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Simplified Nyquist Criterion

Theorem (Simplified Nyquist Criterion)
Let L(s) be the loop transfer function for a negative feedback system, and
assume that L has no poles in the closed right half-plane ( Re(s) ≥ 0) except
possibly at the origin. Then the closed loop system

Gcl(s) =
L(s)

1 + L(s)

is stable if and only if the image of L(s) along the closed contour Γ has no net
encirclements of the critical point s = −1 + i0.
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Winding number

The following conceptual procedure can be used to determine that there are no
net encirclements.

▶ Step 1: Fix a pin at the critical point s = −1, orthogonal to the plane.

▶ Step 2: Attach a string with one end at the critical point and the other on
the Nyquist plot.

▶ Step 3: Let the end of the string attached to the Nyquist curve traverse
the whole curve.

There are no net encirclements if the
string does not wind up on the pin
when the curve is encircled.

▶ The number of net encirclements
is called the winding number.

Nyquist plot for L(s) = 1
(s+a)3

with a = 0.6

▶ Closed-loop system

Gcl(s) =
L(s)

1 + L(s)
=

1

(s+ 0.6)3 + 1
, λ1 = −1.6000, λ2,3 = −0.1±0.8660i
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Loop Transfer Function

Loop transfer function

L(s) = P (s)C(s) ⇒ Gcl(s) =
L(s)

1 + L(s)
.

▶ Consider a control system with a loop transfer function:

L(s) = κ
(s− z1) · · · (s− zm)

(s− p1) · · · (s− pn)

▶ At each s, L(s) is a complex number with magnitude and phase:

|L(s)| = |κ|
∏m

i=1 |s− zi|∏n
i=1 |s− pi|

∠L(s) = ∠κ+
m∑
i=1

∠(s− zi)−
n∑

i=1

∠(s− pi)

▶ Graphical evaluation of the magnitude and phase:

– |s− zi| is the length of the vector from zi to s

– |s− pi| is the length of the vector from pi to s

– ∠(s− zi) is the angle from the real axis to the vector from zi to s

– ∠(s− pi) is the angle from the real axis to the vector from pi to s
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Evaluating L(s) along a Contour

Let C be a simple closed clockwise contour in the complex plane; Evaluating
L(s) at all points on C produces a new closed contour L(C)

— image of C under L(s).

Assumption: C does not pass through the origin or any of the poles or zeros of
L(s) (otherwise ∠L(s) is undefined). Effects of poles and zeros:

▶ A zero zi outside the contour C:

– As s moves around the contour C, the vector s− zi swings up and
down but not all the way around

– Thus, the net change in ∠(s− zi) is 0

▶ A zero zi inside the contour C:

– As s moves around the contour C, the vector s− zi turns all the way
around

– Thus, the net change in ∠(s− zi) is −2π

▶ A pole pi outside the contour C: the net change in ∠(s− pi) is 0

▶ A pole pi inside the contour C: the net change in ∠(s− pi) is −2π
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Evaluating L(s) along a Contour

▶ A zero zi outside the contour C: The net change in ∠(s− zi) is 0

▶ A zero zi inside the contour C: The net change in ∠(s− zi) is −2π

▶ A pole pi outside the contour C: the net change in ∠(s− pi) is 0

▶ A pole pi inside the contour C: the net change in ∠(s− pi) is −2π
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Principle of the Argument

▶ Let Z and P be the number of zeros and poles of L(s) inside C

▶ As s moves around C, ∠L(s) undergoes a net change of −(Z − P )2π

▶ A net change of −2π means that the vector from 0 to L(s) swings
clockwise around the origin one full rotation

▶ A net change of −(Z − P )2π means that the vector from 0 to L(s) must
encircle the origin in clockwise direction (Z − P ) times

Theorem (Cauchy’s Principle of the Argument)
Consider a transfer function L(s) and a simple closed clockwise contour C. Let
Z and P be the number of zeros and poles of L(s) inside C.

▶ Then, the contour generated by evaluating L(s) along C will encircle the
origin in a clockwise direction Z − P times.

▶ Note that Cauchy’s Principle of the Argument works for any transfer
function — L(s) above does not need to be a loop transfer function.
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Principle of the Argument: Example

▶ Pole-zero map for

G(s) =
10(s+ 1)

(s+ 2)(s2 + 1)(s+ 6)
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Principle of the Argument: Example

▶ A circle contour C centered at the origin with radius 0.5 (green)

▶ The contour may be parameterized by z(t) = 0.5e−it for t ∈ [0, 2π]

▶ The contour C is mapped by G(s) to a new contour (from blue to red),
e.g., parameterized by G(z(t)) for t ∈ [0, 2π]
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Figure: Encircle the origin in a clockwise direction Z − P = 0 times
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Principle of the Argument: Example

▶ A circle contour C centered at (−1, 0) with radius 1 (red)

▶ The contour C is mapped by G(s) to a new contour (from blue to red)
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Figure: Encircle the origin in a clockwise direction Z − P = 1 time
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Principle of the Argument: Example

▶ A circle contour C centered at the origin with radius 1.5 (magenta)

▶ The contour C is mapped by G(s) to a new contour (from blue to red)
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Figure: Encircle the origin in a clockwise direction Z − P = 1− 2 = −1 time
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Nyquist Stability Criterion

▶ Consider the stability of the closed-loop transfer function:

Gcl(s) =
L(s)

1 + L(s)
=

L(s)

∆(s)

▶ The poles of ∆(s) are the poles of L(s) — open-loop poles

▶ The zeros of ∆(s) are the poles of Gcl(s) — closed-loop poles

▶ Principle of the Argument applied to ∆(s) = 1 + L(s):

– Let Γ be a Nyquist contour.

– Let Z be the number of zeros of ∆(s) (closed-loop poles) inside Γ.

– Let P be the number of poles of ∆(s) (open-loop poles) inside Γ.

– Then, the image of Γ under ∆(s), denoted as ∆(Γ), encircles the
origin in clockwise direction N = Z − P times.
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Nyquist Stability Criterion

▶ From the Principle of the Argument applied to ∆(s), the number of
closed-loop poles in the closed right half-plane is:

Z = N + P

– N : the clockwise encirclements of the origin by ∆(Γ) correspond
to the clockwise encirclements of −1 + i0 by L(Γ) and can be
determined from a Nyquist plot of L(s)

– P : the number of poles of ∆(s) inside C corresponds to the number
of poles of L(s) inside Γ and can be determined from L(s) or its
Bode plot

Theorem (Nyquist Stability Criterion)
Consider a unity feedback control system with open-loop transfer function
L(s). Let Γ be a Nyquist contour. The system is stable if and only if the
number of counterclockwise encirclements of −1 + i0 by the Nyquist plot
L(Γ) is equal to the number of poles of L(s) inside Γ.
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Nyquist Stability Criterion

Theorem (Nyquist Stability Criterion)
Consider a unity feedback control system with open-loop transfer function
L(s). Let Γ be a Nyquist contour. The system is stable if and only if the
number of counterclockwise encirclements of −1 + i0 by the Nyquist plot L(Γ)
is equal to the number of poles of L(s) inside Γ.

Theorem (Simplified Nyquist Criterion)
Let L(s) be the loop transfer function for a negative feedback system, and
assume that L has no poles in the closed right half-plane ( Re(s) ≥ 0) except
possibly at the origin. Then the closed loop system is stable if and only if the
image of L(s) along the closed contour Γ has no net encirclements of the
critical point s = −1 + i0.
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Nyquist Stability: Example

Determine the closed-loop stability of

L(s) =
κ

s(1 + τ1s)(1 + τ2s)
=

κ

s(1 + s)2

▶ G(C1) crosses the real axis when:

G(iω) =
−κ(τ1 + τ2)− iκ(1− ω2τ1τ2)ω

1 + ω2(τ2
1 + τ2

2 ) + ω4τ2
1 τ

2
2

= α+ i0

⇒ ω =
1√
τ1τ2

α = − κτ1τ2
τ1 + τ2

▶ The system is stable when α = − κτ1τ2
τ1 + τ2

> −1 ⇔ κ <
τ1 + τ2
τ1τ2

= 2.
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Stability Margin

In practice, it is not enough that a system is stable. There must also be some
margins of stability that describe how far from instability the system is and its
robustness to perturbation.

▶ Stability margins express how well the Nyquist curve of the loop transfer
avoids the critical point −1.

▶ The shortest distance sm of the Nyquist curve to the critical point is a
natural criterion — stability margin.
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Gain Margin

▶ Gain Margin:

– the factor by which the open-loop gain can be increased before a
stable closed-loop system becomes unstable

– It is the inverse of the distance between the origin and the point
between −1 and 0 where the loop transfer function crosses the
negative real axis.

– On a Nyquist plot, the gain margin is the inverse of the distance to
the first point where G(C) crosses the real axis.
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Phase Margin

▶ Phase Margin:

– the amount by which the open-loop phase can be decreased before a
stable closed-loop system becomes unstable

– i.e. the amount of phase lag required to reach the stability limit

▶ On a Nyquist plot, the phase margin is the smallest angle on the unit
circle between −1 and G(C)
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Algebraic Definitions

▶ Phase-Crossover frequency

– ωpc at which L(iω) crosses the real axis: ∠L(iωpc) = −180◦

▶ Gain Margin

– the inverse of the open-loop gain at ωpc: gm = 1
|L(iωpc)|

▶ Gain-Crossover frequency

– ωgc at which G(jω) crosses the unit circle: |L(iωgc)| = 1

▶ Phase Margin

– the amount by which the open-loop phase at ωg exceeds −180◦:

φm = ∠L(iωgc) + 180◦
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Stability margins for a third-order system

Example
Consider a loop transfer function L(s) =

3

(s+ 1)3

Figure: Stability margins for a third-order transfer function. (a) Nyquist plot; (b) Bode plot.

▶ We can use its Nyquist plot or Bode plot. This yields the following values:

gm = 2.67, φm = 41.7◦, sm = 0.464.
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Summary

Theorem (Nyquist’s Stability Criterion)
Consider a unity feedback control system with open-loop transfer function
L(s). Let Γ be a Nyquist contour. The system is stable if and only if the
number of counterclockwise encirclements of −1 + i0 by the Nyquist plot L(Γ)
is equal to the number of poles of L(s) inside Γ.

Classical robustness measures: stability margin, phase margin, gain margin
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