ECE 171A: Linear Control System Theory Lecture 27: Review

Yang Zheng

Assistant Professor, ECE, UCSD

June 03, 2022

Final Exam & Office hours

 \blacktriangleright Final Exam $-$ 8:00 am - 10:30 am, June 08

- Location CENTR 105 (this classroom)
- Lectures 1 27, HW1 HW8, DI 1-9; (Reading materials in the textbook)
- This final exam is closed book but you can bring one sheet of notes (page maximum size: Letter; can be double-sided).
- No MATLAB is required. No graphing calculators are permitted. **You need a basic arithmetic calculator for simple calculations**.
- **Come on time** (1 or 2 minutes early if you can; we will start at 8:00 am promptly)
- The exams must be done in a blue book. Bring a blue book with you.
- **No collaboration and discussions are allowed**. It is dishonest to cheat on exams. Instances of academic dishonesty will be referred to the Office of Student Conduct for adjudication. You don't want to take a risk for such a small thing.

Final Exam & Office hours

- \triangleright Problem 1 True or False (12 claims)
- ▶ Problem 2 Linearization & Stability
- Problem 3 Feedback Control
- \triangleright Problem 4 Practical system design

Extra Office Hours

- \blacktriangleright This Sunday, 05 June 10:00 am to 12:00 pm, and 2:00 pm to 6:00 pm (my office: Jacobs Hall 6604)
- Next Tuesday, 07 June 4:30 pm to 7:30 pm (Jacobs Hall 4605)
- \blacktriangleright No zoom session.

Course evaluation

▶ You should have got an email from UCSD Online Evaluations to evaluate ECE 171A

<https://academicaffairs.ucsd.edu/Modules/Evals?e8300523>

- **Deadline**: Monday, June 6 at 11:59 PM
- \blacktriangleright Your responses are completely anonymous.
- It's your opportunity to let your voices be heard (by me and the university).
- **Please give some thoughtful, truthful, and constructive** feedback.
- If you like the course, please say it explicitly and we'd love to hear it
- \blacktriangleright If you think some aspects can be improved, we are more than happy to know them \bullet

Outline

[Before Midterm I: L1 - L10](#page-5-0)

[Before Midterm II: L11 - L20](#page-15-0)

[After Midterm II: L22 - L26](#page-26-0)

[Final words](#page-31-0)

Outline

[Before Midterm I: L1 - L10](#page-5-0)

[Before Midterm II: L11 - L20](#page-15-0)

[After Midterm II: L22 - L26](#page-26-0)

[Final words](#page-31-0)

[Before Midterm I: L1 - L10](#page-5-0) 6/34

Lecture 1 - Overview of control systems

A **control system** is an interconnection of two or more dynamical systems that provides a **desired response**.

 \triangleright Control is to modify the inputs to the plant to produce a **desired output**.

- \blacktriangleright Feedforward control vs. feedback control
- \blacktriangleright Two live experiments
- ▶ Feedback control = Sensing + Computation + Actuation

[Before Midterm I: L1 - L10](#page-5-0) 7/34

Lecture 2 - ODEs and the first control example

Review on ODEs

▶ An *n***th-order linear ordinary differential equation (ODE)** is:

$$
\frac{d^n}{dt^n}y(t) + a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t) + \ldots + a_1\frac{d}{dt}y(t) + a_0y(t) = u(t)
$$

 \blacktriangleright First-order matrix ODF

$$
\dot{x} = Ax(t) + Bu(t)
$$

Cruise control

P control $F_{\text{engine}} = K_{\text{p}}e(t)$ I control $F_{\text{engine}} = K_i \int_0^t e(t) dt$ D control $F_{\text{engine}} = K_d \frac{d}{dt} e(t)$

Feedback control = **Sensing** + **Computation** + **Actuation**

[Before Midterm I: L1 - L10](#page-5-0) 8/34

Lecture 3 - Feedback principles

 \triangleright We have considered static plant dynamics with analytical solutions

$$
y = \text{sat}(x) = \begin{cases} -1 & \text{if } x \le -1 \\ x & \text{if } |x| < 1 \\ 1 & \text{if } x \ge 1 \end{cases}
$$

 \blacktriangleright and a simple dynamical model with numerical simulations

- \blacktriangleright to illustrate several fundamental properties of feedback
	- Disturbance attenuation
	- Reference signal tracking
	- \blacktriangleright Robustness to uncertainty
	- \blacktriangleright Shaping of dynamical behavior

Lecture 4/5 - System modeling

A model is a mathematical representation of a physical, biological, or information system.

- Models allow us to reason about a system and make predictions about how a system will behave.
- \triangleright The model we choose depends on the questions we wish to answer, and so there may be multiple models for a single dynamical system.
- It is important to keep in mind that all models are an approximation of the underlying system.

The choice of state is not unique.

- \blacktriangleright There may be many choices of variables that can act as the state.
	- A trivial example: One can choose different units (scaling factors)
	- A less trivial example: One can take sums and differences of some variables.

Lecture 4/5 - System modeling

▶ $x \in \mathbb{R}^n$: state; $y \in \mathbb{R}^p$: output; $u \in \mathbb{R}^m$: input

▶ Continuous-time (e.g., speed control, inverted pendulum, spring-mass)

$$
\begin{aligned}\n\dot{x} &= f(x, u) \\
y &= h(x, u) \\
\end{aligned}\n\qquad \Longleftrightarrow \qquad\n\begin{aligned}\n\dot{x} &= Ax + Bu \\
y &= Cx + Du.\n\end{aligned}
$$

Discrete-time (e.g., consensus protocol, predator-prey dynamics)

$$
x[k+1] = f(x[k], u[k]),
$$

\n
$$
y[k] = h(x[k], u[k]).
$$

\n
$$
\iff
$$

\n
$$
x[k+1] = Ax[k] + Bu[k],
$$

\n
$$
y[k] = Cx[k] + Du[k].
$$

Block diagrams: Emphasize the information flow and to hide details of the system.

Lecture 6 - System solutions and Phase portraits

Closed-loop system: with $u = k(x)$

$$
\dot{x}(t) = f(x, k(x)) := F(x).
$$

Analytical or Computational solutions

 \blacktriangleright Solving differential equations

In Qualitative analysis: phase portraits and time plot

Lecture 7 - Equilibrium and stability

- **I** An **equilibrium** point of a dynamical system represents a *stationary* condition for the dynamics.
- \triangleright Stable, asymptotically stable, unstable; terminology like sink, source, saddle, center

Interpolarity of linear systems $\dot{x} = Ax$

- Eigenvalue test
- **Routh–Hurwitz** Criterion (will be reviewed again in week 5/6)

Lecture 8: Jacobian Linearization

Consider a nonlinear system $\dot{x} = F(x)$, with $x_e = 0$ as an equilibrium point. Let

$$
A = \left. \frac{\partial F}{\partial x} \right|_{x_{e}=0}
$$

 \triangleright $x_e = 0$ is locally asymptotically stable if *A* is asymptotically stable or all eigenvalues of *A* have negative real parts.

 \triangleright $x_e = 0$ is unstable if one or more of the eigenvalues of A has positive real part.

Figure: Model Linearization Procedure (Taken from Prof Na Li's ES 155)

[Before Midterm I: L1 - L10](#page-5-0) 14/34

L10: Input-output response (I)

 \blacktriangleright The output $y(t)$ of an LIT system has very nice **linear properties**:

- Zero initial state $x(0) = 0$: the output $y(t)$ is linear in input $u(t)$;
- Zero input $u(t) = 0$: the output $y(t)$ is linear in initial states $x(0)$.
- \blacktriangleright Initial response matrix exponential:

 $-$ The solution to $\dot{x} = Ax, x(0) \in \mathbb{R}^n$ is given by $x(t) = e^{At}x(0)$.

 \blacktriangleright Three very important test signals:

- Step input
$$
u(t) = \begin{cases} 0 & \text{if } t \leq 0 \\ 1 & \text{if } t > 0 \end{cases}
$$

– **Impulse input**

$$
u(t) = p_{\epsilon}(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1/\epsilon & \text{if } 0 \le t < \epsilon \\ 0 & \text{if } t \ge \epsilon \end{cases} \qquad \delta(t) = \lim_{\epsilon \to 0} p_{\epsilon}(t)
$$

– **Frequency input**

$$
u(t) = \sin(\omega t + \phi).
$$

Outline

[Before Midterm I: L1 - L10](#page-5-0)

[Before Midterm II: L11 - L20](#page-15-0)

[After Midterm II: L22 - L26](#page-26-0)

[Final words](#page-31-0)

[Before Midterm II: L11 - L20](#page-15-0) 16/34

L11 - Input/output responses (II)

Impulse response

$$
h(t) = \int_0^t Ce^{A(t-\tau)}B\delta(\tau)d\tau + D\delta(t) = Ce^{At}B + D\delta(t).
$$

Frequency responses

Fig. 7 The convolution equation

$$
y(t) = Ce^{At}x(0) + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t).
$$

another version is $y(t) = \underbrace{Ce^{At}x(0)}_{\text{Initial response}} + \underbrace{\int_0^t h(t-\tau)u(\tau)d\tau}_{\text{forced response}}$

[Before Midterm II: L11 - L20](#page-15-0) 17/34

L12: Transfer function (I)

 \blacktriangleright Transient response and steady-state response

$$
y(t) = \underbrace{Ce^{At} (x(0) - (sI - A)^{-1}B)}_{\text{transient}} + \underbrace{(C(sI - A)^{-1}B + D) e^{st}}_{\text{steady-state}}
$$

 \blacktriangleright Transfer function

$$
G(s) = C(sI - A)^{-1}B + D.
$$

– Express the steady-state solution of a stable linear system forced by a sinusoidal input

$$
u(t) = \sin(\omega t) \to y_{\rm ss} = |G(i\omega)|\sin(\omega t + \angle G(i\omega))
$$

Frequency domain modeling: Modeling a system through its response to sinusoidal and exponential signals.

- We represent the dynamics of the system in terms of the generalized frequency *s* rather than the time domain variable *t*.
- The **transfer function** provides a complete representation of a linear system in the frequency domain.

[Before Midterm II: L11 - L20](#page-15-0) 18/34

L13: Transfer function (II)

▶ Transfer function for linear ODEs

$$
\frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_0 y = b_m \frac{d^m u}{dt^m} + b_{m-1} \frac{d^{m-1} u}{dt^{m-1}} + \ldots + b_0 u,
$$

$$
G(s) = \frac{b_m s^m + b_{m-1} s^{n-1} + \ldots + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_0}.
$$

 \blacktriangleright Block diagram with transfer functions

L14: Zeros, Poles and Bode plot

In The features of a transfer function are often associated with *important* **system properties**.

- zero frequency gain
- the locations of the poles and zeros: Poles modes of a system; Zeros – Block transmission of certain signals

Poles (eigenvalues) of the matrix $A =$ **Poles of the transfer function** $G(s)$

- **If** The frequency response $G(i\omega)$ can be represented by two curves **Bode plot**
	- **Gain curve**: gives $|G(i\omega)|$ as a function of frequency ω log/log scale (traditionally in dB — $20 \log |G(i\omega)|$; we often consider $\log |G(i\omega)|$)
	- **Phase curve**: gives ∠*G*(*i*ω) as a function of frequency ω log/linear scale in degrees

L15: Bode plot and Routh-Hurwitz stability

If The **Bode plot** gives a quick overview of a **stable** linear system.

 $u(t) = \sin(\omega t)$ \rightarrow $y_{ss} = |G(i\omega)| \sin(\omega t + \angle G(i\omega))$

Theorem Consider a Routh table from the polynomial *a*(*s*) in

$$
G(s) = \frac{b(s)}{a(s)}.
$$

 \triangleright The number of sign changes in the first column of the Routh table is equal to the number of roots of *a*(*s*) in the closed right half-plane.

Corollary (BIBO Stability of LTI Systems)

The system $G(s)$ is **BIBO stable** if and only if there are no sign changes in the first column of its Routh table.

L16: Loop transfer functions and Nyquist plot

 \triangleright Nyquist's idea was to first investigate conditions under which oscillations can occur in a feedback loop – The **Loop transfer function**:

$$
L(s) = P(s)C(s).
$$

I Nyquist plot and Simplified Nyquist criterion

L17: Nyquist Criterion and Stability margins

Theorem (Nyquist's Stability Criterion)

Consider a unity feedback control system with open-loop transfer function *L*(*s*). Let Γ be a Nyquist contour. The system is stable if and only if the number of counterclockwise encirclements of −1 + *i*0 by the Nyquist plot *L*(Γ) is equal to the number of poles of *L*(*s*) inside Γ.

Classical robustness measures: stability margin, phase margin, gain margin

L18: Bode's relations and Root locus

I Minimum phase systems: they have the smallest phase lag of all systems with the same gain curve - for these systems

- No time delays or poles and zeros in the right half-plane.
- Have the property that log |*P*(*s*)|/*s* → 0 as *s* → ∞ for Re(*s*) ≥ 0.
- \triangleright For minimum phase systems, the phase is uniquely given by the shape of the gain curve and vice versa
- **Root locus**: a graph of the roots of $a_{\text{cl}}(s)$ as the gain k is varied from 0 to ∞ .
	- The plot of root locus will have *n* branches.
	- Each branch starts at a different open-loop pole.
	- *m* of the branches end at different open-loop zeros.
	- The remaining *n* − *m* branches go to infinity.

L19: PID control (I)

Figure: PID using error feedback

IMagic of integral action

PID control

- \blacktriangleright the proportional term (P) the **present** error;
- \blacktriangleright the integral term (I) the **past** errors;
- \blacktriangleright the derivative term (D) anticipated **future** errors.

$$
u(t) = k_{p}e(t) + k_{i} \int_{0}^{t} e(\tau)d\tau.
$$

\n
$$
\Rightarrow u_{0} = k_{p}e_{0} + k_{i} \lim_{t \to \infty} \int_{0}^{t} e(\tau)d\tau.
$$

▶ PID controller for lower-order (1st and 2nd order) systems [Before Midterm II: L11 - L20](#page-15-0) 25/34

L20: PID control (II)

- **EXA** Ziegler-Nichols' Tuning
- **Funing based on the FOTD model**
- \triangleright Relay Feedback (Automatic tuning; not required in this course)
- \triangleright Many aspects of a control system can be understood from linear models.
- \blacktriangleright However, some nonlinear phenomena must be taken into account
- **I** Windup can occur in any controller with integral action.
- \blacktriangleright There are many methods to avoid windup.

Outline

[Before Midterm I: L1 - L10](#page-5-0)

[Before Midterm II: L11 - L20](#page-15-0)

[After Midterm II: L22 - L26](#page-26-0)

[Final words](#page-31-0)

[After Midterm II: L22 - L26](#page-26-0) 27/34

L22: Performance specifications

In Sensitivity functions: for most control designs we focus on the following subset — the **Gang of Six**

$$
G_{\rm yr} = \frac{PCF}{1+PC}, \quad -G_{\rm uv} = \frac{PC}{1+PC}, \quad G_{\rm yv} = \frac{P}{1+PC}
$$

$$
G_{\rm ur} = \frac{CF}{1+PC}, \quad -G_{\rm uw} = \frac{C}{1+PC}, \quad G_{\rm yw} = \frac{1}{1+PC}
$$

I Specifications capture **robustness** to process variations and **performance** w.r.t.

- the ability to **track** reference signals and **attenuate** load disturbances **without injecting** too much measurement noise.
- Expressed in terms of transfer functions (e.g., the Gang of Six) and the loop transfer function, using features of their **time and frequency responses**.

L23: Loop Shaping

The loop transfer function should have roughly the shape below

(a) Gain plot of loop transfer function

(b) Gain plot of sensitivity functions

In General purpose of Lag compenstation

- increases the gain at low frequencies
- improve tracking performance at low frequencies
- improve disturbance attenuation at low frequencies
- I General purpose of **Lead compenstation**
	- Add phase lead in the frequency range between the pole and zero pair
	- By appropriately choosing the location of this phase lead, we can provide **additional phase margin** at the gain crossover frequency.

[After Midterm II: L22 - L26](#page-26-0) 29/34

L24: Robustness and uncertainty

- **Robustness to uncertainty** is one of the most useful properties of feedback — design feedback systems based on strongly simplified models.
	- **Parametric uncertainty** in which the parameters describing the system are not precisely known
	- **Unmodeled dynamics**, in which some dynamics are neglected during the modeling.
- **ID An explicit sufficient robustness condition** based on Nyquist criterion

$$
|C\Delta| < |1 + L|, \quad \text{or} \quad |\delta(i\omega)| < \left|\frac{1 + L(i\omega)}{L(i\omega)}\right| = \frac{1}{|T(i\omega)|}, \quad \forall \omega \ge 0.
$$

Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows the stability margin $s_m = 1/M_s$. The plot (b) shows the Nyquist curve and the circle shows uncertainty due to stable additive process variations Δ .

[After Midterm II: L22 - L26](#page-26-0) 30/34

L25/26: Fundamental Limits

- **Performance limits** due to process dynamics and limits on actuation power/rate.
	- **Dynamics limitations**: captured by time delays and poles and zeros in the right half-plane.
		- I Sensors and actuators have no effect on the poles: **the only way to change poles is by feedback or by redesign of the process.**
		- \blacktriangleright However, the zeros of a system depend on how the sensors and actuators are connected to the process.
	- **Restriction in actuation**: captured by actuation power and rates.
- ▶ Waterbed Effect Bode's integral formula (will be covered in Lecture 26)

[After Midterm II: L22 - L26](#page-26-0) 31/34

Outline

[Before Midterm I: L1 - L10](#page-5-0)

[Before Midterm II: L11 - L20](#page-15-0)

[After Midterm II: L22 - L26](#page-26-0)

[Final words](#page-31-0)

Background survey from Week 1

 \triangleright Are there any specific applications of feedback and control concepts that you are interested in?

- Autonomous vehicles, robotics, and drone stabilization
- Why does PID work?
- Design feedback controllers for a system that we can run tests on
- Medical devices
- Power grid controls,
- $-$
- \blacktriangleright Suggestions we have got so far
	- Homework to be reflective of the course content.
	- Examples of how to approach questions
	- Lecture recordings
	- Lecture slides with conceptual details as bullet points.
	- Office hours, clear syllabus and course directions
	- Engaging, patient, responsive and available outside the class
	-

Hopefully, this course has met your expectation!

Final words

- \triangleright Control is an old yet fascinating area; control is everywhere;
- \blacktriangleright I hope you all have learned something from this class
- \blacktriangleright I hope you all can do very well in your final(s).
- \triangleright Work hard and play hard (enjoy the summer vocation)!
- \blacktriangleright Feel free to reach out even after this course finishes!
- ▶ Good luck with your studies at UC San Diego and beyond!
- I look forward to your great news.

Thank you very much for your efforts and for staying to the end of this course!