ECE 171A: Linear Control System Theory Lecture 7: Equilibrium and Stability

Yang Zheng

Assistant Professor, ECE, UCSD

April 11, 2022

Reading materials: Ch 5.3

[Equilibrium points and Limit Cycles](#page-2-0)

[Stability of Equilibrium points](#page-7-0)

[Stability of linear systems](#page-13-0)

[Summary](#page-20-0)

[Equilibrium points and Limit Cycles](#page-2-0)

[Stability of Equilibrium points](#page-7-0)

[Stability of linear systems](#page-13-0)

[Summary](#page-20-0)

[Equilibrium points and Limit Cycles](#page-2-0) 3/22

Equilibrium points

An equilibrium point of a dynamical system represents a stationary condition for the dynamics.

 \blacktriangleright An equilibrium point for a dynamical system

 $\dot{x} = F(x),$

is a state x_e such that $F(x_e) = 0$.

- ▶ If a dynamical system has an initial condition $x(0) = x_e$, then it will stay at the equilibrium point: $x(0) = x_e$ for all $t \ge 0$ $(t_0 = 0)$.
- ▶ Equilibrium points are important since they correspond to constant operating conditions.
- ▶ A dynamical system can have zero, one, or more equilibrium points.

Example: Inverted pendulum

Equilibrium 1 (unstable) Equilibrium 2 (stable)

[Equilibrium points and Limit Cycles](#page-2-0) 5/22

Example

 \blacktriangleright The equilibrium points are

$$
x_{e} = \begin{bmatrix} \pm n\pi \\ 0 \end{bmatrix}, n = 0, 1, 2 \ldots
$$

Figure 5.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a model for a class of balance systems in which we wish to keep a system upright, such as a rocket (a). Using a simplified model of an inverted pendulum (b), we can develop a phase portrait that shows the dynamics of the system (c). The system has multiple equilibrium points, marked by the solid dots along the $x_2 = 0$ line.

Limit cycles

Apart from equilibrium points, nonlinear systems can also exhibit stationary periodic solutions — Limit cycles.

▶ This is of great practical value in generating sinusoidally varying voltages in power systems or in generating periodic signals for animal locomotion.

 \triangleright Consider an electronic oscillator with dynamics

$$
\dot{x}_1 = x_2 + x_1(1 - x_1^2 - x_2^2), \qquad \dot{x}_2 = -x_1 + x_2(1 - x_1^2 - x_2^2)
$$

▶ The solutions in the phase plane converge to a circular trajectory.

 \blacktriangleright In the time domain, this corresponds to an oscillatory solution.

[Equilibrium points and Limit Cycles](#page-2-0) 7/22

[Equilibrium points and Limit Cycles](#page-2-0)

[Stability of Equilibrium points](#page-7-0)

[Stability of linear systems](#page-13-0)

[Summary](#page-20-0)

[Stability of Equilibrium points](#page-7-0) 8/22

Stability of a solution

Stability of a solution of $\dot{x} = F(x)$: whether or not solutions nearby the solution remain close, get closer, or move further away.

Figure 5.6: Illustration of Lyapunov's concept of a stable solution. The solution represented by the solid line is stable if we can guarantee that all solutions remain within a tube of diameter ϵ by choosing initial conditions sufficiently close the solution.

 \blacktriangleright Let $x(t; a)$ be a solution with initial condition a ▶ $x(t; a)$ is stable if for all $\epsilon > 0$, there exists a $\delta > 0$, such that $||b - a|| < \delta$ \Rightarrow $||x(t; b) - x(t; a)|| < \epsilon$, for all $t > 0$.

[Stability of Equilibrium points](#page-7-0) 9/22

Stability of equilibrium points

An important special case is when the solution $x(t; a) = x_e$ is an equilibrium solution. In this case the condition for stability becomes

 $||x(0) - x_{e}|| < \delta$ \Rightarrow $||x(t) - x_{e}|| < \epsilon$, for all $t > 0$.

▶ Stable: we start near the equilibrium point, we stay near the equilibrium point — stability in the sense of Lyapunov

Figure: Phase portrait and time domain simulation: The equilibrium point x_e at the origin is stable since all trajectories that start near x_e stay near x_e

[Stability of Equilibrium points](#page-7-0) 10/22

Asymptotically stable equilibrium

 \triangleright Asymptotically stable: the equilibrium point is stable $+$ all nearby trajectories converge to it

$$
||x(0) - x_{\rm e}|| < \delta \qquad \Rightarrow \qquad ||x(t) - x_{\rm e}|| < \epsilon \quad \text{and} \quad \lim_{t \to \infty} x(t) = x_{\rm e}.
$$

Figure: Phase portrait and time domain simulation: The equilibrium point x_{e} at the origin is asymptotically stable since the trajectories converge to this point as $t \to \infty$

Unstable equilibrium

 \triangleright Unstable: the equilibrium point is unstable if it is not stable

Figure: Phase portrait and time domain simulation: The equilibrium point x_{e} at the origin is unstable since not all trajectories that start near x_e stay near x_e . The sample trajectory on the right shows that the trajectories very quickly depart from zero.

Sink, Source, Saddle

For planar dynamical systems, equilibrium points have been assigned names based on their stability type.

- ▶ An asymptotically stable equilibrium point is called a sink or sometimes an attractor.
- ▶ An unstable equilibrium point can be either a source, if all trajectories lead away from the equilibrium point, or a saddle, if some trajectories lead to the equilibrium point and others move away
- An equilibrium point that is stable but not asymptotically stable (i.e., neutrally stable) is called a center

[Stability of Equilibrium points](#page-7-0) 13/22

[Equilibrium points and Limit Cycles](#page-2-0)

[Stability of Equilibrium points](#page-7-0)

[Stability of linear systems](#page-13-0)

[Summary](#page-20-0)

[Stability of linear systems](#page-13-0) 14/22

Stability

A linear dynamical system has the form

$$
\dot{x} = Ax, \qquad x(0) = x_0.
$$

▶ For a linear system, the stability of the equilibrium point at the origin can be determined from the eigenvalues of A

$$
\lambda(A) = \{ s \in \mathbb{C} \mid \det(sI - A) = 0 \}.
$$

Example

Consider a simple 2nd-order system with fully decoupled dynamics

$$
\frac{dx}{dt} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

• It can be written as $\dot{x}_1 = \lambda_1 x_1, \quad \dot{x}_2 = \lambda_2 x_2$

 \blacktriangleright Its solution is

$$
x_i = e^{\lambda_i t} x_i(0), i = 1, 2.
$$

▶ $x_e = 0$ is stable if $\lambda_i \leq 0, i = 1, 2$, and asymptotically stable if $\lambda_i < 0, i = 1, 2.$

[Stability of linear systems](#page-13-0) 15/22

Stability

Theorem (Stability of a linear system)

The system $\dot{x} = Ax$ is

- \triangleright asymptotically stable if and only if all eigenvalues of A have a strictly negative real part, i.e., $\text{Re}(\lambda_i) < 0$
- \blacktriangleright unstable if any eigenvalues A has a strictly positive real part.

Remark: If $\text{Re}(\lambda_i) \leq 0, i = 1, \ldots, n$ and some $\text{Re}(\lambda_i) = 0$, the stability conditions are more complicated, which is beyond the scope of this class.

Example (Unstable systems)

Consider the system $\ddot{q} = 0$. It can be written in state-space form as

$$
\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.
$$

• The system has eigenvalues $\lambda = 0$, but the solutions are not bounded

$$
x_1(t) = x_1(0) + x_2(0)t, \qquad x_2(t) = x_2(0).
$$

[Stability of linear systems](#page-13-0) 16/22

Example: spring-mass system

▶ State-space model is

System model: find the relation between the force F and the position q

$$
m\ddot{q} + c\dot{q} + kq = F.
$$

Suppose $F = 0$ and analyze the stability of this system.

$$
\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

 \blacktriangleright Compute its eigenvalues

$$
\det(\lambda I - A) = \det\left(\begin{bmatrix} \lambda & -1\\ \frac{k}{m} & \lambda + \frac{c}{m} \end{bmatrix}\right) = \lambda^2 + \frac{c}{m}\lambda + \frac{k}{m} = 0
$$

 \blacktriangleright The eigenvalues have negative real parts

$$
\lambda_1 = \frac{-\frac{c}{m} + \sqrt{\left(\frac{c}{m}\right)^2 - \frac{4kc}{m}}}{2}, \qquad \lambda_2 = \frac{-\frac{c}{m} - \sqrt{\left(\frac{c}{m}\right)^2 - \frac{4kc}{m}}}{2}
$$

as long as $c > 0$ (damper). The system is asymptotically stable. [Stability of linear systems](#page-13-0) 17/22

Routh–Hurwitz Criterion

- ▶ It can often be difficult to analytically compute the roots of a high-order polynomial.
- ▶ The Routh–Hurwitz criterion is a stability criterion that does not require explicit calculation of the roots, because it gives conditions in terms of the coefficients of the characteristic polynomial – further on this later.

Example (Second-order systems)

Consider a second-order polynomial

$$
a\lambda^2+b\lambda+c=0
$$

▶ The Routh table is

$$
\begin{array}{ccc}\n\lambda^2 & a & c \\
\lambda^1 & b & 0 \\
\lambda^0 & -\frac{1}{b}(a \times 0 - bc) = c & 0\n\end{array}
$$

 \triangleright The eigenvalues has strictly negative real parts if and only if the first column of the Routh table is non-zero and has no sign changes.

[Stability of linear systems](#page-13-0) 18/22

Routh–Hurwitz Criterion

Example (Third-order systems)

Consider a third-order polynomial

$$
a\lambda^3 + b\lambda^2 + c\lambda + d = 0
$$

▶ The Routh table is

$$
\begin{array}{ccc}\n\lambda^3 & a & c \\
\lambda^2 & b & d \\
\lambda^1 & -\frac{1}{b}(ad - bc) & 0 \\
\lambda^0 & d & 0\n\end{array}
$$

- \triangleright The eigenvalues has strictly negative real parts if and only if the first column of the Routh table is non-zero and has no sign changes.
- If $a > 0$, then a sufficient and necessary condition for stability (all eigenvalues have strictly negative real parts) is

$$
a > 0, \qquad b > 0, \qquad bc > ad, \qquad d > 0
$$

[Stability of linear systems](#page-13-0) 19/22

Routh table

 \blacktriangleright $p(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_2 \lambda^2 + a_1 \lambda + a_0$

▶ Any row can be multiplied by a positive constant without changing the result

[Stability of linear systems](#page-13-0) 20/22

[Equilibrium points and Limit Cycles](#page-2-0)

[Stability of Equilibrium points](#page-7-0)

[Stability of linear systems](#page-13-0)

[Summary](#page-20-0)

[Summary](#page-20-0) 21/22

Summary

- ▶ An equilibrium point of a dynamical system represents a stationary condition for the dynamics.
- \triangleright Stable, asymptotically stable, unstable $-$ sink, source, saddle, center

- \blacktriangleright Stability of linear systems
	- Eigenvalue test
	- Routh–Hurwitz Criterion