ECE 171A: Linear Control System Theory Lecture 2: ODEs and Cruise Control

Yang Zheng

Assistant Professor, ECE, UCSD

March 30, 2022

Reading materials: Ch 1.6, Ch 4.1, Ch 6.2

Outline

Review on ODEs

Cruise Control Example

Summary

Background survey

- We have undergraduates in Year 2, 3 and 4, as well as master students.
- Diversity is good; we can help each other.

Most of us are interested in the topic!

Background survey

(a) Signals and Systems

(b) Coding experience

(c) ODEs

Background survey

Are there any specific applications of feedback and control concepts that you are interested in?

- Autonomous vehicles, robotics, and drone stabilization
- Why does PID work?
- Design feedback controllers for a system that we can run tests on
- Medical devices
- Power grid controls,
-
- Suggestions we have got so far
 - Homework to be reflective of the course content.
 - Examples of how to approach questions
 - Lecture recordings
 - Lecture slides with conceptual details as bullet points.
 - Office hours, clear syllabus and course directions
 - Engaging, patient, responsive and available outside the class
 -

Thank you for the feedback!

Outline

Review on ODEs

Cruise Control Example

Summary

Ordinary Differential Equations

As we will see, the behavior of many physical systems can be described using ordinary differential equations in the time domain

- ▶ In the frequency domain, they become transfer functions (Week 3/4)
- A differential equation is any equation involving a function and its derivatives, e.g.,

$$\frac{d}{dt}x(t) = -x(t).$$
(1)

A solution to a differential equation is any function that satisfies the equation, e.g., for (1), we have

- A solution is

$$x(t) = e^{-t}$$

- Another solution is

$$x(t) = 2e^{-t}$$

A general solution is

$$x(t) = e^{-t}x(0),$$

where $x(0) \in \mathbb{R}$ is the initial value at t = 0.

An second-order example

Example

• Consider a linear ODE:
$$\frac{d^2}{dt^2}x(t) + x(t) = 0$$

Two particular solutions are:

$$\begin{aligned} x_1(t) &= \cos(t) \quad \Rightarrow \quad \frac{d^2}{dt^2}\cos(t) = -\cos(t), \\ x_2(t) &= \sin(t) \quad \Rightarrow \quad \frac{d^2}{dt^2}\sin(t) = -\sin(t). \end{aligned}$$

▶ In fact, $x(t) = c_1 x_1(t) + c_2 x_2(t)$ with $c_1, c_2 \in \mathbb{R}$ is also a solution

Ordinary Differential Equations

An nth-order linear ordinary differential equation (ODE) is:

$$\frac{d^n}{dt^n}y(t) + a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t) + \ldots + a_1\frac{d}{dt}y(t) + a_0y(t) = u(t)$$
 (2)

- If u(t) = 0, then the *n*th-order linear ODE is called **homogeneous**
- ► A particular solution is a solution y(t) that contains no arbitrary constants
- A general solution is a solution y(t) that contains n arbitrary constants

Definition (Initial value problem)

An ODE (2) together with initial value constraints

$$y(t_0) = y_0, \quad \dot{y}(t_0) = y_1, \quad \dots \quad y^{(n-1)}(t_0) = y_{n-1}.$$

Theorem

Let u(t) be a continuous function on an interval $\mathcal{I} = [t_1, t_2]$. Then, for any $t_0 \in \mathcal{I}$, a solution y(t) of the initial value problem exists on \mathcal{I} and is unique.

State-space model

Any $n {\rm th-order}\ {\rm linear}\ {\rm ODE}\ {\rm can}\ {\rm be}\ {\rm reformulated}\ {\rm into}\ {\rm a}\ {\rm first-order}\ {\rm matrix}\ {\rm ODE}\ {\rm of}\ {\rm the}\ {\rm form}$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Define variables:

$$x_1(t) = y(t),$$
 $x_2(t) = \frac{d}{dt}y(t),$ \dots $x_n(t) = \frac{d^{n-1}}{dt^{n-1}}y(t)$

The linear ODE (2) specifies the following relationships:

$$\dot{x}_{1}(t) = x_{2}(t)$$

$$\dot{x}_{2}(t) = x_{3}(t)$$

$$\vdots$$

$$\dot{x}_{n-1}(t) = x_{n}(t)$$

$$\dot{x}_{n}(t) = -a_{0}x_{1}(t) - a_{1}x_{2}(t) - \dots - a_{n-1}x_{n}(t) + u(t)$$

State Space Model

Let x(t) := [x₁(t) x₂(t) ··· x_n(t)]^T be a vector called system state
 A state space model of the linear ODE is obtained by re-writing the equations in vector-matrix form:

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}}_{B} u(t)$$

Matrix exponential:

$$e^A := I + A + \frac{1}{2}A^2 + \ldots + \frac{1}{n!}A^n + \ldots \qquad \Rightarrow \qquad \frac{d}{dt}e^{At} = Ae^{At}.$$

• A general solution to $\dot{x}(t) = Ax(t)$ is $x(t) = e^{At}x(0)$.

More analysis of state-space models will be discussed in ECE 171B

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Outline

Review on ODEs

Cruise Control Example

Summary

Cruise Control

Cruise control is a common feedback system encountered in everyday life,

It aims to maintain a constant velocity in the presence of disturbances caused by road slop/frictions/air drag etc.

Control goals

Stability/performance

- Steady state velocity approaches desired velocity
- Smooth response; no overshoot or oscillations

Disturbance rejection

- Effect of disturbances (eg, hills) approaches zero

Robustness

 Results don't depend on the specific values of the system parameters

Cruise control - Modeling

Parameters, input/output variables (simplified)

- Desired speed: v_{des}
- System variable (output): speed v
- System parameter: mass m (which may change)
- ► Disturbance: road slop $F_{\text{hill}} = -mg\sin(\theta)$, air drag $F = -\delta \times v$

System model

$$m\dot{v} = F_{\text{engine}} - \delta \times v - mg\sin(\theta)$$

or we can also include the vehicle's position explicitly

$$\begin{split} \dot{p} &= v, \\ \dot{v} &= -\frac{\delta}{m}v - g\sin(\theta) + \frac{1}{m}F_{\text{engine}}, \end{split}$$

Experiments:

Cruise control - Simulation

Simulate the dynamics

Matlab ODE45 function: [t,y] = ode45(odefun,tspan,y0)
Strategies

Feedforward (open-loop) control

$$F_{\rm engine} = \begin{cases} 800 & \text{if } 0 \le t \le 5s \\ 0 & \text{otherwise} \end{cases}$$

Feedback (closed-loop) control: based on deviation $e(t) = v_{des} - v(t)$ - P (Proportional) control

$$F_{\text{engine}} = K_{\text{p}}e(t)$$

- I (Integral) control

$$F_{\text{engine}} = K_{\text{i}} \int_0^t e(t) dt$$

- D (Derivative) control

$$F_{\text{engine}} = K_{\text{d}} \frac{d}{dt} e(t)$$

Cruise control - Feedforward control

Cruise control - P control

Case 1: flat road $\theta = 0$

$$F_{\text{engine}} = K_{\text{p}}e(t)$$

$$F_{\text{engine}} = K_{\text{p}} e(t)$$

Cruise control - PI control

PID controller

- ▶ P controller: faster response (larger control gain) → more oscillated transient behavior; but fail to reach the desired value;
 - A proportional controller will reduce the rise time but cannot eliminate the steady-state error.
- I controller: reach the desired steady state; faster response (larger control gain) → overshoot and oscillation;
 - An integral controllers tend to respond slowly at first, but over a long period of time they tend to eliminate errors.
 - The integral controller eliminates the steady-state error, but may make the transient response worse.

D controller: improve the transient dynamics (no experiments today)

- A derivative controller will in general have the effect of increasing the stability of the system, reducing the overshoot, and improving the transient response.
- The derivative controller is never used alone. With sudden changes in the system, the derivative controller will compensate the output fast.

More analysis on PID will be discussed later.

Outline

Review on ODEs

Cruise Control Example

Summary

Summary

Summary

Review on ODEs

An nth-order linear ordinary differential equation (ODE) is:

$$\frac{d^n}{dt^n}y(t) + a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t) + \ldots + a_1\frac{d}{dt}y(t) + a_0y(t) = u(t)$$

First-order matrix ODE

$$\dot{x} = Ax(t) + Bu(t)$$

Cruise control

P control $F_{\text{engine}} = K_{\text{p}}e(t)$ I control $F_{\text{engine}} = K_{\text{i}}\int_{0}^{t} e(t)dt$ D control $F_{\text{engine}} = K_{\text{d}}\frac{d}{dt}e(t)$

 $\label{eq:Feedback control} \mbox{Feedback control} = \mbox{Sensing} + \mbox{Computation} + \mbox{Actuation}$

Summary