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Overview

Proportional-integral-derivative (PID) control is by far the most common
way of using feedback in engineering systems

▶ A survey of controllers for more than 100 boiler-turbine units: 94.4% of
all controllers were PI, 3.7% PID, and 1.9% used advanced control.

Figure: PID using error feedback

PID control

▶ the proportional term (P) —
the present error;

▶ the integral term (I) — the
past errors;

▶ the derivative term (D) —
anticipated future errors.

▶ PID control appears in both simple and complex systems: as stand-alone
controllers, as elements of hierarchical, distributed control systems, etc.
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PID controller

Input/output relation

u = kpe+ ki

∫ t

0

e(τ)dτ + kd
de

dt
= kp

(
e+

1

Ti

∫ t

0

e(τ)dτ + Td
de

dt

)
.

▶ Time constant Ti = kp/ki (Integral time); Td = kd/kp (Derivative time)

▶ Also known as three-term controllers.

Figure: PID using error feedback

Example
▶ Consider a system with dynamics

P (s) =
1

(s+ 1)3
.

▶ Consider a controller C(s)

▶ The transfer function from
reference to error is

Ger(s) =
1

1 + C(s)P (s)
.
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Numerical experiments
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Intuition about PID control – P term

The transfer function from reference to error is

Ger(s) =
1

1 + C(s)P (s)
=

1

1 + kpP (s)
.

▶ Assuming the closed loop is stable, the steady-state error for a unit step is

Ger(0) =
1

1 + kpP (0)
.

▶ The error decreases with increasing gain, but the system also become
more oscillatory.

▶ To avoid having a steady-state error, the P term can be changed to

u(t) = kpe(t) + uff .

where uff is a feedforward term (also known as reset value — manually
adjusted in early controllers).

▶ If the reference value r is constant, we can choose

uff =
r

P (0)
= kfr.

The zero frequency gain P (0) might be unknown.
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Intuition about PID control – I term

Integral action guarantees that the process output agrees with the reference
in steady state and provides an alternative to the feedforward term.

▶ Since this result is SO IMPORTANT, we provide a general proof below.

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ.

▶ Assume that u(t) and e(t) converge to u = u0 and e = e0

u0 = kpe0 + ki lim
t→∞

∫ t

0

e(τ)dτ.

▶ The limit of the right hand side is not finite unless e(t) goes to zero.

Integral control: if a steady state exists, the error will always be zero.

▶ This property is sometimes called the magic of integral action.

▶ Notice that we have NOT assumed that the process is linear or
time-invariant (we have assumed that there is an equilibrium point).
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Intuition about PID control – I term

The effect of integral action can also be understood from frequency domain
analysis.

▶ The transfer function of a PID controller is

C(s) = kp +
ki
s

+ kds.

▶ This controller has infinite gain at zero frequency — no steady-state
error

C(0) = ∞ ⇒ Ger(0) =
1

1 + C(0)P (0)
= 0.

▶ Integral action as Automatic reset
— one of the early inventions (magic
of integral action)

Gue = kp
1 + sTi

sTi
= kp +

kp
sTi

▶ Converges more quickly for larger integral gains, but the system also
becomes more oscillatory
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Intuition about PID control – D term

The original motivation for derivative feedback was to provide predictive or
anticipatory action.

▶ The combination of the P and D terms can be written

u(t) = kpe(t) + kd
de

dt
= kp

(
e(t) + Td

de

dt

)
:= kpep,

where ep — prediction of the error at time t+ Td by linear extrapolation.

▶ Filtered derivative: difference
between the signal and its low-pass
filtered version

Gue = kp

(
1− 1

1 + sTd

)
= kp

sTd

1 + sTd
=

kds

1 + sTd
.

▶ The transfer function Gue acts like a differentiator for signals with low
frequencies and as a constant gain kp for high-frequency signals
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PID control in engineering and biological systems

Although PID control was developed in the context of engineering applications,
it also appears in nature.

▶ In biological systems proportional, integral, and derivative action are
generated by combining subsystems with dynamical behavior.

Disturbance attenuation by feedback in biological systems is often called
adaptation.
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Model reduction (simplification)

All models are wrong and some are useful!

▶ Practical systems are always complex.

▶ Simplify the models to capture the essential properties that are needed
for PID design.

▶ Low-order models can be obtained from first principles.

▶ Example:

– Any stable system can be modeled by a static system if its inputs are
sufficiently slow.

– A first-order model is sufficient if the storage of mass, momentum,
or energy can be captured by only one variable

– System dynamics are of second order if the storage of mass, energy,
and momentum can be captured by two state variables

▶ A wide range of techniques for model reduction are also available.
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PI for first-order systems

Consider a first-order system with the transfer function P (s) =
b

s+ a
.

▶ Consider a PI controller

C(s) = kp + ki
1

s
.

▶ The closed-loop transfer function
from r to y is

Gyr(s) =
PC

1 + PC

=
bkps+ ki

s2 + (a+ bkp)s+ ki
. Figure: PID using error feedback

▶ Requiring that the closed loop system have the characteristic polynomial

p(s) = s2 + a1s+ a2.

▶ Controller parameters are

kp =
a1 − a

b
, ki =

a2

b
.
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PI for first-order systems

Figure: Step response for a second-order system.
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PID control for Second-order Systems

Figure: PID using error feedback

▶ Consider a second-order plant:

P (s) =
b0

s2 + a1s+ a0

▶ Consider a PID controller

C(s) = kp + ki
1

s
++kds.

▶ The closed-loop transfer function
from r to y is

Gyr(s) =
PC

1 + PC

How should the controller C(s) be designed to ensure that the closed-loop
system is stable and its step response has zero steady-state error?
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Case 1: Proportional (P) Control

A proportional (P) controller uses a constant gain kp:

C(s) = kp ⇔ u(t) = kpe(t)

▶ Closed-loop transfer function:

Gyr(s) =
PC

1 + PC
=

kpb0
s2 + a1s+ (a0 + kpb0)

▶ P control can accelerate the response of a second-order system by
changing the natural frequency ω2

0 = (a0 + kpb0)

▶ To ensure stability, we need a1 > 0 and a0 + kpb0 > 0.

▶ P control can stabilize only some systems because it adjusts one
coefficient of the characteristic equation.

For a0 ̸= 0, the closed-loop system step response will have a constant finite
steady-state error.

Gyr(0) =
kpb0

a0 + kpb0
< 1.
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Case 2: Proportional-Integral (PI) Control

A proportional-integral (PI) controller uses a proportional gain Kp and an
integral gain Ki:

C(s) = kp +
ki
s

⇔ u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ

▶ Closed-loop transfer function:

Gyr(s) =
PC

1 + PC
=

b0(kps+ ki)

s3 + a1s2 + (a0 + kpb0)s+ kib0

▶ Zero steady-state error if the closed-loop system is stable

Gyr(0) =
b0ki
kib0

= 1.

We achieved the steady-state error specification but the closed-loop system
might still be unstable if a1 < 0.
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Case 3: PID Control

A proportional-integral-derivative (PID) controller uses a proportional gain
Kp, an integral gain Ki, and a derivative gain Kd:

C(s) = kp +
ki
s

+ kds u = kpe+ ki

∫ t

0

e(τ)dτ + kd
de

dt

▶ Closed-loop transfer function:

Gyr(s) =
PC

1 + PC
=

b0(kps+ ki + kds
2)

s3 + (a1 + kdb0)s2 + (a0 + kpb0)s+ kib0

▶ The coefficients of the characteristic polynomial can be set arbitrarily via
an appropriate choice of kp, ki, kd

For a second-order plant, PID control can guarantee

▶ stability, good transient behavior, and zero steady-state step error.
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PID Control Example

Example
Consider the plant

P (s) =
1

s2 − 3s− 1

Design a PID controller C(s) to achieve step response with zero steady-state
error and place the closed-loop system poles at −1, −2, −3

▶ PID controller: C(s) = kp + ki
s
+ kds

▶ Closed-loop transfer function:

Gyr(s) =
PC

1 + PC
=

kds
2 + kps+ ki

s3 + (kd − 3)s2 + (kp − 1)s+ ki

▶ Matching coefficients with

p(s) = (s+ 1)(s+ 2)(s+ 3)

= (s2 + 3s+ 2)(s+ 3)

= s3 + 6s2 + 11s+ 6,

we have kd = 9, kp = 12, ki = 6.
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Summary

Figure: PID using error feedback

PID control

▶ the proportional term (P) —
the present error;

▶ the integral term (I) — the
past errors;

▶ the derivative term (D) —
anticipated future errors.

▶ Magic of integral action

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ.

⇒ u0 = kpe0 + ki lim
t→∞

∫ t

0

e(τ)dτ.

▶ PID controller for lower-order (1st and 2nd order) systems
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