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Announcement

▶ Midterm exam II: May 18 (Wednesday, Week 8)

▶ Office hours: week 6 - week 10

– Tuesdays 4:30 pm - 6:20 pm (Yang Zheng, Jacobs Hall Room 4506)
– Tuesdays 6:30 pm - 7:30 pm (Yang Zheng, Virtual, zoom link:

https://ucsd.zoom.us/j/95103569286)
– Thursdays 7:00 pm - 9:00 pm (Dehao Dai, Jacobs Hall Room 4506)
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Stability of feedback systems

▶ Lyapunov stability — eigenvalue test of the closed-loop matrix; e.g.,

Dynamics → ẋ = Ax+Bu,

Feedback controller → u = −Kx
⇒ ẋ = (A−BK)x.

▶ Poles or The Routh–Hurwitz Criterion;
P (s) =

np(s)

dp(s)

C(s) =
nc(s)

dc(s)

⇒ Gyr(s) =
PC

1 + PC
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)

They are straightforward but give little guidance for design: it is not easy to
tell how the controller should be modified to make an unstable system stable.

Loop Transfer Function 5/23



Loop analysis

Figure: The loop transfer function L(s) = P (s)C(s). The stability of the
feedback system (a) can be determined by tracing signals around the loop.

▶ We break the loop in (b) and ask whether a signal injected at the point A
has the same magnitude and phase when it reaches point B.

▶ Determine stability and robustness of closed loop systems by
investigating how sinusoidal signals propagate around the feedback loop.

▶ Reason about the closed loop behavior of a system through the
frequency domain properties of the open loop transfer function.

The second very important graphical tool — the Nyquist stability theorem.
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Nyquist’s idea

▶ Nyquist’s idea was to first investigate conditions under which oscillations
can occur in a feedback loop.

▶ The Loop transfer function:

L(s) = P (s)C(s).

▶ Assume that a sinusoid of frequency ω0 is injected at point A. In steady
state, the signal at point B will also be a sinusoid with the frequency ω0.

Very intuitive idea: It seems reasonable that an oscillation can be maintained
if the signal at B has the same amplitude and phase as the injected signal!
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Critical point: −1

▶ Tracing signals around the loop, we find that the signals at A and B are
identical if there is a frequency ω0 such that

L(iω0) = −1. (1)

▶ This provides a condition for maintaining an oscillation.

▶ The condition (1) implies that the frequency response goes through the
value −1, which is called the critical point.

Letting ωc represent a frequency at which ∠L(iωc) = 180◦,

▶ we can further reason that the system is stable if |L(iωc)| < 1, since the
signal at point B will have smaller amplitude than the injected signal.

▶ A rigorous version is the Nyquist’s stability criterion.
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Example: Electric motor

Example

▶ The process dynamics are P (s) =
kI

Js2 + cs
.

▶ We use a proportional controller C(s) = kp.

▶ The loop transfer function for the control system is

L(s) = P (s)C(s)e−τs =
kIkp

Js2 + cs
e−τs,

where τ is the delay in sensing of the motor position.

Figure: Block diagram of motor control with a short delay in the sensed position of the motor.
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Example: Electric motor

Figure: Loop transfer function and step response for the DC motor control
system. The system parameters are kI = 1, J = 2, c = 1 and the controller
parameters are kp = 1 and τ = 0, 1, and 3.

▶ Nyquist’s approach: it allows us to study the stability of the feedback
system by looking at properties of the loop transfer function L = PC.

▶ More generally: how the controller should be chosen to obtain a desired
loop transfer function.

▶ Different ways for this, called loop shaping, will be discussed in Week 8/9.
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Nyquist1 plot

▶ Frequency response of an LTI system: Bode
plot of its transfer function

▶ Stability of a closed-loop system: Nyquist plot
of its loop transfer function

H. Nyquist (1889 – 1976)

Definition (Nyquist plot)
The Nyquist plot of the loop transfer function L(s) is the image of L(s) by
tracing s ∈ C around the Nyquist contour.

▶ A contour is a piecewise smooth path
in the complex plane

▶ A contour is closed if it starts and
ends at the same point

▶ A contour is simple if it does not
cross itself at any point

Nyquist’s stability criterion utilizes contours in the complex plane to relate
the locations of the open-loop and closed-loop poles.

1Harry Nyquist; https://en.wikipedia.org/wiki/Harry_Nyquist
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Nyquist contour

The (standard or simplest) Nyquist contour, also
known as “Nyquist D contour” (Γ ⊂ C), is made
up of three parts:

▶ Contour C1: points s = iω on the
positive imaginary axis, as ω ranges from
0 to ∞

▶ Contour C2: points s = Reiθ on a
semi-circle as R → ∞ and θ ranges from
π
2
to −π

2

▶ Contour C3: points s = iω on the
negative imaginary axis, as ω ranges from
−∞ to 0

The image of L(s) when s traverses Γ gives a closed curve in the complex
plane and is referred to as the Nyquist plot for L(s).
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Example 1: a third-order system

Draw a Nyquist plot for L(s) = 1
(s+a)3

.

▶ Counter C1: s = iω with ω from 0 to ∞

L(i0) =
1

a3
∠0◦, L(i∞) = 0∠− 270◦

▶ for 0 < ω < ∞

L(iω) =
1

(iω + a)3
=

(a− iω)3

(a2 + ω2)3
=

a3 − 3aω2

(a2 + ω2)3
+ i

ω3 − 3a2ω

(a2 + ω2)3

▶ Counter C2: s = Reiθ for R → ∞ and θ from π
2
to −π

2
.

L(Reiθ) =
1

(Reiθ + a)3
→ 0

▶ Counter C3: s = iω with ω ∈ (−∞, 0)

L(−iω) = L(̄iω) = L(iω)

which is a reflection (complex conjugate) of L(C1) about the real axis.
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Example 1: a third-order system
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Example 2: a second-order system

Draw a Nyquist plot for

L(s) =
100

(1 + s)(1 + s/10)
.

▶ Contour C1: L(i0) = 100∠0◦, L(i∞) = 0∠−180◦

▶ Contour C2: limR→∞ L(Reiθ) = 0
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Pole/Zero on the Imaginary Axis

▶ When the loop transfer function has
poles on the imaginary axis, the gain is
infinite at the poles.

▶ The Nyquist contour needs to be
modified to take a small detour around
such poles or zeros

▶ So, we add another part: Contour C4

– plot L(ϵeiθ) for ϵ → 0 and

θ ∈
(
−π

2
,
π

2

)
– substitute s = ϵeiθ into L(s) and

examine what happens as

ϵ → 0

Nyquist plot and The Nyquist Criterion 17/23



Example 3

Draw a Nyquist plot for a loop transfer system:

L(s) =
κ

s(1 + τs)

▶ Since there is a pole at the origin, we need to use a modified Nyquist
contour
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Example 3

▶ Contour C4 with s = ϵeiθ for ϵ → 0 and θ ∈ (−π
2
, π
2
):

lim
ϵ→0

L(ϵeiθ) = lim
ϵ→0

κ

ϵeiθ
= lim

ϵ→0

κ

ϵ
e−iθ = ∞∠−θ

– The phase of L(s) changes from
π

2
at ω = 0− to −π

2
at ω = 0+

▶ Contour C1 with ω ∈ (0,∞):

L(i0+) = ∞∠−90◦

L(i∞) = lim
ω→∞

κ

iω(1 + iωτ)
= lim

ω→∞

∣∣∣ κ

τω2

∣∣∣∠−π/2− tan−1(ωτ)

= 0∠−180◦

▶ Contour C2 with s = reiθ for r → ∞ and θ from π
2
to −π

2
:

lim
r→∞

L(reiθ) = lim
r→∞

∣∣∣ κ

τr2

∣∣∣ e−2iθ = 0∠−2θ

– The phase of L(s) changes from −π at ω = ∞ to π at ω = −∞
▶ Contour C3 with ω ∈ (−∞, 0):

– L(C3) is a reflection of L(C1) about the real axis
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Simplified Nyquist Criterion

Theorem (Simplified Nyquist Criterion)
Let L(s) be the loop transfer function for a negative feedback system, and
assume that L has no poles in the closed right half-plane ( Re(s) ≥ 0) except
possibly at the origin. Then the closed loop system

Gcl(s) =
L(s)

1 + L(s)

is stable if and only if the image of L(s) along the closed contour Γ has no net
encirclements of the critical point s = −1.

Nyquist plot and The Nyquist Criterion 20/23



Winding number

The following conceptual procedure can be used to determine that there are no
net encirclements.

▶ Step 1: Fix a pin at the critical point s = −1, orthogonal to the plane.

▶ Step 2: Attach a string with one end at the critical point and the other on
the Nyquist plot.

▶ Step 3: Let the end of the string attached to the Nyquist curve traverse
the whole curve.

There are no encirclements if the string
does not wind up on the pin when the
curve is encircled.

▶ The number of encirclements is
called the winding number.

Nyquist plot for L(s) = 1
(s+a)3

with a = 0.6

▶ Closed-loop system

Gcl(s) =
L(s)

1 + L(s)
=

1

(s+ 0.6)3 + 1
, λ1 = −1.6000, λ2,3 = −0.1±0.8660i
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Summary

▶ Nyquist’s idea was to first investigate conditions under which oscillations
can occur in a feedback loop – The Loop transfer function:

L(s) = P (s)C(s).

▶ Nyquist plot and Simplified Nyquist criterion

Summary 23/23


	Loop Transfer Function
	Nyquist plot and The Nyquist Criterion
	Summary

