ECE 171A: Linear Control System Theory Lecture 24: Uncertainty and robustness

Yang Zheng

Assistant Professor, ECE, UCSD

May 25, 2022

Reading materials: Ch 13.1, 13.2

HW8

- \blacktriangleright HW8 will be out this afternoon; due by 11:59 pm on June 2 (next Thursday)
- \blacktriangleright From the survey feedback: HW8 is now optional.
- \triangleright We will drop the lowest score from your HW1 HW8 for the final grade.
- \triangleright So you can choose to skip this homework, and then your HW1-HW7 will account for 40% of the final grade.
- \blacktriangleright However, we suggest you try this final HW since
	- 1) it will only increase your HW performance,
	- 2) the material here is within the scope of the final exam.

[Loop-shaping \(continue from Lecture 23\)](#page-3-0)

[Modeling uncertainty](#page-9-0)

[Robust stability](#page-16-0)

[Summary](#page-21-0)

[Loop-shaping \(continue from Lecture 23\)](#page-3-0)

[Modeling uncertainty](#page-9-0)

[Robust stability](#page-16-0)

[Summary](#page-21-0)

[Loop-shaping \(continue from Lecture 23\)](#page-3-0) 4/23

Lead and Lag Compensation

Simple compensators with transfer function

$$
C(s) = k\frac{s+a}{s+b}, \qquad a > 0, \ b > 0
$$

- **Lag compensator** (Phase) if $a > b$; a PI controller is a special case with $b=0.$
- **In Lead compensator** (Phase) if $a < b$; a PD controller with filtering.

Example 2

Example (Example 12.5)

The transfer function for the system dynamics is

$$
P(s) = \frac{r}{Js^2}, \qquad r = 0.25, \ \ J = 0.0475
$$

I less than 1 % error in steady state; $\leq 10\%$ tracking error up to 10 rad/s

[Loop-shaping \(continue from Lecture 23\)](#page-3-0) 6/23

Example 2 - Lead compensation

Figure: Margins for $L(s) = P(s)C(s)$

$$
C(s) = k \frac{s+a}{s+b},
$$

$$
a = 2, b = 50, k = 200;
$$

Example 2 - time domain simulations

[Loop-shaping \(continue from Lecture 23\)](#page-3-0) 8/23

Loop-shaping: Summary

The loop transfer function should have roughly the shape below

(a) Gain plot of loop transfer function

(b) Gain plot of sensitivity functions

In General purpose of Lag compenstation

- increases the gain at low frequencies
- improve tracking performance at low frequencies
- improve disturbance attenuation at low frequencies
- I General purpose of **Lead compenstation**
	- Add phase lead in the frequency range between the pole and zero pair
	- By appropriately choosing the location of this phase lead, we can provide **additional phase margin** at the gain crossover frequency.

[Loop-shaping \(continue from Lecture 23\)](#page-3-0) 9/23

[Loop-shaping \(continue from Lecture 23\)](#page-3-0)

[Modeling uncertainty](#page-9-0)

[Robust stability](#page-16-0)

[Summary](#page-21-0)

[Modeling uncertainty](#page-9-0) 10/23

Robustness to uncertainty

Robustness to uncertainty is one of the most useful properties of feedback

 \triangleright what makes it possible to design feedback systems based on strongly simplified models.

We discuss two types of uncertainties in this lecture.

- **Parametric uncertainty** in which the parameters describing the system are not precisely known, e.g.,
	- The variation of the mass of a car, which changes with the number of passengers and the weight of baggage
	- When linearizing a nonlinear system, the parameters of the linearized model also depend on the operating conditions.
- **Informational Dimerger 1 Unmodeled dynamics** are neglected during the modeling, e.g.,
	- In Cruise Control, we did not include a detailed model of the engine dynamics

Parametric Uncertainty

- In principle, it is easy to investigate the effects of parametric uncertainty by evaluating the performance criteria for a range of parameters.
- \triangleright Such a calculation reveals the consequences of parameter variations.
- ▶ However, this can be intractable (**computationally demanding**) for large parameter space. Formal guarantees can be challenging too!.

Figure 13.1: Responses of the cruise control system to a slope increase of 4° (a) and the eigenvalues of the closed loop system (b). Model parameters are swept over a wide range. The closed loop system is of second order.

Unmodeled dynamics

How to handle unmodeled dynamics?

- ▶ **Method 1:** develop a more complex model that includes additional details.
	- Such models are commonly used for controller development, but substantial effort is required to generate them.
	- These models are themselves likely to be uncertain, since the parameter values may vary over time.
- **I** Method 2: investigate whether the closed loop system can be made **insensitive** to generic forms of unmodeled dynamics.
	- The basic idea is to augment the nominal model with a bounded input/output transfer function that captures the gross features of the unmodeled dynamics.
	- Describing unmodeled dynamics with transfer functions permits us to handle infinite-dimensional systems like time delays.

Unmodeled dynamics

(a) Additive uncertainty (b) Multiplicative uncertainty (c) Feedback uncertainty

Figure 13.2: Unmodeled dynamics in linear systems. Uncertainty can be represented using additive perturbations (a), multiplicative perturbations (b), or feedback perturbations (c). The nominal system is P, and Δ , δ , and Δ_{fb} represent unmodeled dynamics.

Additive uncertainty: the true plant dynamics are in the range of

$$
\tilde{P}(s) = P(s) + \Delta(s), \qquad |\Delta(i\omega)| < \epsilon, \forall \forall \omega \in \mathbb{R}.
$$

Multiplicative uncertainty:

$$
\tilde{P}(s) = P(s)(1 + \delta(s)), \qquad |\delta(i\omega)| < \epsilon, \forall \omega \in \mathbb{R}.
$$

- **Feedback uncertainty**: $\tilde{P}(s) = \frac{P}{1 + P\Delta_{\text{fb}}}, \qquad |\Delta_{\text{fb}}(i\omega)| < \epsilon, \forall \omega \in \mathbb{R}$
- \blacktriangleright The specific form that is used depends on what provides the best representation of the unmodeled dynamics.

[Modeling uncertainty](#page-9-0) 14/23

When Are Two Systems Similar?

 \blacktriangleright A naive approach is to say that two systems are close

- if their open loop responses are close.
- or if their open loop frequency responses are similar.
- I Unfortunately, both are **inappropriate**!
- \triangleright This seemingly innocent problem is not as simple as it may appear
- I Proper measures are relatively recent (1990s) **Vinnicombe metric** (details are not required in this class)

Example

Systems similar in open loop but different in closed loop

$$
P_1(s) = \frac{k}{s+1},
$$

$$
P_2(s) = \frac{k}{(s+1)(sT+1)^2},
$$

have very similar open loop step responses for small values of *T*.

 \blacktriangleright Closed loop step responses are different.

[Modeling uncertainty](#page-9-0) 15/23

When Are Two Systems Similar?

Example

Systems different in open loop but similar in closed loop

$$
P_1(s) = \frac{k}{s+1},
$$

$$
P_2(s) = \frac{k}{s-1},
$$

have very different open loop step responses.

 \blacktriangleright Closed loop step responses are very similar.

- ▶ Two systems can have very close frequency responses (i.e., Bode plots and Nyquist plots are similar)
- \triangleright But their closed-loop response are very different! (see Example 13.4)
- **Proper measures are relatively recent (in the early 90s) Vinnicombe metric** (details are not required in this class)

[Modeling uncertainty](#page-9-0) and the state of th

[Loop-shaping \(continue from Lecture 23\)](#page-3-0)

[Modeling uncertainty](#page-9-0)

[Robust stability](#page-16-0)

[Summary](#page-21-0)

[Robust stability](#page-16-0) 17/23

Robust stability

Robust stability: when can we formally show that the stability of a system is robust with respect to process variations?

- I **Nyquist criterion**: a powerful and elegant way to study the effects of uncertainty.
- \blacktriangleright The stability margin s_m is a good robustness measure.

Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows the stability margin $s_m = 1/M_s$. The plot (b) shows the Nyquist curve and the circle shows uncertainty due to stable additive process variations Δ .

[Robust stability](#page-16-0) 18/23

Robust stability - explicit conditions

Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows the stability margin $s_m = 1/M_s$. The plot (b) shows the Nyquist curve and the circle shows uncertainty due to stable additive process variations Δ .

If the process is changed from $P(s)$ to $P(s) + \Delta(s)$, the loop transfer function changes from $P(s)C(s)$ to

$$
(P(s) + \Delta(s))C(s).
$$

 \triangleright Assume that $\Delta(s)$ is stable, the closed-loop system remains stable as long as the perturbed loop transfer function

$$
(P+\Delta)C
$$

never reaches the critical point -1 .

[Robust stability](#page-16-0) 19/23

Robust stability - explicit conditions

Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows the stability margin $s_m = 1/M_s$. The plot (b) shows the Nyquist curve and the circle shows uncertainty due to stable additive process variations Δ .

- **►** The distance from -1 to $L = PC$ is $|1 + L|$.
- \triangleright The perturbed Nyquist curve will not reach -1 provided that

$$
|C\Delta| < |1 + L| \tag{1}
$$

▶ (1) holds if

$$
|\Delta| < \left|\frac{1+L}{C}\right|
$$
, or $|\delta| < \left|\frac{1+L}{L}\right| = \frac{1}{|T|}$, where $\delta = \frac{\Delta}{P}$ (2)

[Robust stability](#page-16-0) 20/23

Robust stability - explicit conditions

The condition [\(2\)](#page-19-1) must be valid all all points on the Nyquist curve $$ point-wise for all frequencies

$$
|\delta(i\omega)| < \left|\frac{1 + L(i\omega)}{L(i\omega)}\right| = \frac{1}{|T(i\omega)|}, \quad \forall \omega \ge 0.
$$
 (3)

- ▶ Condition [\(3\)](#page-20-0) is one of the reasons why feedback systems work so **well in practice.**
	- The models used to design control systems are often simplified, and the properties of a process may change during operation.
	- Condition [\(3\)](#page-20-0) implies that the closed loop system will at least be stable for substantial variations in the process dynamics

The peak value of the complimentary sensitivity:

$$
M_t = \max_{\omega} |T(i\omega)| := \left\| \frac{PC}{1 + PC} \right\|_{\infty}
$$

- \triangleright Condition [\(3\)](#page-20-0) becomes $|\delta(iω)| < 1/M_t$, ∀ω > 0.
- Reasonable values of M_t are from 1.2 to 2.

[Robust stability](#page-16-0) 21/23

[Loop-shaping \(continue from Lecture 23\)](#page-3-0)

[Modeling uncertainty](#page-9-0)

[Robust stability](#page-16-0)

[Summary](#page-21-0)

[Summary](#page-21-0) 22/23

Summary

- **Robustness to uncertainty** is one of the most useful properties of feedback - design feedback systems based on strongly simplified models.
	- **Parametric uncertainty** in which the parameters describing the system are not precisely known
	- **Unmodeled dynamics**, in which some dynamics are neglected during the modeling.
- **ID An explicit sufficient robustness condition** based on Nyquist criterion

$$
|C\Delta| < |1 + L|, \quad \text{or} \quad |\delta(i\omega)| < \left|\frac{1 + L(i\omega)}{L(i\omega)}\right| = \frac{1}{|T(i\omega)|}, \quad \forall \omega \ge 0.
$$

Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows the stability margin $s_m = 1/M_s$. The plot (b) shows the Nyquist curve and the circle shows uncertainty due to stable additive process variations Δ .