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Final Exam & Office hours

I Final Exam — 8:00 am - 10:30 am, June 08
– Location - CENTR 105 (this classroom)
– Lectures 1 - 27, HW1 - HW8, DI 1-9; (Reading materials in the

textbook)
– This final exam is closed book but you can bring one sheet of notes

(page maximum size: Letter; can be double-sided).
– No MATLAB is required. No graphing calculators are permitted.

You need a basic arithmetic calculator for simple calculations.
– Come on time (1 or 2 minutes early if you can; we will start at 8:00

am promptly)
– The exams must be done in a blue book. Bring a blue book with you.
– No collaboration and discussions are allowed. It is dishonest to

cheat on exams. Instances of academic dishonesty will be referred to
the Office of Student Conduct for adjudication. You don’t want to
take a risk for such a small thing.
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Final Exam & Office hours

I Problem 1 - True or False (12 claims)
I Problem 2 - Linearization & Stability
I Problem 3 - Feedback Control
I Problem 4 - Practical system design

Extra Office Hours
I This Sunday, 05 June - 10:00 am to 12:00 pm, and 2:00 pm to 6:00 pm

(my office: Jacobs Hall 6604)
I Next Tuesday, 07 June - 4:30 pm to 7:30 pm (Jacobs Hall 4605)
I No zoom session.
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Course evaluation

I You should have got an email from UCSD Online Evaluations to evaluate
ECE 171A

https://academicaffairs.ucsd.edu/Modules/Evals?e8300523

I Deadline: Monday, June 6 at 11:59 PM

I Your responses are completely anonymous.

I It’s your opportunity to let your voices be heard (by me and the
university).

I Please give some thoughtful, truthful, and constructive feedback.

I If you like the course, please say it explicitly and we’d love to hear it

I If you think some aspects can be improved, we are more than happy to
know them
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Lecture 1 - Overview of control systems

A control system is an interconnection of two or more dynamical systems that
provides a desired response.
I Control is to modify the inputs to the plant to produce a desired output.

(a) Inverted Pendulum (b) Cruise control (c) Wind farm

I Feedforward control vs. feedback control
I Two live experiments
I Feedback control = Sensing + Computation + Actuation
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Lecture 2 - ODEs and the first control example

Review on ODEs

I An nth-order linear ordinary differential equation (ODE) is:

dn

dtn y(t) + an−1
dn−1

dtn−1
y(t) + . . .+ a1

d
dt y(t) + a0y(t) = u(t)

I First-order matrix ODE

ẋ = Ax(t) + Bu(t)

Cruise control

P control Fengine = Kpe(t)
I control Fengine = Ki

∫ t
0

e(t)dt
D control Fengine = Kd

d
dt e(t)

Feedback control = Sensing + Computation + Actuation
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Lecture 3 - Feedback principles

I We have considered static plant dynamics with analytical solutions

y = sat(x) =


−1 if x ≤ −1

x if |x| < 1

1 if x ≥ 1

I and a simple dynamical model with numerical simulations
I to illustrate several fundamental properties of feedback

I Disturbance attenuation
I Reference signal tracking
I Robustness to uncertainty
I Shaping of dynamical behavior
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Lecture 4/5 - System modeling

A model is a mathematical representation of a physical, biological, or
information system.
I Models allow us to reason about a system and make predictions about

how a system will behave.
I The model we choose depends on the questions we wish to answer, and so

there may be multiple models for a single dynamical system.
I It is important to keep in mind that all models are an approximation of

the underlying system.

The choice of state is not unique.
I There may be many choices of variables that can act as the state.

– A trivial example: One can choose different units (scaling factors)
– A less trivial example: One can take sums and differences of some

variables.
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Lecture 4/5 - System modeling

I x ∈ Rn: state; y ∈ Rp: output; u ∈ Rm: input
I Continuous-time (e.g., speed control, inverted pendulum, spring-mass)

ẋ = f (x, u)
y = h(x, u)

⇐⇒
ẋ = Ax + Bu
y = Cx + Du.

I Discrete-time (e.g., consensus protocol, predator-prey dynamics)

x[k + 1] = f (x[k], u[k]),
y[k] = h(x[k], u[k]).

⇐⇒
x[k + 1] = Ax[k] + Bu[k],

y[k] = Cx[k] + Du[k].

I Block diagrams: Emphasize the information flow and to hide details of
the system.
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Lecture 6 - System solutions and Phase portraits

Closed-loop system: with u = k(x)

ẋ(t) = f (x, k(x)) := F(x).

Analytical or Computational solutions

I Solving differential equations

I Qualitative analysis: phase portraits and time plot
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Lecture 7 - Equilibrium and stability

I An equilibrium point of a dynamical system represents a stationary
condition for the dynamics.

I Stable, asymptotically stable, unstable; terminology like sink, source,
saddle, center

(a) Sink (b) Source (c) Saddle (d) Center

I Stability of linear systems ẋ = Ax
– Eigenvalue test
– Routh–Hurwitz Criterion (will be reviewed again in week 5/6)
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Lecture 8: Jacobian Linearization

Consider a nonlinear system ẋ = F(x), with xe = 0 as an equilibrium point. Let

A =
∂F
∂x

∣∣∣∣
xe=0

I xe = 0 is locally asymptotically stable if A is asymptotically stable or all
eigenvalues of A have negative real parts.

I xe = 0 is unstable if one or more of the eigenvalues of A has positive real
part.

Figure: Model Linearization Procedure (Taken from Prof Na Li’s ES 155)
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L10: Input-output response (I)

I The output y(t) of an LIT system has very nice linear properties:

– Zero initial state x(0) = 0: the output y(t) is linear in input u(t);
– Zero input u(t) = 0: the output y(t) is linear in initial states x(0).

I Initial response – matrix exponential:

– The solution to ẋ = Ax, x(0) ∈ Rn is given by x(t) = eAtx(0).
I Three very important test signals:

– Step input u(t) =

{
0 if t ≤ 0

1 if t > 0

– Impulse input

u(t) = pε(t) =


0 if t < 0

1/ε if 0 ≤ t < ε

0 if t ≥ ε

δ(t) = lim
ε→0

pε(t)

– Frequency input
u(t) = sin(ωt + φ).
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L11 - Input/output responses (II)
I Impulse response

h(t) =
∫ t

0

CeA(t−τ)Bδ(τ)dτ + Dδ(t) = CeAtB + Dδ(t).

I Frequency responses

I The convolution equation

y(t) = CeAtx(0) +
∫ t

0

CeA(t−τ)Bu(τ)dτ + Du(t).

another version is y(t) = CeAtx(0)︸ ︷︷ ︸
Initial response

+

∫ t

0

h(t − τ)u(τ)dτ︸ ︷︷ ︸
forced response
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L12: Transfer function (I)

I Transient response and steady-state response

y(t) = CeAt (x(0)− (sI − A)−1B
)︸ ︷︷ ︸

transient

+
(
C(sI − A)−1B + D

)
est︸ ︷︷ ︸

steady-state

I Transfer function
G(s) = C(sI − A)−1B + D.

– Express the steady-state solution of a stable linear system forced by a
sinusoidal input

u(t) = sin(ωt) → yss = |G(iω)| sin(ωt + ∠G(iω))

I Frequency domain modeling: Modeling a system through its response to
sinusoidal and exponential signals.

– We represent the dynamics of the system in terms of the generalized
frequency s rather than the time domain variable t.

– The transfer function provides a complete representation of a linear
system in the frequency domain.
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L13: Transfer function (II)
I Transfer function for linear ODEs

dny
dtn + an−1

dn−1y
dtn−1

+ . . .+ a0y = bm
dmu
dtm + bm−1

dm−1u
dtm−1

+ . . .+ b0u,

G(s) = bmsm + bm−1sn−1 + . . .+ b0
sn + an−1sn−1 + . . .+ a0

.

I Block diagram with transfer functions
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L14: Zeros, Poles and Bode plot

I The features of a transfer function are often associated with important
system properties.

– zero frequency gain
– the locations of the poles and zeros: Poles — modes of a system;

Zeros – Block transmission of certain signals

Poles (eigenvalues) of the matrix A = Poles of the transfer function G(s)

I The frequency response G(iω) can be represented by two curves — Bode
plot

– Gain curve: gives |G(iω)| as a function of frequency ω — log/log
scale (traditionally in dB — 20 log |G(iω)|; we often consider log |G(iω)|)

– Phase curve: gives ∠G(iω) as a function of frequency ω —
log/linear scale in degrees
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L15: Bode plot and Routh-Hurwitz stability

I The Bode plot gives a quick overview of a stable linear system.

u(t) = sin(ωt) → yss = |G(iω)| sin(ωt + ∠G(iω))

Theorem
Consider a Routh table from the polynomial a(s) in

G(s) = b(s)
a(s) .

I The number of sign changes in the first column of the Routh table is
equal to the number of roots of a(s) in the closed right half-plane.

Corollary (BIBO Stability of LTI Systems)
The system G(s) is BIBO stable if and only if there are no sign changes in the
first column of its Routh table.
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L16: Loop transfer functions and Nyquist plot
I Nyquist’s idea was to first investigate conditions under which oscillations

can occur in a feedback loop – The Loop transfer function:

L(s) = P(s)C(s).

I Nyquist plot and Simplified Nyquist criterion
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L17: Nyquist Criterion and Stability margins

Theorem (Nyquist’s Stability Criterion)
Consider a unity feedback control system with open-loop transfer function
L(s). Let Γ be a Nyquist contour. The system is stable if and only if the
number of counterclockwise encirclements of −1 + i0 by the Nyquist plot L(Γ)
is equal to the number of poles of L(s) inside Γ.

Classical robustness measures: stability margin, phase margin, gain margin
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L18: Bode’s relations and Root locus

I Minimum phase systems: they have the smallest phase lag of all systems
with the same gain curve — for these systems

– No time delays or poles and zeros in the right half-plane.
– Have the property that log |P(s)|/s → 0 as s → ∞ for Re(s) ≥ 0.

I For minimum phase systems, the phase is uniquely given by the shape of
the gain curve and vice versa

I Root locus: a graph of the roots of acl(s) as the gain k is varied from 0
to ∞.

– The plot of root locus will have n branches.
– Each branch starts at a different open-loop pole.
– m of the branches end at different open-loop zeros.
– The remaining n − m branches go to infinity.
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L19: PID control (I)

Figure: PID using error feedback

PID control
I the proportional term (P) —

the present error;
I the integral term (I) — the

past errors;
I the derivative term (D) —

anticipated future errors.

I Magic of integral action

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ.

⇒ u0 = kpe0 + ki lim
t→∞

∫ t

0

e(τ)dτ.

I PID controller for lower-order (1st and 2nd order) systems
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L20: PID control (II)

I Ziegler-Nichols’ Tuning
I Tuning based on the FOTD model
I Relay Feedback (Automatic tuning; not required in this course)

I Many aspects of a control system can be understood from linear models.
I However, some nonlinear phenomena must be taken into account
I Windup can occur in any controller with integral action.
I There are many methods to avoid windup.
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L22: Performance specifications

I Sensitivity functions: for most control designs we focus on the following
subset — the Gang of Six

Gyr =
PCF

1 + PC , −Guv =
PC

1 + PC , Gyv =
P

1 + PC

Gur =
CF

1 + PC , −Guw =
C

1 + PC , Gyw =
1

1 + PC

I Specifications capture robustness to process variations and performance
w.r.t.

– the ability to track reference signals and attenuate load
disturbances without injecting too much measurement noise.

I Expressed in terms of transfer functions (e.g., the Gang of Six) and the
loop transfer function, using features of their time and frequency
responses.
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L23: Loop Shaping

I The loop transfer function should have roughly the shape below

I General purpose of Lag compenstation
– increases the gain at low frequencies
– improve tracking performance at low frequencies
– improve disturbance attenuation at low frequencies

I General purpose of Lead compenstation
– Add phase lead in the frequency range between the pole and zero pair
– By appropriately choosing the location of this phase lead, we can

provide additional phase margin at the gain crossover frequency.
After Midterm II: L22 - L26 29/34



L24: Robustness and uncertainty
I Robustness to uncertainty is one of the most useful properties of

feedback — design feedback systems based on strongly simplified models.
– Parametric uncertainty in which the parameters describing the

system are not precisely known
– Unmodeled dynamics, in which some dynamics are neglected during

the modeling.
I An explicit sufficient robustness condition based on Nyquist criterion

|C∆| < |1 + L|, or |δ(iω)| <
∣∣∣∣1 + L(iω)

L(iω)

∣∣∣∣ = 1

|T(iω)| , ∀ω ≥ 0.
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L25/26: Fundamental Limits
I Performance limits due to process dynamics and limits on actuation

power/rate.
– Dynamics limitations: captured by time delays and poles and zeros

in the right half-plane.
I Sensors and actuators have no effect on the poles: the only way to

change poles is by feedback or by redesign of the process.
I However, the zeros of a system depend on how the sensors and

actuators are connected to the process.
– Restriction in actuation: captured by actuation power and rates.

I Waterbed Effect — Bode’s integral formula (will be covered in Lecture
26) ∫ ∞

0

log |S(iω)|dω =

∫ ∞

0

log 1

|1 + L(iω)|dω = π
∑

pk
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Background survey from Week 1

I Are there any specific applications of feedback and control concepts that
you are interested in?

– Autonomous vehicles, robotics, and drone stabilization
– Why does PID work?
– Design feedback controllers for a system that we can run tests on
– Medical devices
– Power grid controls,
– . . . . . .

I Suggestions we have got so far
– Homework to be reflective of the course content.
– Examples of how to approach questions
– Lecture recordings
– Lecture slides with conceptual details as bullet points.
– Office hours, clear syllabus and course directions
– Engaging, patient, responsive and available outside the class
– . . . . . .

Hopefully, this course has met your expectation!
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Final words

I Control is an old yet fascinating area; control is everywhere;

I I hope you all have learned something from this class

I I hope you all can do very well in your final(s).

I Work hard and play hard (enjoy the summer vocation)!

I Feel free to reach out even after this course finishes!

I Good luck with your studies at UC San Diego and beyond!

I I look forward to your great news.

Thank you very much for your efforts and for staying to
the end of this course!
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