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System modeling

General nonlinear system

ẋ = f(x, u)

y = h(x, u)

Linear time-invariant (LTI) system

ẋ = Ax+Bu

y = Cx+Du.

x ∈ Rn: state; y ∈ Rp: output; u ∈ Rm: input

▶ State captures effects of the past

– Physical quantities that determines future evolution;

▶ Inputs describe external excitation

– Inputs are extrinsic to the system dynamics (externally specified);

▶ Dynamics describe state evolution

– Update rule for system state; Function of current state and any
external inputs;

▶ Outputs describe measured quantities

– Outputs are function of state and inputs; not independent variables;

All models are wrong, but some are useful
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Inverted pendulum

m = mass

l = length

u = external force

θ = angle

▶ Torque: T = mgl sin θ − ul cos θ.

▶ Moment of inertia: J = ml2.

▶ Newton’s law:
ml2θ̈ = mgl sin θ − ul cos θ.

▶ State-space model (nonlinear)

x1(t) = θ(t),

x2(t) = θ̇(t),
⇒

[
ẋ1(t)
ẋ2(t)

]
=

[
x2(t)

mgl sin θ − ul cos θ

ml2

]
,

and y = θ(t).
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RL Circuit

R : Resistance

L : Inductance

VR = R · I : Resistor

VL = L · İ : Inductor

▶ Kirchhoff’s voltage law:

VS − VR − VL = 0.

▶ Combining:
L · İ = VS − VR = VS −RI

▶ State-space model: Let x = I, u = VS , y = VR, we have

ẋ = −R

L
x+

1

L
u ← first-order ODE

y = Rx.
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Difference equations

In some situations, it is more natural to describe the evolution of a system at
discrete instants of time rather than continuously in time

→ discrete-time systems

▶ General dynamics
x[k + 1] = f(x[k], u[k]),

y[k] = h(x[k], u[k]).

– x ∈ Rn: state vector;
– u ∈ Rn: input vector;
– y ∈ Rn: output vector;

▶ Linear difference equation

x[k + 1] = Ax[k] +Bu[k],

y[k] = Cx[k] +Du[k].

Note that the matrices A,B,C,D determine the response of this system:
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Time evolution

Linear difference equation

x[k + 1] = Ax[k] +Bu[k],

y[k] = Cx[k] +Du[k].

▶ At time k = 1

x[1] = Ax[0] +Bu[0],
y[1] = Cx[1] +Du[1]

= CAx[0] + CBu[0] +Du[1].

▶ At time k = 2

x[2] = Ax[1] +Bu[1] = A2x[0] +ABu[0] +Bu[1],

y[2] = Cx[2] +Du[2]

= CA2x[0] + CABu[0] + CBu[1] +Du[2].

▶ At time k (via repeated substitution)

x[k] = Akx[0] +

k−1∑
t=0

Ak−t−1Bu[t]

y[k] = CAkx[0] +

k−1∑
t=0

CAk−t−1Bu[t] +Du[k],
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Consensus protocol

Goal: compute the average value of a set of numbers that are locally available
to individual agents; Applications

▶ monitoring environment conditions in a region using multiple sensors

▶ monitoring movement of animals or vehicles

▶ monitoring the resource loading across a group of computers.

Adjacency matrix

A =


0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
0 1 0 0 0


▶ xi ∈ R denotes the state of the ith sensor

▶ update rule (dynamics)

xi[k + 1] = xi[k] + γ
∑
j∈Ni

(xj [k]− xi[k]),

where Ni represents the set of neighbors of a node i.
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Consensus protocol

Adjacency matrix

A =


0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
0 1 0 0 0


▶ Collective dynamics

x[k + 1] = x[k]− γ(D −A)x[k],

where D is a diagonal matrix with entries being the number of neighbors
of each node.

Figure: Consensus convergence
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Predator-prey dynamics

Predator–prey problem: an ecological system in which we have two species,
one of which feeds on the other.

▶ This type of system has been studied for decades and is known to exhibit
interesting dynamics, e.g., oscillation.
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Predator-prey dynamics

A simple discrete-time model

▶ Predator - lynxes; Prey - hares

H : represent the population of hares;

L : represent the population of lynxes;

k : be the discrete-time index (e.g., the month number).

▶ A simple model can be formulated as

H[k + 1] = H[k] + bh(u)H[k]− aL[k]H[k],

L[k + 1] = L[k]− dlL[k] + cL[k]H[k],

– bh is the hare birth rate per unite period and is a function of the
food supply u;

– dl is the lynx mortality rate;

– a and c are the interaction coefficients;

– aL[k]H[k] is the rate of predation;

– cL[k]H[k] is the growth rate of the lynxes;
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Predator-prey dynamics

Numerical simulation

▶ The simulation details are different from the experimental data (expected)

▶ We see qualitatively similar trends

▶ Hence we can use the model to help explore the dynamics of the system
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Population dynamics

Population growth is a complex dynamic process that involves the interaction
of one or more species with their environment and the larger ecosystem.

▶ Predator-prey model

▶ Logistic Growth model

▶ Let x be the population of a species at time t

dx

dt
= bx− dx = (b− d)x = rx, x ≥ 0

where birth rate b and mortality rate d are parameters.

▶ Exponential increase if b > d; or exponential decrease if b < d

▶ A more realistic model : the birth rate decreases when x is large

dx

dt
= rx

(
1− x

k

)
, x ≥ 0

where k is the carrying capacity of the environment — Logistic Growth
model
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Population dynamics

A more realistic model : the birth rate decreases when x is large

dx

dt
= rx

(
1− x

k

)
, x ≥ 0

where k is the carrying capacity of the environment — Logistic Growth model

(a) Exponential growth - r = 1.2 (b) Logistic Growth model with
parameters r = 1.2, k = 10

Population dynamics, Block diagrams 17/20



Block diagrams

A special graphical representation called a block diagram has been developed
in control engineering.

▶ Emphasize the information flow and to hide details of the system.

Figure: Standard block diagram elements. The arrows indicate the the inputs
and outputs of each element, with the mathematical operation corresponding
to the block labeled at the output.
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Summary

▶ x ∈ Rn: state; y ∈ Rp: output; u ∈ Rm: input

▶ Continuous-time

ẋ = f(x, u)

y = h(x, u)
⇐⇒

ẋ = Ax+Bu

y = Cx+Du.

▶ Discrete-time (e.g., consensus protocol, predator-prey dynamics)

x[k + 1] = f(x[k], u[k]),

y[k] = h(x[k], u[k]).
⇐⇒

x[k + 1] = Ax[k] +Bu[k],

y[k] = Cx[k] +Du[k].

▶ Block diagrams: Emphasize the information flow and to hide details of
the system.
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