ECE 171A: Linear Control System Theory Lecture 22: Performance specifications

Yang Zheng

Assistant Professor, ECE, UCSD

May 20, 2022

Reading materials: Ch 12.1, 12.2

Outline

[Sensitivity Functions](#page-4-0)

[Performance specifications](#page-10-0)

[Summary](#page-20-0)

Midterm II and Survey

Midterm II: Many of you did well

- ▶ Maximum: 98
- ▶ Above 90: 9; 80 90: 11
- ▶ Mean: 70.5; Median: 71.
- \triangleright STD DEV: 14.8

Midterm I:

- \blacktriangleright Maximum: 102
- ▶ Above 90: 10; 80 90: 10
- ▶ Mean: 67.3; Median: 69
- \triangleright STD DEV: 19.4

Come to office hours or send us an email if you want to chat.

 \triangleright Grading: Take a maximum of the following methods

- 1. HW 40% + Midterm I 10 % + Midterm II 10 % + Final 40 %
- 2. HW 40% + Midterm 1 5 % + Midterm II 10 % + Final 45 %
- 3. HW 40% + Midterm 1 10 % + Midterm II 5 % + Final 45 %
- ▶ Survey on midterms and final; Please spend 2 minutes filling it out by next Monday.

<https://forms.gle/TkPt3H6McBMZHdFe8>

Schedule

\blacktriangleright The rest of this course:

Hope you will continue to have fun in the final two weeks. Let's keep in touch even after the course.

Outline

[Sensitivity Functions](#page-4-0)

[Performance specifications](#page-10-0)

[Summary](#page-20-0)

[Sensitivity Functions](#page-4-0) 5/22

Feedback control systems

Figure: Block diagram of a control system with two degrees of freedom.

▶ The 2 DOF controller:

- a feedback block $C(s)$
- a feedforward block $F(s)$.
- \blacktriangleright The external signals
	- the reference signal r ,
	- the load disturbance v .
	- $-$ the measurement noise w .
- \blacktriangleright The measured output is y, and the control signal is u .

Loop shaping: design the behavior of the closed-loop system by focusing on the open-loop transfer function.

 \blacktriangleright Example — the Nyquist criterion: we used the Nyquist plot for the open loop transfer function to determine the stability of the closed loop system

[Sensitivity Functions](#page-4-0) 6/22

Closed-loop transfer functions

Figure: Block diagram of a control system with two degrees of freedom.

- \blacktriangleright The feedback control system is composed of linear elements;
- ▶ The relations between the signals can be expressed via transfer functions.

The overall system has three external inputs: the reference r , the load disturbance v , and the measurement noise w .

- ▶ Any of the remaining signals can be relevant for design, but the most common ones are
	- the error e , the input u , and the output y .

Closed-loop transfer functions

Table 12.1: Transfer functions relating the signals of the control system in Figure 12.1. The external inputs are the reference signal r, load disturbance v, and measurement noise w , represented by each row. The columns represent the measured signal y, control input u, error e, process input μ , and process output η that are most relevant for system performance.

\boldsymbol{u}	\boldsymbol{u}	e	μ		
PCF	CF	F	CF	PCF	
$1+PC$	$1+PC$	$1+PC$	$1+PC$	$1+PC$	
	$-PC$	$-P$			$\boldsymbol{\eta}$
$1+PC$	$1+PC$	$1+PC$	$1 + PC$	$1+PC$	
	$-C$	-1	$-C$	$-PC$	w
$1 + PC$	$1 + PC$	$1 + PC$	$1 + PC$	$1 + PC$	

For most control designs, we focus on the following subset — the Gang of Six

$$
G_{\rm yr} = \frac{PCF}{1+PC}, \quad -G_{\rm uv} = \frac{PC}{1+PC}, \quad G_{\rm yv} = \frac{P}{1+PC}
$$

$$
G_{\rm ur} = \frac{CF}{1+PC}, \quad -G_{\rm uw} = \frac{C}{1+PC}, \quad G_{\rm yw} = \frac{1}{1+PC}
$$

[Sensitivity Functions](#page-4-0) 8/22

Sensitivity functions: Gang of four

The response of the system to load disturbances v and measurement noise w is of particular importance — referred to as sensitivity functions.

 \blacktriangleright Sensitivity function

$$
S = \frac{1}{1 + PC} \qquad \rightarrow \qquad G_{\text{yw}}
$$

 \blacktriangleright Complementary sensitivity function

$$
T = \frac{PC}{1 + PC} \qquad \rightarrow \qquad -G_{uv}
$$

 \blacktriangleright Load sensitivity function

$$
PS = \frac{P}{1 + PC} \qquad \rightarrow \qquad G_{\text{yv}}
$$

 \blacktriangleright Noise sensitivity function

$$
CS = \frac{C}{1 + PC} \qquad \rightarrow \qquad -G_{\text{uw}}
$$

Important in feedback control de $sign$ — called the Gang of Four

 \blacktriangleright The remaining two in the Gang of Six are

$$
G_{\rm yr} = \frac{PCF}{1+PC},
$$

$$
G_{\rm ur} = \frac{CF}{1+PC}
$$

- ▶ feedback controller $C(s) \rightarrow$ provide good response w.r.t. w and v :
- \blacktriangleright feedforward controller $F(s)$ \rightarrow obtain good reference tracking w.r.t. r.

[Sensitivity Functions](#page-4-0) 9/22

Sensitivity functions: Gang of four

Gang of Four
\n
$$
S = \frac{1}{1+PC}
$$
\n
$$
PS = \frac{P}{1+PC}
$$
\n
$$
TS = \frac{P}{1+PC}
$$
\n
$$
CS = \frac{C}{1+PC}
$$

Many interesting properties (assuming stability for the reference tracking)

 \blacktriangleright It directly follows that

$$
S(s) + T(s) = 1, \qquad \forall s \in \mathbb{C}
$$

- \blacktriangleright The loop transfer function PC will typically go to zero for large s, which implies that $T(s) \to 0$ and $S(s) \to 1$ as $s \to \infty$.
- ▶ It will not be possible to track very high-frequency reference signals $|G_{vr} = PT| \rightarrow 0$
- \blacktriangleright For controllers with integral action, PC will typically go to infinity for small s — low frequency references are tracked well.

[Sensitivity Functions](#page-4-0) 10/22

Outline

[Sensitivity Functions](#page-4-0)

[Performance specifications](#page-10-0)

[Summary](#page-20-0)

[Performance specifications](#page-10-0) 11/22

Performance specifications

Specifications capture robustness to process variations and performance w.r.t.

- ▶ the ability to track reference signals and attenuate load disturbances without injecting too much measurement noise.
- ▶ Expressed in terms of transfer functions (the Gang of Six) and the loop transfer function, using features of their time and frequency responses.

Robustness to process variations

E Loop transfer function: Gain/phase margin g_m , φ_m , and stability margin s_m .

[Performance specifications](#page-10-0) 12/22

Performance specifications

Specifications capture robustness to process variations and performance w.r.t.

- ▶ the ability to track reference signals and attenuate load disturbances without injecting too much measurement noise.
- ▶ Expressed in terms of transfer functions (the Gang of Six) and the loop transfer function, using features of their time and frequency responses.

Features of step responses

▶ Overshoot, rise time, and settling time

Connections between time and frequency domains

Table 7.1: Properties of the step response for a second-order system $\ddot{q} + 2\zeta\omega_0\dot{q} +$ $\omega_0^2 q = k \omega_0^2 u$ with $0 < \zeta \leq 1$.

Roughly speaking, the behavior of time responses for short times is related to the behavior of frequency responses at high frequencies, and vice versa.

[Performance specifications](#page-10-0) 14/22

Connections between time and frequency domains

Table 7.2: Properties of the frequency response for a second-order system \ddot{a} + $2\zeta\omega_0\dot{q} + \omega_0^2q = k\omega_0^2u$ with $0 < \zeta \le 1$.

[Performance specifications](#page-10-0) 15/22

Response to Reference Signals

The responses of the output y and the control signal u to the reference r are

$$
G_{\rm yr} = \frac{PCF}{1+PC}, \qquad G_{\rm ur} = \frac{CF}{1+PC}.
$$

E Peak (or resonant) value M_r , the peak frequency ω_{mr} the bandwidth ω_r .

Figure: Gain curve of the transfer function G_{vr}

- \blacktriangleright We can choose $F = 1$
- ▶ But in many cases it is useful to retain the ability to shape the input/output response by using $F(s) \neq 1$ —- the full Gang of Six

[Performance specifications](#page-10-0) 16/22

Example

Example

Consider a process with the transfer function and PI controller

[Performance specifications](#page-10-0) 17/22

Response to Load Disturbances and Measurement Noise

Sensitivity function

$$
S = \frac{1}{1 + PC} \quad \rightarrow \quad G_{\text{yw}}
$$

Load sensitivity function

$$
PS = \frac{P}{1 + PC} \quad \rightarrow \quad G_{\text{yv}}
$$

- \blacktriangleright The sensitivity function S directly shows how feedback $C(s)$ influences the response of the output to disturbances w
- ▶ Disturbances with frequencies such that $|S(i\omega)| < 1$ are attenuated; such that $|S(i\omega)| > 1$ are **amplified** by feedback
- **EXECUTE:** Sensitivity crossover frequency $\omega_{\rm sc}$ is the lowest frequency such that $|S(i\omega)| = 1$.

Response to Load Disturbances and Measurement Noise

Load sensitivity function $PS = \dfrac{P}{1+PC}$ \rightarrow $G_{\rm{yv}}$

- \blacktriangleright Load disturbances typically have low frequencies.
- \blacktriangleright For strictly proper plant, $P(s)$ is small for low frequencies.
- ▶ For processes with $P(0) \neq 0$ and controllers with integral action, we have

$$
C(s) \approx \frac{k_1}{s} \qquad \Rightarrow \quad G_{\text{yv}} \approx \frac{1}{C} = \frac{s}{k_1}
$$

for small s (low frequencies)

A controller with integral action thus attenuates disturbances with low **frequencies** effectively, and the gain k_i is a measure of disturbance attenuation.

Similar analysis for other transfer functions, e.g., high-frequency roll-off

$$
-G_{\text{uw}} = \frac{C}{1+PC} \approx C \qquad \text{for large } s.
$$

It is useful to filter the derivative so that $C(s)$ go to zero for large s. [Performance specifications](#page-10-0) 19/22

Example

Example

Consider a process with the transfer function and PID controller

Outline

[Sensitivity Functions](#page-4-0)

[Performance specifications](#page-10-0)

[Summary](#page-20-0)

Summary

▶ Sensitivity functions: for most control designs we focus on the following subset $-$ the Gang of Six

$$
G_{\rm yr} = \frac{PCF}{1+PC}, \quad -G_{\rm uv} = \frac{PC}{1+PC}, \quad G_{\rm yv} = \frac{P}{1+PC}
$$

$$
G_{\rm ur} = \frac{CF}{1+PC}, \quad -G_{\rm uw} = \frac{C}{1+PC}, \quad G_{\rm yw} = \frac{1}{1+PC}
$$

- ▶ Specifications capture robustness to process variations and performance w.r.t.
	- the ability to track reference signals and attenuate load disturbances without injecting too much measurement noise.
- ▶ Expressed in terms of transfer functions (e.g., the Gang of Six) and the loop transfer function, using features of their time and frequency responses.