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System design

The initial design of a system can have a significant impact on the ability to
use feedback to provide robustness and performance improvements.
I It is particularly important to recognize fundamental limits in the

performance of feedback systems early in the design process.
I Awareness of the limits and co-design of the process and the controller are

good to avoid potential difficulties both for system and control designers.

Examples:
I We may expect that a system with time delays cannot admit fast control

because control actions are delayed.
I It seems reasonable that unstable systems will require fast controllers,

which will depend on the bandwidth of sensors and actuators.
I These limits are caused by properties of the system dynamics and can

often be captured by conditions on the poles and zeros of the process
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System design
The freedom for the control designer depends very much on the situation
I Extreme 1 (limited freedom): a process with given sensors and actuators

and his or her task is to design a suitable controller
– Even further, you may be given with an existing control loop, and

your task is to retrofit the system.
I Extreme 2 (significant freedom): You can choose sensors/actuators

– Co-design the location and characteristics of sensors, actuators, and
controller simultaneously.

– However, you may have budget limits.

Performance limits due to dynamics and limits on actuation power/rate.
I Dynamics limitations: captured by time delays and poles and zeros in the

right half-plane.
– Time delays are easy to understand.
– A less obvious case is that a process with a right half-plane pole/zero

pair cannot be controlled robustly if the pole is close to the zero
(details are not required in this class).

I Restriction in actuation: captured by actuation power and rates.
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Example: Vehicle steering

Figure: Vehicle steering dynamics. The left figure shows an overhead view of a
vehicle with four wheels. The wheelbase is b.

I The center of mass at a distance a forward of the rear wheels.
I Approximation with a single front wheel and a single rear wheel — an

abstraction called the bicycle model.
I The steering angle is δ and the velocity at the center of mass has the

angle α relative the length axis of the vehicle.
I The position is given by (x, y) and the orientation (heading) by θ; For

ODE modeling, see Example 3.11
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Example: Vehicle steering

Example (Frequency modeling for vehicle steering)
The transfer function from steering angle δ to lateral position y is

P(s) = av0s + v2
0

bs2

I v0 is the velocity of the vehicle and a, b > 0

I The transfer function has a zero

s = −v0
a .

– In normal (forward) driving this zero is in the left half-plane,
– but it is in the right half-plane when driving in reverse (v0 < 0).

I The unit step response is y(t) = av0
b t + v2

0

2b t2

– The lateral position thus begins to respond immediately to a steering
command as an integrator.

– If v0 < 0 (reverse steering), the initial y(t) is in the wrong direction!!
– This behavior is representative for non-minimum phase systems

(called an inverse response).
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Example: Vehicle steering

Figure: Vehicle steering for driving in reverse. (a) Step responses; (b) frequency
responses

I The step response for forward and reverse driving is shown above.
I The parameters are a a = 1.5m, b = 3m, v0 = 2m/s for forward driving,

and v0 = −2m/s for reverse driving.
I When driving in reverse, there is an initial motion of the center of mass in

the opposite direction
I there is A DELAY before the car begins to move in the desired manner.
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Example: Vehicle steering

The existence of the right half-plane zero can be removed
I if we choose to measure the location of the vehicle by the position of the

center of the rear wheels instead of the center of mass

a = 0, P(s) = v2
0

bs

I This is easily implemented by calibrating the position sensor for the vehicle
I This choice of “sensor” is subject to calibration errors ε and this can lead

to a zero of the process transfer function at v0/ε
I This is called a “fast” zero and its impact is relatively minor.
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Poles and Zeros

I The poles of a system depend on the intrinsic dynamics of the system.
I They represent the modes of the system and they are given by the

eigenvalues of the dynamics matrix A of the linearized model.
– For example, we have the initial response to ẋ = Ax

xi(t) = eλi txi(0).

Sensors and actuators have no effect on the poles: the only way to
change poles is by feedback or by redesign of the process.

I However, the zeros of a system depend on how the sensors and actuators
are connected to the process.

I Zeros can thus be changed by moving or adding sensors and actuators,
which is often simpler than redesigning the process dynamics
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Bode’s Integral formula
One of the most important limits in feedback control was obtained by Bode,
I It is IMPOSSIBLE to uniformly improve the performance of certain closed

loop performance characteristics.
I The sensitivity function

S =
1

1 + P(s)C(s)

shows how feedback C(s) influences the
response of the output to disturbances w

I Disturbances with frequencies such that
|S(iω)| < 1 are attenuated; such that
|S(iω)| > 1 are amplified by feedback

The sensitivity function cannot be made small over a wide frequency range.
I There is an invariant (conserved quantity) called Bode’s integral formula.
I It implies that reducing the sensitivity at one frequency increases it at

another
I the situation is worse if the process has right half-plane poles.
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Waterbed Effect

Figure: Interpretation of the waterbed effect

I The function log |S(iω)| is plotted versus ω using a linear scale in (a).
I According to Bode’s integral formula, the area of log log |S(iω)| above

zero must be equal to the area below zero.
I Gunter Stein’s interpretation1 of design as a trade-off of sensitivities at

different frequencies is shown in (b)
1This talk by Prof. Stein is highly recommended: https://youtu.be/9Lhu31X94V4
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Bode’s Integral formula

Figure: The loop transfer function L(s) = P(s)C(s).

Theorem
Let S(s) be the sensitivity function of an internally stable closed loop system
with loop transfer function L(s). Assume that the loop transfer function L(s)
is such that sL(s) goes to zero as s → ∞. Then the sensitivity function has the
property ∫ ∞

0

log |S(iω)|dω =

∫ ∞

0

log 1

|1 + L(iω)|dω = π
∑

pk

where pk are the right half-plane poles of L(s).
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Example: X-29 aircraft

Figure: (a) X-29 flight control system; (b) The desired sensitivity for the
closed-loop system

I This analysis was originally carried out by Gunter Stein in his inaugural
IEEE Bode lecture “Respect the Unstable”

I Longitudinal dynamics of X-29 are similar to inverted pendulum dynamics
– It has a right half-plane pole at p ≈ 6 rad/s and a right half-plane

zero at z = 26 rad/s.
– The actuators that stabilize the pitch have a bandwidth of

ωa = 40 rad/s.
– The desired bandwidth of the pitch control loop is ω1 = 3 rad/s.
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Example: X-29 aircraft

To evaluate the achievable performance, we search for a control law such that
the sensitivity function is small up to the desired bandwidth ω1 and not greater
than Ms beyond that frequency

I Bode’s integral formula implies that Ms > 1 at high frequencies to
balance the small sensitivity at low frequency

I We assume that the sensitivity function is given by

|S(iω)| =


ω
ω1

Ms if ω < ω1

Ms if ω1 ≤ ω < ωa

1 if ωa ≤ ω < ∞
I From the Bode’s integral formula, we have∫ ∞

0

log |S(iω)| = πp,

where p is the open-loop unstable pole.
I After some calculation, we get Ms = e(πp+ω1)/ω2 — performance limits.
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The first Bode Talk: Respect the Unstable

Figure: Interpretation of the waterbed effect

The first Bode Talk — Respect the Unstable:
https://youtu.be/9Lhu31X94V4
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Final Exam

I Final Exam — 8:00 am - 10:30 am, June 08
– Location - CENTR 105 (this classroom)
– Lectures 1 - 27, HW1 - HW8, DI 1-9; (Reading materials in the

textbook)
– This final exam is closed book but you can bring one sheet of notes

(page maximum size: Letter; can be double-sided).
– No MATLAB is required. No graphing calculators are permitted.

You need a basic arithmetic calculator for simple calculations.
– Come on time (1 or 2 minutes early if you can; we will start at 8:00

am promptly)
– The exams must be done in a blue book. Bring a blue book with you.
– No collaboration and discussions are allowed. It is dishonest to

cheat on exams. Instances of academic dishonesty will be referred to
the Office of Student Conduct for adjudication. You don’t want to
take a risk for such a small thing.
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Final Exam & Office hours

I Problem 1 - True or False (12 claims)
I Problem 2 - Linearization & Stability
I Problem 3 - Feedback Control
I Problem 4 - Practical system design

Extra Office Hours
I This Sunday, 05 June - 10:00 am to 12:00 pm, and 2:00 pm to 6:00 pm

(my office: Jacobs Hall 6604)
I Next Tuesday, 07 June - 4:30 pm to 7:30 pm (Jacobs Hall 4605)
I No zoom session.

Good Luck!
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Background survey from Week 1

I Are there any specific applications of feedback and control concepts that
you are interested in?

– Autonomous vehicles, robotics, and drone stabilization
– Why does PID work?
– Design feedback controllers for a system that we can run tests on
– Medical devices
– Power grid controls,
– . . . . . .

I Suggestions we have got so far
– Homework to be reflective of the course content.
– Examples of how to approach questions
– Lecture recordings
– Lecture slides with conceptual details as bullet points.
– Office hours, clear syllabus and course directions
– Engaging, patient, responsive and available outside the class
– . . . . . .

Hopefully, this course has met your expectation!
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Course evaluation

I You should have got an email from UCSD Online Evaluations to evaluate
ECE 171A

https://academicaffairs.ucsd.edu/Modules/Evals?e8300523

I Deadline: Monday, June 6 at 11:59 PM

I Your responses are completely anonymous.

I It’s your opportunity to let your voices be heard (by me and the
university).

I Please give some thoughtful, truthful, and constructive feedback.

I If you like the course, please say it explicitly and we’d love to hear it

I If you think some aspects can be improved, we are more than happy to
know them

Many thanks for your efforts and your time into this course!
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