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HW8

HW38 will be out this afternoon; due by 11:59 pm on June 2 (next
Thursday)

From the survey feedback: HW8 is now optional.
We will drop the lowest score from your HW1 - HW8 for the final grade.

So you can choose to skip this homework, and then your HW1-HW?7 will
account for 40% of the final grade.

However, we suggest you try this final HW since

— 1) it will only increase your HW performance,
— 2) the material here is within the scope of the final exam.
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Simple compensators with transfer function

s+ a
7ks+ b’

> Lag compensator (Phase) if a > b; a Pl controller is a special case with

b=0.

> Lead compensator (Phase) if a < b; a PD controller with filtering.

Lead and Lag Compensation
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(a) Lead compensation, a < b

Loop-shaping (continue from Lecture 23)
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(b) Lag compensation, b < a
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Example 2
Example (Example 12.5)

The transfer function for the system dynamics is

P(s) = — r=0.25 J=0.0475

> less than 1 % error in steady state; < 10% tracking error up to 10 rad/s

Bode Diagram
Gm = -1.93e-15 dB (at 2.29 rad/s), Pm = 0 deg (at 2.29 rad/s)
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(a) Bode plot with margins (b) Step response for unit negative feed-
back
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Example 2 - Lead compensation

Bode Diagram
Gm = -1.93-15 dB (at 2.20 rad/s), Pm = 0 deg (at 2.29 rad/s)

i
g % Bode Diagram
g, Gm =-Inf dB (at 0 rad/s) , Pm = 62.7 deg (at 19.7 rad/s)
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Example 2 - time domain simulations

Step Response

Amplitude
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(a) Step response

(c) Frequency response w = 5

Loop-shaping (continue from Lecture 23)
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(d) Frequency response w = 50
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Loop-shaping: Summary

» The loop transfer function should have roughly the shape below
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(a) Gain plot of loop transfer function (b) Gain plot of sensitivity functions

» General purpose of Lag compenstation

— increases the gain at low frequencies

— improve tracking performance at low frequencies

— improve disturbance attenuation at low frequencies
» General purpose of Lead compenstation

— Add phase lead in the frequency range between the pole and zero pair
— By appropriately choosing the location of this phase lead, we can
provide additional phase margin at the gain crossover frequency.

Loop-shaping (continue from Lecture 23)
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Robustness to uncertainty

Robustness to uncertainty is one of the most useful properties of feedback

» what makes it possible to design feedback systems based on strongly
simplified models.

We discuss two types of uncertainties in this lecture.

» Parametric uncertainty in which the parameters describing the system
are not precisely known, e.g.,

— The variation of the mass of a car, which changes with the number
of passengers and the weight of baggage

— When linearizing a nonlinear system, the parameters of the linearized
model also depend on the operating conditions.

» Unmodeled dynamics, in which some dynamics are neglected during the
modeling, e.g.,

— In Cruise Control, we did not include a detailed model of the engine
dynamics
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Parametric Uncertainty

» |n principle, it is easy to investigate the effects of parametric uncertainty
by evaluating the performance criteria for a range of parameters.

» Such a calculation reveals the consequences of parameter variations.

» However, this can be intractable (computationally demanding) for large
parameter space. Formal guarantees can be challenging too!.
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(a) Disturbance response (b) Closed loop eigenvalues

Figure 13.1: Responses of the cruise control system to a slope increase of 4° (a)
and the eigenvalues of the closed loop system (b). Model parameters are swept
over a wide range. The closed loop system is of second order.
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Unmodeled dynamics

How to handle unmodeled dynamics?

» Method 1: develop a more complex model that includes additional
details.

— Such models are commonly used for controller development, but
substantial effort is required to generate them.

— These models are themselves likely to be uncertain, since the
parameter values may vary over time.

» Method 2: investigate whether the closed loop system can be made
insensitive to generic forms of unmodeled dynamics.

— The basic idea is to augment the nominal model with a bounded
input/output transfer function that captures the gross features of the
unmodeled dynamics.

— Describing unmodeled dynamics with transfer functions permits us to
handle infinite-dimensional systems like time delays.
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Unmodeled dynamics

T 1 1T

(a) Additive uncertainty b) Multiplicative uncertainty (c) Feedback uncertainty

Figure 13.2: Unmodeled dynamics in linear systems. Uncertainty can be repre-
sented using additive perturbations (a), multiplicative perturbations (b), or feed-
back perturbations (c). The nominal system is P, and A, §, and Ag, represent
unmodeled dynamics.

» Additive uncertainty: the true plant dynamics are in the range of

P(s) = P(s) + A(s),  |A(iw)] < €, Ww € R.

» Multiplicative uncertainty:

P(s) = P(s)(1 4 6(s)), |0(iw)| < €,Vw € R.
P

14+ PAg’

» The specific form that is used depends on what provides the best
representation of the unmodeled dynamics.

> Feedback uncertainty: P(s) = |Am (iw)] < €,Vw € R
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When Are Two Systems Similar?

» A naive approach is to say that two systems are close

— if their open loop responses are close.
— or if their open loop frequency responses are similar.

» Unfortunately, both are inappropriate!

» This seemingly innocent problem is not as simple as it may appear

> Proper measures are relatively recent (1990s) — Vinnicombe metric
(details are not required in this class)
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» Closed loop step responses are Time ¢
different. (a) Example 13.2
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When Are Two Systems Similar?
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» Closed loop step responses are

> Two systems can have very close frequency responses (i.e., Bode plots and
Nyquist plots are similar)

» But their closed-loop response are very different! (see Example 13.4)
» Proper measures are relatively recent (in the early 90s) — Vinnicombe
metric (details are not required in this class)
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Robust stability

Robust stability: when can we formally show that the stability of a system is
robust with respect to process variations?

» Nyquist criterion: a powerful and elegant way to study the effects of
uncertainty.

» The stability margin s,, is a good robustness measure.

Im

Re

(a) Nyquist plot (b) Additive uncertainty
Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows

the stability margin s, = 1/Ms. The plot (b) shows the Nyquist curve and the
circle shows uncertainty due to stable additive process variations A.
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Robust stability - explicit conditions

Im
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(a) Nyquist plot

(b) Additive uncertainty

Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows

the stability margin sm = 1/Ms.

The plot (b) shows the Nyquist curve and the

circle shows uncertainty due to stable additive process variations A.

> If the process is changed from P(s) to P(s) 4+ A(s), the loop transfer

function changes from P(s)C(s) to

(P

» Assume that A(s) is stable, the closed-loop system remains stable as long

() + A(s)) C(s)-

as the perturbed loop transfer function

(P+A)C

never reaches the critical point —1.

Robust stability



Robust stability - explicit conditions
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(a) Nyquist plot (b) Additive uncertainty

Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows
the stability margin sm = 1/Ms. The plot (b) shows the Nyquist curve and the
circle shows uncertainty due to stable additive process variations A.

» The distance from —1 to L = PC'is |1 + L.
» The perturbed Nyquist curve will not reach —1 provided that

Al <+
> (1) holds if
|A|<‘%‘, |5|<‘%’:ﬁ, where § =

Robust stability
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Robust stability - explicit conditions

The condition (2) must be valid all all points on the Nyquist curve —
point-wise for all frequencies

16(iw)| < Yo > 0. (3)

1+L@@‘: 1
L(iw) | T (iw)|”

> Condition (3) is one of the reasons why feedback systems work so
well in practice.

— The models used to design control systems are often simplified, and
the properties of a process may change during operation.

— Condition (3) implies that the closed loop system will at least be
stable for substantial variations in the process dynamics

The peak value of the complimentary sensitivity:
PC H

Mt:mf,x|T(iw)\ =1 pc

» Condition (3) becomes |6(iw)| < 1/M;,Vw > 0.
» Reasonable values of M, are from 1.2 to 2.
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Summary

» Robustness to uncertainty is one of the most useful properties of
feedback — design feedback systems based on strongly simplified models.
— Parametric uncertainty in which the parameters describing the
system are not precisely known
— Unmodeled dynamics, in which some dynamics are neglected during

the modeling.
» An explicit sufficient robustness condition based on Nyquist criterion
1+ L(iw) 1
CA| < |1+ L], or |§(iw)|< - = - Yw > 0.
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(a) Nyquist plot (b) Additive uncertainty

Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows
the stability margin sm = 1/M;. The plot (b) shows the Nyquist curve and the
circle shows uncertainty due to stable additive process variations A.
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