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Equilibrium points

An equilibrium point of a dynamical system represents a stationary condition
for the dynamics.

» An equilibrium point for a dynamical system
i = F(a),
is a state x. such that F'(z.) = 0.

» If a dynamical system has an initial condition z(0) = z., then it will stay
at the equilibrium point: z(0) = z. for all t > 0 (o = 0).

» Equilibrium points are important since they correspond to constant
operating conditions.

» A dynamical system can have zero, one, or more equilibrium points.
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Example: Inverted pendulum

™M = mass
| = length
u = external force

0 = angle

» Assume no external force — open-loop dynamics, u =0

Z2(t) 0

n) =60, {m(t)]:[;;%] = =[] =012

zo(t) = (1), 7

Equilibrium 1 (unstable) Equilibrium 2 (stable)

Z
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Example

» The equilibrium points are

X
Z N
- 0

T

(a) (b) (c)

Figure 5.4: Equilibrium points for an inverted pendulum. An inverted pendulum
is a model for a class of balance systems in which we wish to keep a system upright,
such as a rocket (a). Using a simplified model of an inverted pendulum (b), we can
develop a phase portrait that shows the dynamics of the system (¢). The system
has multiple equilibrium points, marked by the solid dots along the xz = 0 line.
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Limit cycles

Apart from equilibrium points, nonlinear systems can also exhibit stationary
periodic solutions — Limit cycles.

» This is of great practical value in generating sinusoidally varying voltages
in power systems or in generating periodic signals for animal locomotion.

» Consider an electronic oscillator with dynamics

x'1:x2+x1(1fx%fx§), :'cz:flerxg(lfx%fxg)

0.5

z2

-0.5

-1 0 1 0 10 20 30
1 Time ¢

(a) (b)
» The solutions in the phase plane converge to a circular trajectory.
» In the time domain, this corresponds to an oscillatory solution.
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Stability of a solution

Stability of a solution of £ = F'(x): whether or not solutions nearby the
solution remain close, get closer, or move further away.

Time t

Figure 5.6: Illustration of Lyapunov’s concept of a stable solution. The solution
represented by the solid line is stable if we can guarantee that all solutions remain
within a tube of diameter € by choosing initial conditions sufficiently close the
solution.

> Let z(t;a) be a solution with initial condition a
> (t;a) is stable if for all € > 0, there exists a § > 0, such that

Ib—al <6 = lz(t;b) — 2(t;a)|| <€, forallt > 0.
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Stability of equilibrium points
An important special case is when the solution z(t; a) = z. is an equilibrium
solution. In this case the condition for stability becomes
|2(0) — xe|| < & = lz(t) — ze|| <€, forall £ > 0.

» Stable: we start near the equilibrium point, we stay near the equilibrium
point — stability in the sense of Lyapunov

1 = T2
0.5 T2 =11
. . ; :
a0 g2r T — — T2 ]
8 K S NG
L / \ / \
05 g P N\ A\
] N N ~
. “x 72 C L L L L ]
1 o ) o 2 4 6 8 10
Time ¢

Figure: Phase portrait and time domain simulation: The equilibrium point x. at
the origin is stable since all trajectories that start near x. stay near ze
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Asymptotically stable equilibrium

» Asymptotically stable: the equilibrium point is stable + all nearby

trajectories converge to it
[|[2(0) — ze|| < & = |z(t) — ze|| <€ and lim z(t) = xe.
t—o0
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Figure: Phase portrait and time domain simulation: The equilibrium point z. at
the origin is asymptotically stable since the trajectories converge to this point
as t — oo

Stability of Equilibrium points 11/22



Unstable equilibrium

» Unstable: the equilibrium point is unstable if it is not stable

1
fl = 2I1 — X2
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Figure: Phase portrait and time domain simulation: The equilibrium point z. at
the origin is unstable since not all trajectories that start near x. stay near z. .
The sample trajectory on the right shows that the trajectories very quickly

depart from zero.
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Sink, Source, Saddle

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type.

» An asymptotically stable equilibrium point is called a sink or sometimes
an attractor.

» An unstable equilibrium point can be either a source, if all trajectories
lead away from the equilibrium point, or a saddle, if some trajectories lead
to the equilibrium point and others move away

» An equilibrium point that is stable but not asymptotically stable (i.e.,
neutrally stable) is called a center

-1 0 1 -1 0 1 -1 0 1

£ - : - 1 a1

(a) Sink (b) Source (c) Saddle (d) Center
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Stability

A linear dynamical system has the form
T = Az, z(0) = o.
» For a linear system, the stability of the equilibrium point at the origin can

be determined from the eigenvalues of A

A(A) = {s € C | det(s] — A) =0}.

Example
Consider a simple 2nd-order system with fully decoupled dynamics

dﬁ _ )\1 0 X1
dt |0 A |z2
» |t can be written as T, = )\11‘17 To = AoX2
> lts solution is
x = eM'(0),i=1,2.
» x. =0 is stable if A\; < 0,7 = 1,2, and asymptotically stable if
Ai <0,0=1,2.
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Stability

Theorem (Stability of a linear system)
The system & = Ax is

» asymptotically stable if and only if all eigenvalues of A have a strictly
negative real part, i.e., Re(\;) <0

» unstable if any eigenvalues A has a strictly positive real part.

Remark: If Re()\;) <0,i=1,...,n and some Re()\;) = 0, the stability
conditions are more complicated, which is beyond the scope of this class.

Example (Unstable systems)

Consider the system ¢ = 0. It can be written in state-space form as

d x| _ |0 1] [m;
dt |xz2| ~ |0 0| |z2|
» The system has eigenvalues A = 0, but the solutions are not bounded

xl(t) = 1}1(0) + 132(0)15, xz(t) = mz(O).
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Example: spring-mass system

T force F and the position ¢

mg+cq+ kq=F.

m

AN

%r%

rest pt‘)sition System .

v

State-space model is

System model: find the relation between the

» Compute its eigenvalues
o A -1 2 C k o
det()\I—A)—det([% A"'ﬁ})_)\ +m)\+m—0
» The eigenvalues have negative real parts
c c\2 4kc c c\2 4kc
N m T () — % Ny M (m) — %
1= B ) 2 = 5

as long as ¢ > 0 (damper). The system is asymptotically stable.
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Routh—Hurwitz Criterion

» It can often be difficult to analytically compute the roots of a high-order
polynomial.

» The Routh—Hurwitz criterion is a stability criterion that does not require
explicit calculation of the roots, because it gives conditions in terms of the
coefficients of the characteristic polynomial — further on this later.

Example (Second-order systems)
Consider a second-order polynomial
aX? +bA+c=0
» The Routh table is
A2 a c
A b 0

A° f%(axofbc):c 0

» The eigenvalues has strictly negative real parts if and only if the first
column of the Routh table is non-zero and has no sign changes.
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Routh—Hurwitz Criterion

Example (Third-order systems)

Consider a third-order polynomial

aX+b\l+eA+d=0

» The Routh table is

Al —%(ad—bc) 0
A? d 0

» The eigenvalues has strictly negative real parts if and only if the first
column of the Routh table is non-zero and has no sign changes.

» If a > 0, then a sufficient and necessary condition for stability (all
eigenvalues have strictly negative real parts) is

a >0, b >0, be > ad, d>0
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> p()‘) =an A" + an—lAn_l + -

Routh table

+a2A? + a1 X+ ao

AT G Gn—2 Gn—4 ao
—1
A" QAn—1 Qan—3 An—5 0
Qn, Ap—2 an an—4
n—2o an—1 an—3 an—1 an—5
A bn—l - U1 bn—3 - - U1 bn—5 0
An—1 an—3 An—1 An—5
n—3 bnfl bn73 bnfl bn75
A Cn—1 = — b1 Cn—-3 = — b1 Cn—5 0
A° ao 0 0 0

» Any row can be multiplied by a positive constant without changing the

result
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Summary

» An equilibrium point of a dynamical system represents a stationary
condition for the dynamics.

» Stable, asymptotically stable, unstable — sink, source, saddle, center

0.5

E
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-1 0 1

o1

(c) Saddle (d) Center

£

(a) Sink (b)

» Stability of linear systems
— Eigenvalue test

— Routh—Hurwitz Criterion
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