ECE 171A: Linear Control System Theory Lecture 23: Loop Shaping

Yang Zheng

Assistant Professor, ECE, UCSD

May 23, 2022

Reading materials: Ch 12.2, 12.3

Outline

Feedback design via loop shaping

Design examples

Summary

Outline

Feedback design via loop shaping

Design examples

Summary

Loop shaping

Loop shaping: choose a compensator C(s) that gives a loop transfer function L(s) = P(s)C(s) with a desired shape. — Trial and error procedure

- **Example** Nyquist stability theorem: To make an unstable system stable we simply have to bend the Nyquist curve away from the critical point s = -1 + i0.
- ▶ Method 1 (backward): Determine a loop transfer function that gives a closed loop system with the desired properties and then compute the controller as C(s) = L(s)/P(s). Drawbacks:
 - lead to controllers of high order
 - there are limits if the process transfer function P(s) has poles and zeros in the right half-plane,
- Method 2: (forward)
 - Start with the process transfer function P(s)
 - Change its gain to obtain the desired bandwidth,
 - Add (stable) poles and zeros on C(s) until the desired shape is obtained.

Design considerations

Figure: Block diagram of a control system with two degrees of freedom.

We need a suitable shape for the loop transfer function L(s) = P(s)C(s) that gives good closed-loop performance and good stability margins.

- Good performance requires that the loop transfer function L(s)
 - is large for low frequencies good tracking of reference signals
 - has good attenuation of low-frequency load disturbances.
- ▶ Since $G_{yw} = S = 1/(1 + L(s))$ (note that $G_{er} = S$ if F(s) = 1), for frequencies ω where $|L(i\omega)| > 100$
 - disturbances will be attenuated by approximately a factor of 100
 - the steady-state tracking error |e(t)| = |r(t) y(t)| is less than 1%.

Design considerations

The loop transfer function should thus have roughly the shape shown in the following figure

- ▶ It has unit gain at the gain crossover frequency $(|L(i\omega_{gc})| = 1)$,
- ▶ large gain for lower frequencies $\omega < \omega_{
 m gc}$, and
- small gain for higher frequencies $\omega > \omega_{
 m gc}$

Robustness is determined by the shape of the loop transfer function around the gain-crossover frequency $\omega_{\rm gc}$.

Design considerations

(b) Gain plot of sensitivity functions

- ▶ It would be desirable to transition from high loop gain $|L(i\omega))|$ at low frequencies to low loop gain as quickly as possible,
- Robustness requirements restrict how fast the gain can decrease:
 - For a minimum-phase system, the relationship between slope $n_{\rm ec}$ and phase margin $\varphi_{\rm m}$ (in degrees) is (no need to remember this equation)

$$n_{\rm gc} \approx -2 + \frac{\varphi_{\rm m}}{90}.$$

Time delays and poles and zeros in the right half-plane impose further restrictions (Lecture 25/26)

Outline

Feedback design via loop shaping

Design examples

Summary

Design examples

Loop shaping via Lead and Lag Compensation

Loop shaping is a trial-and-error procedure.

Many specific procedures are available — they all require experience, but they also give good insight into the conflicting specifications.

• Start with a Bode plot of the process transfer function P(s)

- Choose the gain crossover frequency $\omega_{\rm gc}$
 - A compromise between attenuation of load disturbances and injection of measurement noise.
- Attempt to shape the loop transfer function by changing the controller gain and adding poles and zeros to the controller transfer function.
 - the loop gain at low frequencies can be increased by so-called "lag compensation"
 - the behavior around the crossover frequency can be changed by so-called "lead compensation".
- Different performance specifications are evaluated for each controller.

Lead and Lag Compensation

Simple compensators with transfer function

$$C(s) = k \frac{s+a}{s+b}, \qquad a > 0, \ b > 0$$

- Lag compensator (Phase) if a > b; a PI controller is a special case with b = 0.
- Lead compensator (Phase) if a < b; a PD controller with filtering.

Lead and Lag Compensation

General purpose of Lag compenstation

- increases the gain at low frequencies
- improve tracking performance at low frequencies
- improve disturbance attenuation at low frequencies

Lead and Lag Compensation

General purpose of Lead compenstation

- > Add phase lead in the frequency range between the pole and zero pair
- By appropriately choosing the location of this phase lead, we can provide additional phase margin at the gain crossover frequency.

Example 1

Example (Example 12.4)

The transfer function for the system dynamics is

$$P(s) = \frac{a(1 - e^{-s\tau})}{s\tau(s+a)}, \qquad a = 1, \ \tau = 0.25$$

Example 1 - unite negative feedback

Figure: Unit negative feedback control C(s) = 1

Design examples

Example 1 - Lag compensation

Figure: Margins for L(s) = P(s)C(s)

$$C(s) = 3.5 + \frac{8.3}{s}$$

15/21

Example 1 - Lag compensation

Figure: Feedback control with a lag compensator $C(s) = k_p + \frac{k_i}{s}$

Design examples

Example 2

Example (Example 12.5)

The transfer function for the system dynamics is

$$P(s) = \frac{r}{Js^2}, \qquad r = 0.25, \ J = 0.0475$$

 \blacktriangleright less than 1 % error in steady state; \leq 10% tracking error up to 10 rad/s

Design examples

Example 2 - Lead compensation

Figure: Margins for L(s) = P(s)C(s)

$$C(s) = k \frac{s+a}{s+b},$$

$$a = 2, b = 50, k = 200;$$

18/21

Example 2 - time domain simulations

Outline

Feedback design via loop shaping

Design examples

Summary

Summary

Summary

The loop transfer function should have roughly the shape below

(a) Gain plot of loop transfer function

(b) Gain plot of sensitivity functions

General purpose of Lag compensitation

- increases the gain at low frequencies
- improve tracking performance at low frequencies
- improve disturbance attenuation at low frequencies
- General purpose of Lead compensitation
 - Add phase lead in the frequency range between the pole and zero pair
 - By appropriately choosing the location of this phase lead, we can provide **additional phase margin** at the gain crossover frequency.