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HW8

I HW8 will be out this afternoon; due by 11:59 pm on June 2 (next
Thursday)

I From the survey feedback: HW8 is now optional.
I We will drop the lowest score from your HW1 - HW8 for the final grade.
I So you can choose to skip this homework, and then your HW1-HW7 will

account for 40% of the final grade.
I However, we suggest you try this final HW since

– 1) it will only increase your HW performance,
– 2) the material here is within the scope of the final exam.

2/23



Outline

Loop-shaping (continue from Lecture 23)

Modeling uncertainty

Robust stability

Summary

3/23



Outline

Loop-shaping (continue from Lecture 23)

Modeling uncertainty

Robust stability

Summary

Loop-shaping (continue from Lecture 23) 4/23



Lead and Lag Compensation

Simple compensators with transfer function

C(s) = k s + a
s + b , a > 0, b > 0

I Lag compensator (Phase) if a > b; a PI controller is a special case with
b = 0.

I Lead compensator (Phase) if a < b; a PD controller with filtering.
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Example 2

Example (Example 12.5)
The transfer function for the system dynamics is

P(s) = r
Js2 , r = 0.25, J = 0.0475

I less than 1 % error in steady state; ≤ 10% tracking error up to 10 rad/s
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Example 2 - Lead compensation
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Figure: Margins for L(s) = P(s)C(s)

C(s) = k s + a
s + b ,

a = 2, b = 50, k = 200;
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Example 2 - time domain simulations
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Loop-shaping: Summary

I The loop transfer function should have roughly the shape below

I General purpose of Lag compenstation
– increases the gain at low frequencies
– improve tracking performance at low frequencies
– improve disturbance attenuation at low frequencies

I General purpose of Lead compenstation
– Add phase lead in the frequency range between the pole and zero pair
– By appropriately choosing the location of this phase lead, we can

provide additional phase margin at the gain crossover frequency.
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Robustness to uncertainty

Robustness to uncertainty is one of the most useful properties of feedback
I what makes it possible to design feedback systems based on strongly

simplified models.

We discuss two types of uncertainties in this lecture.
I Parametric uncertainty in which the parameters describing the system

are not precisely known, e.g.,
– The variation of the mass of a car, which changes with the number

of passengers and the weight of baggage
– When linearizing a nonlinear system, the parameters of the linearized

model also depend on the operating conditions.
I Unmodeled dynamics, in which some dynamics are neglected during the

modeling, e.g.,
– In Cruise Control, we did not include a detailed model of the engine

dynamics
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Parametric Uncertainty
I In principle, it is easy to investigate the effects of parametric uncertainty

by evaluating the performance criteria for a range of parameters.
I Such a calculation reveals the consequences of parameter variations.
I However, this can be intractable (computationally demanding) for large

parameter space. Formal guarantees can be challenging too!.
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Unmodeled dynamics

How to handle unmodeled dynamics?
I Method 1: develop a more complex model that includes additional

details.
– Such models are commonly used for controller development, but

substantial effort is required to generate them.

– These models are themselves likely to be uncertain, since the
parameter values may vary over time.

I Method 2: investigate whether the closed loop system can be made
insensitive to generic forms of unmodeled dynamics.

– The basic idea is to augment the nominal model with a bounded
input/output transfer function that captures the gross features of the
unmodeled dynamics.

– Describing unmodeled dynamics with transfer functions permits us to
handle infinite-dimensional systems like time delays.
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Unmodeled dynamics

I Additive uncertainty: the true plant dynamics are in the range of

P̃(s) = P(s) + ∆(s), |∆(iω)| < ε, ∀∀ω ∈ R.
I Multiplicative uncertainty:

P̃(s) = P(s)(1 + δ(s)), |δ(iω)| < ε, ∀ω ∈ R.

I Feedback uncertainty: P̃(s) = P
1 + P∆fb

, |∆fb(iω)| < ε, ∀ω ∈ R

I The specific form that is used depends on what provides the best
representation of the unmodeled dynamics.
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When Are Two Systems Similar?
I A naive approach is to say that two systems are close

– if their open loop responses are close.
– or if their open loop frequency responses are similar.

I Unfortunately, both are inappropriate!
I This seemingly innocent problem is not as simple as it may appear
I Proper measures are relatively recent (1990s) — Vinnicombe metric

(details are not required in this class)

Example
Systems similar in open loop but
different in closed loop

P1(s) =
k

s + 1 ,

P2(s) =
k

(s + 1)(sT + 1)2 ,

have very similar open loop step
responses for small values of T .
I Closed loop step responses are

different.
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When Are Two Systems Similar?

Example
Systems different in open loop but
similar in closed loop

P1(s) =
k

s + 1 ,

P2(s) =
k

s − 1 ,

have very different open loop step
responses.
I Closed loop step responses are

very similar.

I Two systems can have very close frequency responses (i.e., Bode plots and
Nyquist plots are similar)

I But their closed-loop response are very different! (see Example 13.4)
I Proper measures are relatively recent (in the early 90s) — Vinnicombe

metric (details are not required in this class)
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Robust stability

Robust stability: when can we formally show that the stability of a system is
robust with respect to process variations?

I Nyquist criterion: a powerful and elegant way to study the effects of
uncertainty.

I The stability margin sm is a good robustness measure.
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Robust stability - explicit conditions

I If the process is changed from P(s) to P(s) + ∆(s), the loop transfer
function changes from P(s)C(s) to

(P(s) + ∆(s))C(s).
I Assume that ∆(s) is stable, the closed-loop system remains stable as long

as the perturbed loop transfer function

(P +∆)C

never reaches the critical point −1.
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Robust stability - explicit conditions

I The distance from −1 to L = PC is |1 + L|.
I The perturbed Nyquist curve will not reach −1 provided that

|C∆| < |1 + L| (1)

I (1) holds if

|∆| <
∣∣∣∣1 + L

C

∣∣∣∣ , or |δ| <
∣∣∣∣1 + L

L

∣∣∣∣ = 1
|T | , where δ =

∆

P (2)

Robust stability 20/23



Robust stability - explicit conditions

The condition (2) must be valid all all points on the Nyquist curve —
point-wise for all frequencies

|δ(iω)| <
∣∣∣∣1 + L(iω)

L(iω)

∣∣∣∣ = 1
|T(iω)| , ∀ω ≥ 0. (3)

I Condition (3) is one of the reasons why feedback systems work so
well in practice.

– The models used to design control systems are often simplified, and
the properties of a process may change during operation.

– Condition (3) implies that the closed loop system will at least be
stable for substantial variations in the process dynamics

The peak value of the complimentary sensitivity:

Mt = max
ω

|T(iω)| :=
∥∥∥∥ PC

1 + PC

∥∥∥∥
∞

I Condition (3) becomes |δ(iω)| < 1/Mt,∀ω ≥ 0.
I Reasonable values of Mt are from 1.2 to 2.
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Summary
I Robustness to uncertainty is one of the most useful properties of

feedback — design feedback systems based on strongly simplified models.
– Parametric uncertainty in which the parameters describing the

system are not precisely known
– Unmodeled dynamics, in which some dynamics are neglected during

the modeling.
I An explicit sufficient robustness condition based on Nyquist criterion

|C∆| < |1 + L|, or |δ(iω)| <
∣∣∣∣1 + L(iω)

L(iω)

∣∣∣∣ = 1
|T(iω)| , ∀ω ≥ 0.
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