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L11 - Input/output responses (II)

▶ Impulse response

h(t) =

∫ t

0

CeA(t−τ)Bδ(τ)dτ +Dδ(t) = CeAtB +Dδ(t).

▶ Frequency responses

▶ The convolution equation

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t).

another version is y(t) = CeAtx(0)︸ ︷︷ ︸
Initial response

+

∫ t

0

h(t− τ)u(τ)dτ︸ ︷︷ ︸
forced response
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L12: Transfer function (I)

▶ Transient response and steady-state response

y(t) = CeAt (x(0)− (sI −A)−1B
)︸ ︷︷ ︸

transient

+
(
C(sI −A)−1B +D

)
est︸ ︷︷ ︸

steady-state

▶ Transfer function
G(s) = C(sI −A)−1B +D.

– Express the steady-state solution of a stable linear system forced by a
sinusoidal input

u(t) = sin(ωt) → yss = |G(iω)| sin(ωt+ ∠G(iω))

▶ Frequency domain modeling: Modeling a system through its response to
sinusoidal and exponential signals.

– We represent the dynamics of the system in terms of the generalized
frequency s rather than the time domain variable t.

– The transfer function provides a complete representation of a linear
system in the frequency domain.
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L13: Transfer function (II)

▶ Transfer function for linear ODEs

dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ a0y = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . .+ b0u,

G(s) =
bmsm + bm−1s

n−1 + . . .+ b0
sn + an−1sn−1 + . . .+ a0

.

▶ Block diagram with transfer functions
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Common transfer functions

Type System Transfer function

Integrator ẏ = u
1

s
Differentiator y = u̇ s

First-order system ẏ + ay = u
1

s+ a

Double integrator ÿ = u
1

s2

Damped oscillator ÿ + 2ζω0ẏ + ω2
0y = u

1

s2 + 2ζω0s+ ω2
0

State-space system
ẋ = Ax+Bu

y = Cx+Du
C(sI −A)−1B +D

PID controller y = kpu+ kdu̇+ ki

∫
u kp + kds+

ki
s

Time delay y(t) = u(t− τ) e−τs

Table: Transfer functions for some common linear time-invariant systems.

Review: L11 - L20 7/23



L14: Zeros, Poles and Bode plot

▶ The features of a transfer function are often associated with important
system properties.

– zero frequency gain
– the locations of the poles and zeros: Poles — modes of a system;

Zeros – Block transmission of certain signals

Poles (eigenvalues) of the matrix A = Poles of the transfer function G(s)

▶ The frequency response G(iω) can be represented by two curves — Bode
plot

– Gain curve: gives |G(iω)| as a function of frequency ω — log/log
scale (traditionally in dB — 20 log |G(iω)|; we often consider log |G(iω)|)

– Phase curve: gives ∠G(iω) as a function of frequency ω —
log/linear scale in degrees
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L15: Bode plot and Routh-Hurwitz stability

▶ The Bode plot gives a quick overview of a stable linear system.

u(t) = sin(ωt) → yss = |G(iω)| sin(ωt+ ∠G(iω))

Theorem
Consider a Routh table from the polynomial a(s) in

G(s) =
b(s)

a(s)
.

▶ The number of sign changes in the first column of the Routh table is
equal to the number of roots of a(s) in the closed right half-plane.

Corollary (BIBO Stability of LTI Systems)
The system G(s) is BIBO stable if and only if there are no sign changes in the
first column of its Routh table.
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L16: Loop transfer functions and Nyquist plot

▶ Nyquist’s idea was to first investigate conditions under which oscillations
can occur in a feedback loop – The Loop transfer function:

L(s) = P (s)C(s).

▶ Nyquist plot and Simplified Nyquist criterion
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L17: Nyquist Criterion and Stability margins

Theorem (Nyquist’s Stability Criterion)
Consider a unity feedback control system with open-loop transfer function
L(s). Let Γ be a Nyquist contour. The system is stable if and only if the
number of counterclockwise encirclements of −1 + i0 by the Nyquist plot L(Γ)
is equal to the number of poles of L(s) inside Γ.

Classical robustness measures: stability margin, phase margin, gain margin
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L18: Bode’s relations and Root locus

▶ Minimum phase systems: they have the smallest phase lag of all systems
with the same gain curve — for these systems

– No time delays or poles and zeros in the right half-plane.

– Have the property that log |P (s)|/s → 0 as s → ∞ for Re(s) ≥ 0.

▶ For minimum phase systems, the phase is uniquely given by the shape of
the gain curve and vice versa

▶ Root locus: a graph of the roots of acl(s) as the gain k is varied from 0
to ∞.

– The plot of root locus will have n branches.

– Each branch starts at a different open-loop pole.

– m of the branches end at different open-loop zeros.

– The remaining n−m branches go to infinity.
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L19: PID control (I)

Figure: PID using error feedback

PID control

▶ the proportional term (P) —
the present error;

▶ the integral term (I) — the
past errors;

▶ the derivative term (D) —
anticipated future errors.

▶ Magic of integral action

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ.

⇒ u0 = kpe0 + ki lim
t→∞

∫ t

0

e(τ)dτ.

▶ PID controller for lower-order (1st and 2nd order) systems
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PID Control Example

Example
Consider the plant

P (s) =
1

s2 − 3s− 1

Design a PID controller C(s) to achieve step response with zero steady-state
error and place the closed-loop system poles at −1, −2, −3

▶ PID controller: C(s) = kp + ki
s
+ kds

▶ Closed-loop transfer function:

Gyr(s) =
PC

1 + PC
=

kds
2 + kps+ ki

s3 + (kd − 3)s2 + (kp − 1)s+ ki

▶ Matching coefficients with

p(s) = (s+ 1)(s+ 2)(s+ 3)

= (s2 + 3s+ 2)(s+ 3)

= s3 + 6s2 + 11s+ 6,

we have kd = 9, kp = 12, ki = 6.
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L20: PID control (II)

▶ Ziegler-Nichols’ Tuning

▶ Tuning based on the FOTD model

▶ Relay Feedback (Automatic tuning; not required in this course)

▶ Many aspects of a control system can be understood from linear models.

▶ However, some nonlinear phenomena must be taken into account

▶ Windup can occur in any controller with integral action.

▶ There are many methods to avoid windup.
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Example 4

L(s) =
1

s+ 1

Figure: Nyquist plot for L(s) = 1
s+1

Z = N + P = 0

Then,

Gyr =
L(s)

1 + L(s)

=
1

s+ 2
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Example 5

L(s) =
1

(s+ 1)2

Figure: Nyquist plot for L(s) = 1
(s+1)2

Z = N + P = 0

Then,

Gyr =
L(s)

1 + L(s)

=
1

s2 + 2s+ 2

Closed-loop poles

p1,2 = −1± 1i
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Example 6

L(s) =
1

s(s+ 1)

Figure: Nyquist plot for L(s) = 1
s(s+1)

Z = N + P = 0

Then,

Gyr =
L(s)

1 + L(s)

=
1

s2 + s+ 1

Closed-loop poles

p1,2 = −0.5± 0.866i
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Example 7

L(s) =
1

s(s+ 1)(s+ 0.5)

Figure: Nyquist plot for
L(s) = 1

s(s+1)(s+0.5)

Z = N + P = 2

Then,

Gyr =
L(s)

1 + L(s)

=
1

s3 + 1.5s2 + 0.5s+ 1

Closed-loop poles

p1,2 = 0.0416± 0.7937i

p3 = −1.5832
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Midterm II

▶ Midterm exam (II) — in class, May 18 (Wednesday in Week 8)

– Scope: Lectures 11 - 21, HW4 - HW6, HW7 (Q1, Q2), DI 5-8;
(Reading materials in the textbook)

– Closed book, closed notes, closed external links.

– Come on time (1 or 2 minutes early if you can; we will start at 9:00
am promptly)

– No MATLAB is required. No graphing calculators are permitted. A
basic arithmetic calculator is allowed.

– The exams must be done in a blue book. Bring a blue book with you.

– No collaboration and discussions are allowed. It is dishonest to
cheat on exams. Instances of academic dishonesty will be referred to
the Office of Student Conduct for adjudication. You don’t want to
take a risk for such a small thing.
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Midterm II

Three problems

▶ Problem 1: True or False

▶ Problem 2: Bode and Nyquist

▶ Problem 3: Feedback Control

Good Luck!
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