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Loop shaping

Loop shaping: choose a compensator C(s) that gives a loop transfer function
L(s) = P(s)C(s) with a desired shape. — Trial and error procedure

» Example — Nyquist stability theorem: To make an unstable system
stable we simply have to bend the Nyquist curve away from the critical
point s = —1 4 10.

» Method 1 (backward): Determine a loop transfer function that gives a
closed loop system with the desired properties and then compute the
controller as C(s) = L(s)/P(s). Drawbacks:

— lead to controllers of high order
— there are limits if the process transfer function P(s) has poles and
zeros in the right half-plane,

» Method 2: (forward)

— Start with the process transfer function P(s)
— Change its gain to obtain the desired bandwidth,
— Add (stable) poles and zeros on C(s) until the desired shape is
obtained.
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Design considerations
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Figure: Block diagram of a control system with two degrees of freedom.

We need a suitable shape for the loop transfer function L(s) = P(s)C(s) that
gives good closed-loop performance and good stability margins.

» Good performance requires that the loop transfer function L(s)
— is large for low frequencies — good tracking of reference signals
— has good attenuation of low-frequency load disturbances.
» Since Gyw =S =1/(1+ L(s)) (note that G, = S if F(s) = 1), for
frequencies w where |L(iw)| > 100
— disturbances will be attenuated by approximately a factor of 100
— the steady-state tracking error |e(t)| = |r(t) — y(t)| is less than 1%.
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Design considerations

The loop transfer function should thus have roughly the shape shown in the
following figure
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(a) Gain plot of loop transfer function (b) Gain plot of sensitivity functions

» It has unit gain at the gain crossover frequency (|L(iwgc)| = 1),
> large gain for lower frequencies w < wgc, and
» small gain for higher frequencies w > wgc

Robustness is determined by the shape of the loop transfer function around
the gain-crossover frequency wgc.
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Design considerations
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> It would be desirable to transition from high loop gain |L(iw))| at low
frequencies to low loop gain as quickly as possible,

» Robustness requirements restrict how fast the gain can decrease:

— For a minimum-phase system, the relationship between slope ng. and
phase margin ¢, (in degrees) is (no need to remember this equation)

Pm

TR

» Time delays and poles and zeros in the right half-plane impose further
restrictions (Lecture 25/26)
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Loop shaping via Lead and Lag Compensation

Loop shaping is a trial-and-error procedure.

» Many specific procedures are available — they all require experience, but
they also give good insight into the conflicting specifications.

> Start with a Bode plot of the process transfer function P(s)
» Choose the gain crossover frequency wgc

— A compromise between attenuation of load disturbances and
injection of measurement noise.

» Attempt to shape the loop transfer function by changing the controller
gain and adding poles and zeros to the controller transfer function.

— the loop gain at low frequencies can be increased by so-called “lag
compensation”

— the behavior around the crossover frequency can be changed by
so-called “lead compensation”.

» Different performance specifications are evaluated for each controller.
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Lead and Lag Compensation

Simple compensators with transfer function

C(s):k%, a>0,b>0

> Lag compensator (Phase) if a > b; a Pl controller is a special case with
b=0.

> Lead compensator (Phase) if a < b; a PD controller with filtering.
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Lead and Lag Compensation
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(a) Lead compensation, a < b (b) Lag compensation, b < a

General purpose of Lag compenstation
» increases the gain at low frequencies
» improve tracking performance at low frequencies

» improve disturbance attenuation at low frequencies
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Lead and Lag Compensation
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General purpose of Lead compenstation
» Add phase lead in the frequency range between the pole and zero pair

» By appropriately choosing the location of this phase lead, we can provide
additional phase margin at the gain crossover frequency.
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Example 1

Example (Example 12.4)

The transfer function for the system dynamics is

a(l—e™°7)

Pls) = sT(s + a)

Nyquist Diagram
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(a) Nyquist plot
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(b) Bode plot with margins
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Example 1 - unite negative feedback

Figure: Unit negative feedback control C(s) =1
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Example 1 - Lag compensation

Bode Diagram
Gm = 26.8 dB (at 13.2 rad/s) , Pm = Inf
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Example 1 - Lag compensation
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Example 2

Example (Example 12.5)

The transfer function for the system dynamics is

P(S):ﬁa

" r =025 J=0.0475

» less than 1 % error in steady state; < 10% tracking error up to 10 rad/s

Magnitude (dB)

Phase (deg)

Bode Diagram
Gm = -1.93e-15 dB (at 2.29 rad/s), Pm = 0 deg (at 2.29 rad/s)

179.5

180.5

-181
1

! 10° 10! 10%
Frequency (rad/s)

(a) Bode plot with margins

0? 10

Design examples

Step Response

Amplitude
- o

o
o

0

2 4 6 8 10

(b) Step response for unit negative feed-

back

17/21



Example 2 - Lead compensation

Bode Diagram
Gm = -1.93-15 dB (at 2.20 rad/s), Pm = 0 deg (at 2.29 rad/s)
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Example 2 - time domain simulations
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Summary

» The loop transfer function should have roughly the shape below
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(a) Gain plot of loop transfer function (b) Gain plot of sensitivity functions

» General purpose of Lag compenstation

— increases the gain at low frequencies
— improve tracking performance at low frequencies
— improve disturbance attenuation at low frequencies

» General purpose of Lead compenstation
— Add phase lead in the frequency range between the pole and zero pair
— By appropriately choosing the location of this phase lead, we can

provide additional phase margin at the gain crossover frequency.
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