots of the transfer functions $G(s) = s^k$ for $k = -2, -1, 0, 1, 2$. On a log-log scale, the gain curve is a straight line with slope k . The phase curves for the transfer functions are constants, with phase equal to $k \times 90^{\circ}$.

Case 1: $G(s) = s^k$

 $G0 = tf([1], [1]);$ % create a transfer function $G1 = tf([1 0], [1]);$ % create a transfer function $W = \{0.1, 10\}$; bode(G0,G1,W); % Bode plot

Figure: Bode plots of the transfer functions $G(s) = s^k$ for $k = -2, -1, 0, 1, 2$ — from Matlab

[Bode plot](#page-2-0) 8/28

Case 2: first-order system

Consider the transfer function of a first-order system

$$
G(s) = \frac{a}{s+a}, \qquad a > 0.
$$

 \blacktriangleright We have

$$
|G(s)| = \frac{|a|}{|s+a|}, \qquad \angle G(s) = \angle a - \angle (s+a).
$$

 \blacktriangleright The gain curve is

$$
|G(i\omega)| = \log a - \frac{1}{2}\log(\omega^2 + a^2) \approx \begin{cases} 0, & \text{if } \omega < a \\ \log a - \log \omega, & \text{if } \omega > a \end{cases}
$$

▶ The phase curve is

$$
\angle G(i\omega) = -\frac{180}{\pi} \arctan \frac{\omega}{a} \approx \begin{cases} 0, & \text{if } \omega < \frac{a}{10} \\ -45 - 45(\log \omega - \log a), & \text{if } a/10 < \omega < 10a \\ -90, & \text{if } \omega > 10a \end{cases}
$$

[Bode plot](#page-2-0) 9/28

Case 2: first-order system

Figure: Bode plot of the first-order system $G(s) = a/(s + a)$, which can be approximated by asymptotic curves (dashed) in both the gain and the frequency, with the breakpoint in the gain curve at $\omega = a$ and the phase decreasing by 90° over a factor of 100 in frequency.

A first-order system behaves like a constant for low frequencies and like an integrator for high frequencies.

[Bode plot](#page-2-0) 10/28

Case 3: second-order system

Consider the transfer function of a first-order system

$$
G(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}, \qquad 0 < \zeta < 1.
$$

 \blacktriangleright The gain curve is

$$
|G(i\omega)| = 2\log\omega_0 - \frac{1}{2}\log(\omega^4 + 2\omega_0^2\omega^2(2\zeta^2 - 1) + \omega_0^4)
$$

$$
\approx \begin{cases} 0, & \text{if } \omega \ll \omega_0 \\ 2\log\omega_0 - 2\log\omega, & \text{if } \omega \gg \omega_0 \end{cases}
$$

▶ The largest gain $Q = \max_{\omega} |G(i\omega)| \approx 1/(2\zeta)$, called the Q-value, is obtained for $\omega \approx \omega_0$ – Resonant frequency

 \blacktriangleright The phase curve is

$$
\angle G(i\omega) = -\frac{180}{\pi} \arctan \frac{2\zeta\omega_0\omega}{\omega_0^2 - \omega} \approx \begin{cases} 0, & \text{if } \omega \ll \omega_0 \\ -180, & \text{if } \omega \gg \omega_0 \end{cases}
$$

Case 3: Second-order system

Figure: Bode plot of the second-order system $G(s) = \omega_0^2/(s^2 + 2\zeta\omega_0 s + \omega_0^2)$, which has a peak at frequency ω_0 and then a slope of -2 beyond the peak; the phase decreases from 0° to -180° . The height of the peak and the rate of change of phase depending on the damping ratio ζ $(\zeta = 0.02, 0.1, 0.2, 0.5, \text{ and } 1.0 \text{ shown}).$

The asymptotic approximation is poor near $\omega = \omega_0$ and that the Bode plot depends strongly on ζ near this frequency.

[Bode plot](#page-2-0) 12/28

Poles and zeros in the right Half Plane

Example

Consider the transfer functions

$$
G(s) = \frac{s+1}{(s+0.1)(s+10)},
$$

\n
$$
G_{\text{rhpp}}(s) = \frac{s+1}{(s-0.1)(s+10)},
$$

\n
$$
G_{\text{rhpz}}(s) = \frac{-s+1}{(s+0.1)(s+10)}.
$$

- ▶ The gain curve of a transfer function remains the same if a pole or a zero is shifted from the left half-plane to the right half-plane.
- ▶ The phase will, however, change significantly as is illustrated by the example above.

Example

- ▶ Time delay $G(s) = e^{-s\tau}$ represents a even more striking example of a change in phase than a right half-plane zero.
- ▶ Extra phase will cause difficulties for control since there is a delay between applying an input and seeing its effect — fundamental limits in Week 10

Outline

[Bode plot](#page-2-0)

[System Insights from the Bode Plot](#page-14-0)

[Stability: The Routh–Hurwitz Criterion](#page-21-0)

[System Insights from the Bode Plot](#page-14-0) 15/28

System insights

The Bode plot gives a quick overview of a stable linear system. Since many useful signals can be decomposed into a sum of sinusoids, it is possible to visualize the behavior of a system for different frequency ranges.

$$
u(t) = \sin(\omega t) \qquad \rightarrow \qquad y_{\rm ss} = |G(i\omega)|\sin(\omega t + \angle G(i\omega))
$$

- ▶ The system can be viewed as a filter: change the input signals according to frequency range
- \blacktriangleright Type 1: Lower-pass filter, for example

$$
G(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}
$$

▶ Type 2: Band-pass filter, for example

$$
G(s) = \frac{2\zeta\omega_0 s}{s^2 + 2\zeta\omega_0 s + \omega_0^2}
$$

 \blacktriangleright Type 3: High-pass filter, for example

$$
G(s) = \frac{s^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}
$$

[System Insights from the Bode Plot](#page-14-0) 16/28

Filters

Figure: Bode plots for low-pass, band-pass, and high-pass filters. The upper plots are the gain curves and the lower plots are the phase curves. Each system passes frequencies in a different range and attenuates frequencies outside of that range.

Example: Spring-mass system

Example

Consider a spring-mass with input u (force) and output q (position) as follows

$$
m\ddot{q} + c\dot{q} + kq = u \qquad \rightarrow \qquad G(s) = \frac{1}{ms^2 + cs + k}
$$

 \triangleright Case 1: When s is small, we have

$$
G(s) \approx \frac{1}{k} \qquad \rightarrow \qquad q = \frac{u}{k}
$$

which implies that for low-frequency inputs, the system behaves like a spring driven by a force.

▶ Case 2: When s is large, we have

$$
G(s) \approx \frac{1}{ms^2} \qquad \rightarrow \qquad \ddot{q} = \frac{u}{m}
$$

which implies that the system behaves like a mass driven by a force (double integrator).

Example: Spring-mass system

Figure: Bode plot for a spring–mass system. At low frequency the system behaves like a spring with $G(s) \approx 1/k$ and at high frequency the system behaves like a pure mass with $G(s) \approx 1/(m s^2)$

Example: Spring-mass system

Consider parameters $m = 1$; $k = 1$; $c = 0.2$;

Determine Transfer function experimentally

Model a given application by measuring the frequency response

- \blacktriangleright Apply a sinusoidal signal at a fixed frequency.
- ▶ Measure the amplitude ratio and phase lag when steady state is reached.
- ▶ The complete frequency response is obtained by sweeping over a range of frequencies.

Figure: A frequency response (gain only) computed by measuring the response of individual sinusoids.

[System Insights from the Bode Plot](#page-14-0) 21/28

Outline

[Bode plot](#page-2-0)

[System Insights from the Bode Plot](#page-14-0)

[Stability: The Routh–Hurwitz Criterion](#page-21-0)

[Stability: The Routh–Hurwitz Criterion](#page-21-0) 22/28

Stability

Theorem (Stability of a linear system (Lyapunov sense)) The system $\dot{x} = Ax$ is

- \triangleright asymptotically stable if and only if all eigenvalues of A have a strictly negative real part, i.e., $\text{Re}(\lambda_i) < 0$
- \blacktriangleright unstable if any eigenvalues A has a strictly positive real part.

Consider an LTI system

$$
\begin{aligned}\n\dot{x} &= Ax + Bu, \\
y &= Cx + Du\n\end{aligned}\n\qquad \Longleftrightarrow \qquad G(s) = C(sI - A)^{-1}B + D
$$

Poles (eigenvalues) of the matrix $A =$ Poles of the transfer function $G(s)$

- ▶ A system is **bounded-input bounded-output (BIBO)** stable if every bounded input $u(t)$ leads to a bounded output $y(t)$.
- **BIBO stable:** if all poles of $G(s)$ are in the open left half-plane in the s domain (i.e., having negative real parts).

[Stability: The Routh–Hurwitz Criterion](#page-21-0) 23/28

Routh-Hurwitz Criterion

Eigenvalues or poles

$$
G(s) = \frac{b(s)}{a(s)}, \qquad a(s) = \det(sI - A)
$$

- ▶ In the 1870s-1890s, Edward Routh (English Mathematician, 1831 – 1907) and Adolf Hurwitz (German Mathematician, 1859 – 1919) independently
	- developed a method for determining the locations in the s plane but not the actual values of the roots of a polynomial with constant real coefficients
- ▶ Characteristic polynomial:

$$
a(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_2 s^2 + a_1 s + a_0
$$

- ▶ The Routh-Hurwitz method
	- constructs a table with $n + 1$ rows from the coefficients a_i of a polynomial $a(s)$
	- $-$ relates the number of sign changes in the first column of the table to the number of roots in the closed right half-plane

[Stability: The Routh–Hurwitz Criterion](#page-21-0) 24/28

E. Routh

A. Hurwitz

Routh Table

▶ $a(s) = a_n s^n + a_{n-1} s^{n-1} + \cdots + a_2 s^2 + a_1 s + a_0$

▶ Any row can be multiplied by a positive constant without changing the result

[Stability: The Routh–Hurwitz Criterion](#page-21-0) 25/28

Routh-Hurwitz BIBO Stability Criterion

Theorem Consider a Routh table from the polynomial $a(s)$ in

$$
G(s) = \frac{b(s)}{a(s)}.
$$

▶ The number of sign changes in the first column of the Routh table is equal to the number of roots of $a(s)$ in the closed right half-plane.

Corollary (BIBO Stability of LTI Systems)

The system $G(s)$ is **BIBO stable** if and only if there are no sign changes in the first column of its Routh table.

There are two special cases related to the Routh table:

1. The first element of a row is 0 but some of the other elements are not

– **Solution**: replace the 0 with an arbitrary small ϵ

2. All elements of a row are 0 (not required in this course)

[Stability: The Routh–Hurwitz Criterion](#page-21-0) 26/28

Example: Second-order System

Example

Consider the characteristic polynomial of a second-order system:

$$
a(s) = as^2 + bs + c
$$

▶ The Routh table is:

▶ A necessary and sufficient condition for BIBO stability of a second-order system is that all coefficients of the characteristic polynomial are non-zero and have the same sign.

Example: Third-order System

Example

Consider the characteristic polynomial of a third-order system:

$$
a(s) = a_3 s^3 + a_2 s^2 + a_1 s + a_0
$$

 \blacktriangleright The Routh table is:

 \blacktriangleright If $a_3 > 0$, then a sufficient and necessary condition for BIBO stability (all eigenvalues have strictly negative real parts) is

 $a_3 > 0$, $a_2 > 0$, $a_1 a_2 > a_0 a_3$, $a_0 > 0$

If $a_1a_2 = a_0a_3$, one pair of roots lies on the imaginary axis in the s plane and the system is marginally stable. This results in an all zero row in the Routh table.

[Stability: The Routh–Hurwitz Criterion](#page-21-0) 28/28