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Announcements

Final reminder: HW1 due by tonight; No late policy; Start each
homework early; Write the number of hours (including reading lecture
notes and/or textbook) on the front page for each assignment.

Midterm exam (I) — in class, April 22 (Week 4)
Quiz questions on Canvas (if you cannot finish them within 20 minutes, you
need to spend more time offline reviewing necessary backgrounds by yourself;

otherwise, you may not get the desired outcomes in this course.)

Piazza: Q&A discussions; check Piazza regularly for class discussions,
announcements, and updates, etc.

Check Course website regularly for updates:
https://zhengy09.github.io/ECE171A/schedule.html
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Modeling 4+ Feedback control

A model is a mathematical representation of a physical, biological, or
information system.

» Models allow us to reason about a system and make predictions about
how a system will behave.

State-space model

@(t) = fa(t),u(t)) vs JE1) =Axt) + Bu(t)
y(t) = h(z(t), u(t)) y(t) = Cz(t) + Du(t)
where f:R"™ x R” — R, h: R" x R” — R%, and A € R"*", B € R"*?,
C e R™”*™, D e R™*?
> g > 1,p > 1: Multiple-input Multiple-output (MIMO) systems

» ¢=1,p=1 (but n > 1): Single-input Single-output (SISO) systems
— the main focus of this class.

Motivation 5/20



Modeling 4+ Feedback Control

Control goal: designing the input u(t) such that
> 2(t) = Tdes(t) or y(t) = yaes(t) (Servo problem)
» 2(t) — 0 (Regulation problem)
» Transient behavior — quick response, less overshot/oscillation etc

» Robustness, disturbance rejection, etc.

We begin by investigating systems in which the input has been set to a
function of the state u = k(x)

» This is one of the simplest types of feedback

» The system regulates its own state/behavior.

Closed-loop system:

z(t) = f(x, k(x)) := F(x).

» Analytical or Computational solutions

k(z)
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Solutions of dynamical systems

Consider a dynamical system (or a vector of ODEs)
& = F(z) (1)

where z € R", F : R" — R"™.
» We say z(t) is a solution of (1) on the time interval [to, t¢] if

%m(t) = F(z(t)),Vto < t < t;

» Initial value problem: we say z(t) is a solution of (1) with initial value
o € R" at tp € R if

(o)) = to and %x(t) — F(a(t)),Vto < t < £

» For most differential equations we will see, there is a unique solution with
a given initial value o € R".

Solving differential equations
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Example 1: system in one scalar variable

We have seen the following differential equation in Lecture 2 (as well as in

discussion sessions and HW1)

> Its solution is z(t) = e~ *z(0).

T = —azx,

state x

a=1>0

Solving differential equations

time ¢

with x € R

state o

x10*

time ¢
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Example 2: simple two-dimensional systems
Consider the following decoupled/diagonal two-dimensional system
d [z1]| _[—az1 d (z1| _[—a 0] |z
ilnl =[] = Gl 5L
——
» The solution is

T = efataﬂl(O)7 To = eibtxg(O)

» Recall the general solution to & = Az with initial value z(0) € R? is

==y S G)
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Example 3: double integrator

Consider the following dynamical system
T1 = X2 d (x| [0 1 |z 0
e =l o[ L
where a € R is a constant.

» lts solution is

z1(t) = %at2 + z2(0)t + 21(0)

z2(t) = at + z2(0)

» Consider the system state as position x1(t) + velocity z2(¢).
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Example 4: Damped oscillator (spring-mass)

L =a m = mass

F = External force

e(d)

II_ . .

[ ! ¢ = friction (damper)
V.V k = spring stiffness

rest position q = rest position

LAY

» System model: find the relation between the force F' and the position ¢

m§+cq+ kq=F.
. F B . q
» Free response: Let F' = 0, we have
.. . .. cC k
mG+cqg+kqg=0 = G¢G+—qg+—q=0.
m m
» Introduce ¢ € R,wo € R such that
wh=— = G+ 20wod +wig =0.
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Example 4: Damped oscillator (spring-mass)

> We set .
r1=q, T2 = £
wo

» Then, we have the standard state-space form

i 1| woTr2 _ 0 wo X
dt |w2|  |—wor1 — 2Cwowa| ~ |—wo —2Cwo| |z2
——_— ——

A

» Upon denoting wa = woy/1 — (2 (we have assumed that { <1 -
“underdamped” oscillator), its solution is in the form of

z1(t) = e " (a1 cos(wat) + by sin(wat))
z2(t) = e 0" (az cos(wat) + b sin(wat))

where a1, a2, b1, b2 are constants depending on initial conditions
21(0), z2(0)
(their values can be found in Example 5.1 in the textbook).

Solving differential equations
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Example 4: Damped oscillator (spring-mass)
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Figure 5.1: Response of the damped oscillator to the initial condition zo = (1.0).
The solution is unique for the given initial conditions and consists of an oscillatory
solution for each state, with an exponentially decaying magnitude.
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Existence and uniqueness of solutions

» Recall that an nth-order linear ODE

mn n—1 d
dT"y(t) + an—lwy(t) +...t+a ay(t) + aoy(t) = u(?)
» with with initial values
y(to) =yo, Ylto) =w1, ... y" V(o) =yn-1.

Theorem
Let u(t) be a continuous function on an interval T = [t1,t2]. Then, for any
to € Z, a solution y(t) of the initial value problem exists on T and is unique.

The following (possibly nonlinear) differential equation
z = F(x)
where x € R", F' : R" — R",
> may not have a solution (see Example 5.2: & = 2?)

» may not have a unique solution (see Example 5.3: & = 2,/x)

» Focus on linear ODEs; for time-domain simulations, ode45 is your friend.
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Phase portraits

Planar dynamical systems: two state variables = € R?, allowing their solutions
to be plotted in the (z1,z2) plane.

» Vector field: consider a system of ODEs & = F'(x). The right-hand side
defines a velocity F'(xz) € R" at every x € R"™.

It shows how x changes and can be represented as a vector F'(xz) € R".

» Phase portrait: shows the evolution of the states from different initial
conditions: it illustrates how the states move in the state space.

Damped oscillator

G+ 2Cwod +whg =0

d |z — 0 wo 1 (a) Vector field (b) Phase portrait
dt |x2 —wo —2Cwo| |72

Figure 5.3: Phase portraits. (a) This plot shows the vector field for a planar

S— dynamical system. Each ar hows the velocity at that point in the state space.

A (b) This plot includes the solutions (sometimes called streamlines) from different
initial conditions, with the vector field superimposed.
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Time plot vs. Phase portrait

The state evolution of dynamical systems can be described using either a time
plot or a phase portrait.

» Time plot: shows the values of the individual states as a function of time

» Phase portrait: illustrates how the states move in the state space; gives a
strong intuitive representation of the equation as a vector field/a flow.
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Figure 3.2: Illustration of a state model. A state model gives the rate of change
of the state as a function of the state. The plot on the left shows the evolution
of the state as a function of time. The plot on the right, called a phase portrait,
shows the evolution of the states relative to each other, with the velocity of the
state denoted by arrows.
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Summary

Closed-loop system: with u = k(z)
z(t) = f(z, k(z)) := F(z).

Analytical or Computational solutions

» Solving differential equations

» Qualitative analysis: phase portraits and time plot
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