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Announcements

▶ Final reminder: HW1 due by tonight; No late policy; Start each
homework early; Write the number of hours (including reading lecture
notes and/or textbook) on the front page for each assignment.

▶ Midterm exam (I) — in class, April 22 (Week 4)

▶ Quiz questions on Canvas (if you cannot finish them within 20 minutes, you

need to spend more time offline reviewing necessary backgrounds by yourself;

otherwise, you may not get the desired outcomes in this course.)

▶ Piazza: Q&A discussions; check Piazza regularly for class discussions,
announcements, and updates, etc.

▶ Check Course website regularly for updates:

https://zhengy09.github.io/ECE171A/schedule.html
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Modeling + Feedback control

A model is a mathematical representation of a physical, biological, or
information system.

▶ Models allow us to reason about a system and make predictions about
how a system will behave.

State-space model{
ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))
v.s.

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where f : Rn × Rp → Rn, h : Rn × Rp → Rq, and A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rq×n, D ∈ Rq×p

▶ q > 1, p > 1: Multiple-input Multiple-output (MIMO) systems

▶ q = 1, p = 1 (but n ≥ 1): Single-input Single-output (SISO) systems
→ the main focus of this class.
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Modeling + Feedback Control

Control goal: designing the input u(t) such that

▶ x(t) → xdes(t) or y(t) → ydes(t) (Servo problem)

▶ x(t) → 0 (Regulation problem)

▶ Transient behavior – quick response, less overshot/oscillation etc

▶ Robustness, disturbance rejection, etc.

We begin by investigating systems in which the input has been set to a
function of the state u = k(x)

▶ This is one of the simplest types of feedback

▶ The system regulates its own state/behavior.

Closed-loop system:

ẋ(t) = f(x, k(x)) := F (x).

▶ Analytical or Computational solutions
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Solutions of dynamical systems

Consider a dynamical system (or a vector of ODEs)

ẋ = F (x) (1)

where x ∈ Rn, F : Rn → Rn.

▶ We say x(t) is a solution of (1) on the time interval [t0, tf ] if

d

dt
x(t) = F (x(t)), ∀t0 < t < tf

▶ Initial value problem: we say x(t) is a solution of (1) with initial value
x0 ∈ Rn at t0 ∈ R if

x(t0) = t0 and
d

dt
x(t) = F (x(t)), ∀t0 < t < tf

▶ For most differential equations we will see, there is a unique solution with
a given initial value x0 ∈ Rn.
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Example 1: system in one scalar variable

We have seen the following differential equation in Lecture 2 (as well as in
discussion sessions and HW1)

ẋ = −ax, with x ∈ R

▶ Its solution is x(t) = e−atx(0).
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Example 2: simple two-dimensional systems

Consider the following decoupled/diagonal two-dimensional system

d

dt

[
x1

x2

]
=

[
−ax1

−bx2

]
⇐⇒ d

dt

[
x1

x2

]
=

[
−a 0
0 −b

]
︸ ︷︷ ︸

A

[
x1

x2

]

▶ The solution is

x1 = e−atx1(0), x2 = e−btx2(0)

▶ Recall the general solution to ẋ = Ax with initial value x(0) ∈ R2 is

x(t) = eAtx(0) =

[
e−at 0

0 e−bt

] [
x1(0)
x2(0)

]
=

[
e−atx1(0)

e−btx2(0)

]
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Example 3: double integrator

Consider the following dynamical system

ẋ1 = x2

ẋ2 = a
⇐⇒ d

dt

[
x1

x2

]
=

[
0 1
0 0

]
︸ ︷︷ ︸

A

[
x1

x2

]
+

[
0
a

]

where a ∈ R is a constant.

▶ Its solution is

x1(t) =
1

2
at2 + x2(0)t+ x1(0)

x2(t) = at+ x2(0)

▶ Consider the system state as position x1(t) + velocity x2(t).
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Example 4: Damped oscillator (spring-mass)

m = mass

F = External force

c = friction (damper)

k = spring stiffness

q = rest position

▶ System model: find the relation between the force F and the position q

mq̈ + cq̇ + kq = F.

▶ Block diagram

▶ Free response: Let F = 0, we have

mq̈ + cq̇ + kq = 0 ⇒ q̈ +
c

m
q +

k

m
q = 0.

▶ Introduce ζ ∈ R, ω0 ∈ R such that

2ζω0 =
c

m
, ω2

0 =
k

m
⇒ q̈ + 2ζω0q̇ + ω2

0q = 0.
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Example 4: Damped oscillator (spring-mass)

▶ We set

x1 = q, x2 =
q̇

ω0

▶ Then, we have the standard state-space form

d

dt

[
x1

x2

]
=

[
ω0x2

−ω0x1 − 2ζω0x2

]
=

[
0 ω0

−ω0 −2ζω0

]
︸ ︷︷ ︸

A

[
x1

x2

]

▶ Upon denoting wd = ω0

√
1− ζ2 (we have assumed that ζ < 1 –

“underdamped” oscillator), its solution is in the form of

x1(t) = e−ζω0t (a1 cos(ωdt) + b1 sin(ωdt))

x2(t) = e−ζω0t (a2 cos(ωdt) + b2 sin(ωdt))

where a1, a2, b1, b2 are constants depending on initial conditions
x1(0), x2(0)

(their values can be found in Example 5.1 in the textbook).
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Existence and uniqueness of solutions

▶ Recall that an nth-order linear ODE

dn

dtn
y(t) + an−1

dn−1

dtn−1
y(t) + . . .+ a1

d

dt
y(t) + a0y(t) = u(t)

▶ with with initial values

y(t0) = y0, ẏ(t0) = y1, . . . y(n−1)(t0) = yn−1.

Theorem
Let u(t) be a continuous function on an interval I = [t1, t2]. Then, for any
t0 ∈ I, a solution y(t) of the initial value problem exists on I and is unique.

The following (possibly nonlinear) differential equation

ẋ = F (x)

where x ∈ Rn, F : Rn → Rn,

▶ may not have a solution (see Example 5.2: ẋ = x2)

▶ may not have a unique solution (see Example 5.3: ẋ = 2
√
x)

▶ Focus on linear ODEs; for time-domain simulations, ode45 is your friend.
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Phase portraits

Planar dynamical systems: two state variables x ∈ R2, allowing their solutions
to be plotted in the (x1, x2) plane.

▶ Vector field: consider a system of ODEs ẋ = F (x). The right-hand side
defines a velocity F (x) ∈ Rn at every x ∈ Rn.

It shows how x changes and can be represented as a vector F (x) ∈ Rn.

▶ Phase portrait: shows the evolution of the states from different initial
conditions: it illustrates how the states move in the state space.

Damped oscillator

q̈ + 2ζω0q̇ + ω2
0q = 0

d

dt

[
x1

x2

]
=

[
0 ω0

−ω0 −2ζω0

]
︸ ︷︷ ︸

A

[
x1

x2

]
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Time plot vs. Phase portrait

The state evolution of dynamical systems can be described using either a time
plot or a phase portrait.

▶ Time plot: shows the values of the individual states as a function of time

▶ Phase portrait: illustrates how the states move in the state space; gives a
strong intuitive representation of the equation as a vector field/a flow.
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Summary

Closed-loop system: with u = k(x)

ẋ(t) = f(x, k(x)) := F (x).

Analytical or Computational solutions

▶ Solving differential equations

▶ Qualitative analysis: phase portraits and time plot
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