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First-order linear homogeneous ODEs

In Lecture 2, we have discussed the first-order and second-order linear ODEs.
Here, we review the methods for solving first-order linear ODEs.

A first-order homogeneous linear ODE is of the form

ẋ(t) = ax(t)

where a ∈ R is a constant, ẋ(t) denotes the derivative of x(t).

▶ The solution is
x(t) = eatx(0).

(Recall the function with the first-order derivative being itself is
x(t) = et.)

▶ We can easily verify it by observing

ẋ(t) = aeatx(0) = ax(t),

x(0) = ea×0x(0) = x(0).
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Example 1: Stable system

Consider a first-order ODE

ẋ(t) + 2x(t) = 0, x(0) = 1.

▶ We have ẋ(t) = −2x(t) implying that

x(t) = x(0)e−2t = e−2t,

▶ You can verify the answer by

ẋ(t) + 2x(t) = −2e−2t + 2e−2t = 0

and x(0) = 1.
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Example 2: stable system

Consider a first-order ODE

ẋ(t) + 2x(t) = 0, x(0) = 2

▶ It is similar to the previous problem except the different initial values
are different.

▶ So the solution is

x(t) = x(0)e−2t = 2e−2t.

▶ You can verify the answer by

ẋ(t) + 2x(t) = −4e−2t + 4e−2t = 0

and x(0) = 2.
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Example 3: Unstable system

Consider a first-order ODE

ẋ(t)− 2x(t) = 0, x(0) = 1

The solution is
x(t) = x(0)e2t = e2t.

You can verify the answer by

ẋ(t)− 2x(t) = 2e2t − 2e2t = 0

and x(0) = 1.
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Stability

Stability can be judged by either their solutions or figures.

▶ The solutions of these stable systems are c1e
−2t which all converge

to 0;

▶ The solution of the unstable system is c2e
2t which is unbounded.

Their solutions are shown in the following figures

Example 1.1

Example 1.2

Example 1.3
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Nonhomogeneous ODEs

We consider the general form of a first-order linear ODE:

ẋ(t) + cx(t) = u(t), (1)

where c ∈ R is a given constant, and u(t) is a given function.

▶ We multiply (1) by the integrating factor µ(t) = ect.

▶ Since µ̇(t) = cµ(t), from (1), we have

d

dt
(µ(t)x(t)) = µ̇(t)x(t) + µ(t)ẋ(t)

= µ(t)(ẋ(t) + cx(t))

= µ(t)u(t).

▶ Now we denote µ(t)x(t) = g(t) and µ(t)u(t) = h(t). Then, we have

ġ(t) = h(t).
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Nonhomogeneous ODEs

Thus, we have

g(t) =

∫
h(t)dt+ c1

Let us go back to x(t). This is the same as

µ(t)x(t) =

∫
ectu(t)dt+ c1

Thus, the general solution is:

x(t) = e−ct

(∫
ectu(t)dt+ c1

)
,

where c is the same constant in (1), and c1 is another constant to be
determined from initial conditions.
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Example 4: Stable system with positive input

Consider a first-order ODE

ẋ(t) + 2x(t) = 5, x(0) = 1

▶ The general solution is

x(t) = e−2t

(∫
5e2tdt+ c1

)
= e−2t

(
5

2
e2t + c1

)
=

5

2
+ c1e

−2t,

▶ Let us determine the constant c1 from x(0) = 1.

▶ It is easy to see that c1 = − 3
2 , leading to x(0) = 1.

▶ We can also verify the solution via

ẋ(t) + 2x(t) = −3

2
(−2)e−2t + 5− 3e−2t = 5.
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Example 5: Stable system with negative input

Consider a first-order ODE

ẋ(t) + 2x(t) = −5, x(0) = 1

▶ The general solution is

x(t) = e−2t

(∫
−5e2tdt+ c1

)
= e−2t

(
−5

2
e2t + c1

)
= −5

2
+ c1e

−2t,

▶ Let us determine the constant c1 from x(0) = 1.

▶ It is easy to see that c1 = 7
2 , leading to x(0) = 1.

▶ We can also verify the solution via

ẋ(t) + 2x(t) = −7

2
(−2)e−2t − 5− 7e−2t = −5.
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Example 6: System with polynomial input

Consider a first-order ODE

ẋ(t) + 2x(t) = t, x(0) = 1

▶ Using integration by parts, we have∫
te2tdt =

1

2
te2t − 1

2

∫
e2tdt =

te2t

2
− e2t

4

▶ The solution is

x(t) = e−2t

(
te2t

2
− e2t

4
+ c1

)
=

1

2
t− 1

4
+ c1e

−2t,

where c1 = 5
4 satisfies x(0) = 1.

▶ We can check the answer by

ẋ(t) + 2x(t) =
1

2
+

5

4
(−2)e−2t + t− 1

2
+

5

2
e−2t = t.
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Example 7: System with trigonometric input

Consider a first-order ODE

ẋ(t) + 2x(t) = sin t, x(0) = 1

▶ Let us verify

x(t) =
1

5
(2 sin t− cos t) +

6

5
e−2t,

is a valid solution.
▶ First, we have

x(0) = −1

5
+

6

5
= 1.

▶ Second, we have

ẋ(t) + 2x(t) =
1

5
(2 cos t+ sin t) +

6

5
(−2)e−2t

+
2

5
(2 sin t− cos t) +

12

5
e−2t

= sin t.
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Review on Integration by parts

The integration by parts formula states:

▶ in the form of the indefinite integral∫
u(t)v̇(t)dt = u(t)v(t)−

∫
u̇(t)v(t)dt

▶ in the form of the definite integral∫ b

a

u(t)v̇(t)dt = [u(t)v(t)]ba −
∫ b

a

u̇(t)v(t)dt

= u(b)v(b)− u(a)v(a)−
∫ b

a

u̇(t)v(t)dt

In Examples 6 and 7, we have used the integration by parts to find
antiderivative of te2t and e2t sin t. In general, we let v̇(t) = ect, i.e.,
v(t) = 1

c e
ct.
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ode45 Matlab

▶ Matlab ODE45 function:

[t,y] = ode45(odefun,tspan,y0)

▶ Many useful information can be found here

https://www.mathworks.com/help/matlab/ref/ode45.html

%----- Example 1 -------

% \dot x = -2*x,

% with x(0) = 1

%-----------------------

f1 = @(t,x)(-2*x); % vector field

[ts,ys] = ode45(f1,[0,10],1);
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ode45 Matlab - Example 2 & 3

%----- Example 2 -------

% \dot x = -2*x,

% with x(0) = 2

%-----------------------

f2 = @(t,x)(-2*x); % vector field

[ts,ys] = ode45(f2,[0,10],2);
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%------ Example 3 -------------

% \dot x = 2*x,

% with x(0) = 1

%------------------------------

f3 = @(t,x)(2*x); % vector field

[ts,ys] = ode45(f3,[0,5],1);

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5
10

4

ode45 in Matlab 19/21



ode45 Matlab - Example 4 & 5

%------ Example 4 -------------

% \dot x = -2*x + 5,

% with x(0) = 1

%------------------------------

f4 = @(t,x)(-2*x+5); % vector field

[ts,ys] = ode45(f4,[0,5],1);
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%------ Example 5 -------------

% \dot x = -2*x - 5,

% with x(0) = 1

%------------------------------

f5 = @(t,x)(-2*x -5); % vector field

[ts,ys] = ode45(f5,[0,5],1);
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ode45 Matlab - Example 6 & 7

%------ Example 6 -------------

% \dot x = -2*x + t,

% with x(0) = 1

%------------------------------

f6 = @(t,x)(-2*x + t); % vector field

[ts,ys] = ode45(f6,[0,20],1);

0 5 10 15 20

0

2

4

6

8

10

%------ Example 7 -------------

% \dot x = -2*x + sin t,

% with x(0) = 1

%------------------------------

f7 = @(t,x)(-2*x + sin(t)); % vector field

[ts,ys] = ode45(f7,[0,20],1);
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