ECE 171A: Linear Control System Theory Lecture 23: Loop Shaping

Yang Zheng

Assistant Professor, ECE, UCSD

May 23, 2022

Reading materials: Ch 12.2, 12.3

Outline

[Feedback design via loop shaping](#page-2-0)

[Design examples](#page-7-0)

[Summary](#page-19-0)

Outline

[Feedback design via loop shaping](#page-2-0)

[Design examples](#page-7-0)

[Summary](#page-19-0)

[Feedback design via loop shaping](#page-2-0) 3/21 and 3 and

Loop shaping

Loop shaping: choose a compensator $C(s)$ that gives a loop transfer function $L(s) = P(s)C(s)$ with a desired shape. $\qquad \qquad \qquad$ Trial and error procedure

- \blacktriangleright Example Nyquist stability theorem: To make an unstable system stable we simply have to bend the Nyquist curve away from the critical point $s = -1 + i0$.
- \triangleright Method 1 (backward): Determine a loop transfer function that gives a closed loop system with the desired properties and then compute the controller as $C(s) = L(s)/P(s)$. Drawbacks:
	- lead to controllers of high order
	- there are limits if the process transfer function $P(s)$ has poles and zeros in the right half-plane,
- ▶ Method 2: (forward)
	- Start with the process transfer function $P(s)$
	- Change its gain to obtain the desired bandwidth,
	- Add (stable) poles and zeros on $C(s)$ until the desired shape is obtained.

[Feedback design via loop shaping](#page-2-0) 4/21

Design considerations

Figure: Block diagram of a control system with two degrees of freedom.

We need a suitable shape for the loop transfer function $L(s) = P(s)C(s)$ that gives good closed-loop performance and good stability margins.

 \triangleright Good performance requires that the loop transfer function $L(s)$

- $-$ is large for low frequencies $-$ good tracking of reference signals
- has good attenuation of low-frequency load disturbances.
- ▶ Since $G_{vw} = S = 1/(1 + L(s))$ (note that $G_{er} = S$ if $F(s) = 1$), for frequencies ω where $|L(i\omega)| > 100$
	- disturbances will be attenuated by approximately a factor of 100
	- the steady-state tracking error $|e(t)| = |r(t) y(t)|$ is less than 1%.

[Feedback design via loop shaping](#page-2-0) 5/21

Design considerations

The loop transfer function should thus have roughly the shape shown in the following figure

- It has unit gain at the gain crossover frequency $(|L(i\omega_{\rm gc})| = 1)$,
- large gain for lower frequencies $\omega < \omega_{\text{gc}}$, and
- small gain for higher frequencies $\omega > \omega_{\text{ec}}$

Robustness is determined by the shape of the loop transfer function around the gain-crossover frequency $\omega_{\rm gc}$.

[Feedback design via loop shaping](#page-2-0) $6/21$

Design considerations

(b) Gain plot of sensitivity functions

- It would be desirable to transition from high loop gain $|L(i\omega)|$ at low frequencies to low loop gain as quickly as possible,
- ▶ Robustness requirements restrict how fast the gain can decrease:
	- For a minimum-phase system, the relationship between slope n_{gc} and phase margin $\varphi_{\rm m}$ (in degrees) is (no need to remember this equation)

$$
n_{\rm gc} \approx -2 + \frac{\varphi_{\rm m}}{90}.
$$

▶ Time delays and poles and zeros in the right half-plane impose further restrictions (Lecture 25/26)

[Feedback design via loop shaping](#page-2-0) 7/21

Outline

[Feedback design via loop shaping](#page-2-0)

[Design examples](#page-7-0)

[Summary](#page-19-0)

[Design examples](#page-7-0) 8/21

Loop shaping via Lead and Lag Compensation

Loop shaping is a trial-and-error procedure.

- \triangleright Many specific procedures are available they all require experience, but they also give good insight into the conflicting specifications.
- \blacktriangleright Start with a Bode plot of the process transfer function $P(s)$
- \triangleright Choose the gain crossover frequency $\omega_{\rm gc}$
	- A compromise between attenuation of load disturbances and injection of measurement noise.
- ▶ Attempt to shape the loop transfer function by changing the **controller** gain and adding poles and zeros to the controller transfer function.
	- the loop gain at low frequencies can be increased by so-called "lag compensation"
	- $-$ the behavior around the crossover frequency can be changed by so-called "lead compensation".
- ▶ Different performance specifications are evaluated for each controller.

Lead and Lag Compensation

Simple compensators with transfer function

$$
C(s) = k \frac{s+a}{s+b}, \qquad a > 0, \ b > 0
$$

- ▶ Lag compensator (Phase) if $a > b$; a PI controller is a special case with $b=0.$
- ▶ Lead compensator (Phase) if $a < b$; a PD controller with filtering.

Lead and Lag Compensation

General purpose of Lag compenstation

- \triangleright increases the gain at low frequencies
- \triangleright improve tracking performance at low frequencies
- \blacktriangleright improve disturbance attenuation at low frequencies

Lead and Lag Compensation

General purpose of Lead compenstation

- ▶ Add phase lead in the frequency range between the pole and zero pair
- ▶ By appropriately choosing the location of this phase lead, we can provide additional phase margin at the gain crossover frequency.

Example 1

Example (Example 12.4)

The transfer function for the system dynamics is

$$
P(s) = \frac{a(1 - e^{-s\tau})}{s\tau(s + a)}, \qquad a = 1, \ \tau = 0.25
$$

Example 1 - unite negative feedback

Figure: Unit negative feedback control $C(s) = 1$

[Design examples](#page-7-0) 14/21

Example 1 - Lag compensation

Figure: Margins for $L(s) = P(s)C(s)$

$$
C(s) = 3.5 + \frac{8.3}{s}
$$

Example 1 - Lag compensation

Figure: Feedback control with a lag compensator $C(s) = k_p + \frac{k_i}{s}$

[Design examples](#page-7-0) 16/21

Example 2

Example (Example 12.5)

The transfer function for the system dynamics is

$$
P(s) = \frac{r}{Js^2}
$$
, $r = 0.25$, $J = 0.0475$

▶ less than 1 % error in steady state; $\leq 10\%$ tracking error up to 10 rad/s

[Design examples](#page-7-0) 17/21

Example 2 - Lead compensation

Figure: Margins for $L(s) = P(s)C(s)$

$$
C(s) = k \frac{s+a}{s+b},
$$

$$
a = 2, b = 50, k = 200;
$$

Example 2 - time domain simulations

Outline

[Feedback design via loop shaping](#page-2-0)

[Design examples](#page-7-0)

[Summary](#page-19-0)

[Summary](#page-19-0) 20/21

Summary

\blacktriangleright The loop transfer function should have roughly the shape below

(a) Gain plot of loop transfer function

(b) Gain plot of sensitivity functions

▶ General purpose of Lag compenstation

- increases the gain at low frequencies
- improve tracking performance at low frequencies
- improve disturbance attenuation at low frequencies
- ▶ General purpose of Lead compenstation
	- Add phase lead in the frequency range between the pole and zero pair
	- By appropriately choosing the location of this phase lead, we can provide additional phase margin at the gain crossover frequency.