ECE 171A: Linear Control System Theory Lecture 18: Bode's relations and Root locus

Yang Zheng

Assistant Professor, ECE, UCSD

May 09, 2022

Reading materials: Ch 10.4, Ch 12.5

Something NOT fun

Figure 3: A vibration damper. Vibrations of the mass m_1 can be damped by providing it with an auxiliary mass m_2 , attached to m_1 by a spring with stiffness k_2 . The parameters m_2 and k_2 are chosen so that the frequency $\sqrt{k_2/m_2}$ matches the frequency of the vibration.

(c) We let $m_1 = 1; c_1 = 1; k_1 = 1; m_2 = 1; k_2 = 1$. Draw the bode plot of $G_{q_1F}(s)$ in Matlab. Then, simulate the response $q_1(t)$ when we apply inputs $F(t) = \sin(\omega t)$ with $\omega = 0.0.578$, 1, and 1.1 for 100 seconds (the initial state is $q_1(0) = 0, q_2(0) = 0, \dot{q}_1(0) = 0, \dot{q}_2(0) = 0.)^6$. Are these responses consistent with the bode plot? Discuss the blocking property of the zeros in $G_{q_1F}(s)$. [10 pts]

Show transcribed image text

- ▶ Not fun, and not necessary! Q4 in HW5 will not be graded (Max 70).
- ▶ Next time, I will refer it to the Office of Student Conduct for investigation.
- \triangleright All of us should uphold academic integrity more important than grades.

Outline

[Bode's relations](#page-4-0)

[Root locus](#page-8-0)

[Summary](#page-23-0)

Nyquist's Stability Criterion

Theorem (Nyquist's Stability Criterion)

Consider a unity feedback control system with open-loop transfer function $L(s)$. Let Γ be a Nyquist contour. The system is stable if and only if the number of counterclockwise encirclements of $-1 + i0$ by the Nyquist plot $L(\Gamma)$ is equal to the number of poles of $L(s)$ inside Γ .

Classical robustness measures: stability margin, phase margin, gain margin

Outline

[Bode's relations](#page-4-0)

[Root locus](#page-8-0)

[Summary](#page-23-0)

[Bode's relations](#page-4-0) 5/25

Bode's relations

From Bode plots, there appears to be a relation between the gain curve and the phase cure — Minimum phase systems

Figure: Bode plots of the transfer functions $P(s) = s^k$ for $k = -2, -1, 0, 1, 2$.

- ▶ Differentiator *s*: the slope is $+1$, and the phase is a constant 90° ;
- ▶ Integrator $\frac{1}{s}$: the slope is -1 , and the phase is a constant -90° .

First-order system $s + a$: slop 0 for small frequencies, and slop $+1$ for

high frequencies; Phase 0 for low frequencies and 90° for high frequencies. [Bode's relations](#page-4-0) 6/25

Minimum phase systems

Minimum phase systems: they have the smallest phase lag of all systems with the same gain curve.

- \triangleright No time delays or poles and zeros in the right half-plane.
- ▶ Have the property that $\log |P(s)|/s \to 0$ as $s \to \infty$ for $\text{Re}(s) \geq 0$.

For minimum phase systems, the phase is uniquely given by the shape of the gain curve and vice versa:

$$
\arg G(i\omega_0) = \frac{\pi}{2} \int_0^\infty f(\omega) \frac{d \log |G(i\omega)|}{d \log \omega} \frac{d\omega}{\omega},
$$

where f is the weighting kernel

$$
f(\omega) = \frac{2}{\pi^2} \log \left| \frac{\omega + \omega_0}{\omega - \omega_0} \right| \quad \text{and} \quad \int_0^\infty f(\omega) \frac{d\omega}{\omega} = 1.
$$

[Bode's relations](#page-4-0) 7/25

Non-minimum phase systems

Figure: Bode plots of systems that are not minimum phase. (a) Time delay $P(s) = e^{-sT}$, (b) system with a right half-plane (RHP) zero $P(s) = (a - s)/(a + s)$, and (c) system with right half-plane pole $P(s) = (s + a)/(s - a)$. The corresponding minimum phase system has the transfer function $P(s) = 1$ in all cases.

- ▶ The presence of poles and zeros in the right half-plane imposes severe limits on the achievable performance — Week 10
- ▶ The poles are intrinsic properties of the system and they do not depend on sensors and actuators.
- ▶ The zeros depend on how inputs and outputs of a system are coupled to the states. They can be changed by moving/adding sensors and actuators.

Outline

[Bode's relations](#page-4-0)

[Root locus](#page-8-0)

[Summary](#page-23-0)

[Root locus](#page-8-0) 9/25

Root locus - Overview

Motivation: System responses are affected by the locations of the poles of its transfer function in the complex domain, e.g., stability, convergence speed, etc.

▶ Feedback control can move the closed-loop system poles by designing an appropriate controller – **pole placement** (not covered in this course).

What is the root locus method?

- \triangleright The root locus is a graph of the roots of the characteristic polynomial as a function of a parameter — give insight into the effects of the parameter.
- \triangleright i.e., the root locus provides all possible pole locations as a system parameter (e.g., the controller gain) varies
- \triangleright Obtain the root locus find the roots of the closed loop characteristic polynomial for different values of the parameter (easy for computers).
- ▶ The general shape of the root locus can be obtained with very little computational effort, and that it often gives considerable insight.

Figure: Feedback control system

▶ Consider a single-loop feedback control system with

$$
P(s) = \frac{1}{s(s+2)}, \qquad C(s) = k
$$

 \blacktriangleright The closed-loop transfer function from the reference r to output y is:

$$
G_{\rm yr}(s) = \frac{kP(s)}{1 + kP(s)} = \frac{k}{s^2 + 2s + k}
$$

 \blacktriangleright How do the closed-loop poles vary as a function of k ?

− We can actually compute the roots as $\lambda_{1,2} = -1 \pm \sqrt{1-k}$.

[Root locus](#page-8-0) 11/25

Example

▶ Root locus for

$$
P(s) = \frac{1}{s(s+2)}
$$

▶ Matlab command: rlocus(tf([1],[1 2 0])).

Figure: Feedback control system

Example

▶ Consider a single-loop feedback control system with

$$
P(s) = \frac{(s+3)}{s(s+2)}, \qquad C(s) = k
$$

 \blacktriangleright The closed-loop transfer function from r to y is:

$$
G_{\rm yr}(s) = \frac{kP(s)}{1 + kP(s)} = \frac{k(s+3)}{s^2 + (2+k)s + 3k}
$$

▶ Root locus for

$$
P(s) = \frac{(s+3)}{s(s+2)}
$$

 \blacktriangleright Matlab command: rlocus(tf($[1 3]$, $[1 2 0])$).

▶ In this case, adding a stable zero in the open-loop system increases the relative stability of the closed-loop system by attracting the branches of the root locus.

Figure: Feedback control system

Example

▶ Consider a single-loop feedback control system with

$$
P(s) = \frac{1}{s(s+2)(s+3)}, \qquad C(s) = k
$$

 \blacktriangleright The closed-loop transfer function from r to y is:

$$
G_{\rm yr}(s) = \frac{k}{s^3 + 5s^2 + 6s + k}
$$

[Root locus](#page-8-0) 15/25

▶ In this case, adding a stable pole in the open-loop system makes the closed-loop system less stable (stable for some values of k);

Root Locus Definition

Figure: Feedback control system

▶ Closed-loop transfer function:

$$
G_{\rm yr}(s) = \frac{kP(s)}{1 + kP(s)}
$$

 \blacktriangleright The closed-loop poles satisfy:

$$
1 + kP(s) = 0
$$

▶ The root locus is the set of points s such that $1 + kP(s) = 0$ as k varies

[Root locus](#page-8-0) 17/25

Root Locus Definition

Consider the zeros and poles of $P(s)$ explicitly:

$$
P(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}
$$

$$
= b_m \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}
$$

 \blacktriangleright The closed loop characteristic polynomial is:

$$
1 + kP(s) = 0 \qquad \Rightarrow \qquad a_{\text{cl}}(s) := a(s) + kb(s) = 0
$$

- \blacktriangleright The closed loop poles are the roots of $a_{\text{cl}}(s)$.
- ▶ The root locus is a graph of the roots of $a_{\text{cl}}(s)$ as the gain k is varied from 0 to ∞ .
- ▶ Since the polynomial $a_{\text{cl}}(s)$ has degree n, the plot will have n branches.

Starting and ending points of Root locus

- ▶ Each branch starts at a different open-loop pole.
- \blacktriangleright m of the branches end at different open-loop zeros.
- ▶ The remaining $n m$ branches go to infinity

Example

Starting and ending points of Root locus

 \blacktriangleright The closed loop characteristic polynomial is:

$$
1 + kP(s) = 0 \qquad \Rightarrow \qquad a_{\text{cl}}(s) := a(s) + kb(s) = 0
$$

 \blacktriangleright The root locus is a graph of the roots of $a_{\text{cl}}(s)$ as the gain k is varied from 0 to ∞ .

Starting points when $k = 0$: we have $a_{c1}(s) := a(s) + kb(s) = a(s)$.

▶ The closed-loop poles are equal to the open-loop poles.

▶ Open-loop poles at $s = p$ with multiplicity $l \Rightarrow$

$$
a(s) + kb(s) = (s - p)1 \tilde{a}(s) + kb(s) \approx (s - p)1 \tilde{a}(p) + kb(p) = 0
$$

For small value of k , we have the roots are

$$
s = p + \sqrt[l]{-kb(p)/\tilde{a}(p)}
$$

 \blacktriangleright The root locus has a star pattern with *l* branches from the open-loop pole $s = p$, and the angle between two neighboring branches is $\frac{2\pi}{l}$.

Examples

 $\overline{2}$

 $\,4$

6

 $\,2\,$

Starting and ending points of Root locus

 \blacktriangleright The closed loop characteristic polynomial is:

 $1 + kP(s) = 0$ \Rightarrow $a_{c1}(s) := a(s) + kb(s) = 0$

 \triangleright The root locus is a graph of the roots of $a_{\text{cl}}(s)$ as the gain k is varied from 0 to ∞ .

Ending points when k goes to infinity: we have

$$
a_{\text{cl}}(s) := b(s) \left(\frac{a(s)}{b(s)} + k \right) \approx b(s) \left(\frac{s^{n-m}}{b_0} + k \right)
$$

 \blacktriangleright For large K, the closed-loop poles are approximately the roots (zeros of $P(s)$) of $b(s)$ and ⁿ[−]√^m

$$
\sqrt[n-m]{-b_0k}
$$

 \triangleright A better approximation of the **closed-loop poles** is

$$
s = s_0 + \sqrt[n-m]{-b_0k}
$$
, $s_0 = \frac{1}{n-m} \left(\sum_{k=1}^n p_k - \sum_{k=1}^m z_k \right)$.

Examples

Example

Show the root loci for the following open-loop transfer functions

$$
P_a(s) = \frac{s+1}{s^2}, \qquad P_b(s) = \frac{s+1}{s(s+2)(s^2+2s+4)},
$$

$$
P_c(s) = \frac{s+1}{s(s^2+1)}, \quad P_d(s) = \frac{s^2+2s+2}{s(s^2+1)}.
$$

Outline

[Bode's relations](#page-4-0)

[Root locus](#page-8-0)

[Summary](#page-23-0)

[Summary](#page-23-0) 24/25

Summary

 \triangleright Minimum phase systems: they have the smallest phase lag of all systems with the same gain curve – for these systems

- No time delays or poles and zeros in the right half-plane.
- Have the property that $\log |P(s)|/s \to 0$ as $s \to \infty$ for $\text{Re}(s) \geq 0$.
- ▶ For minimum phase systems, the phase is uniquely given by the shape of the gain curve and vice versa

• Root locus: a graph of the roots of $a_{c1}(s)$ as the gain k is varied from 0 to ∞ .

- The plot of root locus will have n branches.
- Each branch starts at a different open-loop pole.
- m of the branches end at different open-loop zeros.
- The remaining $n m$ branches go to infinity.