ECE 171A: Linear Control System Theory Discussion 1: Review on ODEs (I)

Yang Zheng
Assistant Professor, ECE, UCSD

April 03, 2024

Outline

First Order Linear Homogeneous ODEs

First Order Linear Nonhomogeneous ODEs

ode45 in Matlab

Outline

First Order Linear Homogeneous ODEs

First Order Linear Nonhomogeneous ODEs

ode45 in Matlab

First-order linear homogeneous ODEs

In Lecture 2, we have discussed the first-order and second-order linear ODEs. Here, we review the methods for solving first-order linear ODEs.

A first-order homogeneous linear ODE is of the form

$$
\dot{x}(t)=a x(t)
$$

where $a \in \mathbb{R}$ is a constant, $\dot{x}(t)$ denotes the derivative of $x(t)$.

- The solution is

$$
x(t)=e^{a t} x(0)
$$

(Recall the function with the first-order derivative being itself is $x(t)=e^{t}$.)

- We can easily verify it by observing

$$
\begin{aligned}
& \dot{x}(t)=a e^{a t} x(0)=a x(t), \\
& x(0)=e^{a \times 0} x(0)=x(0)
\end{aligned}
$$

Example 1: Stable system

Consider a first-order ODE

$$
\dot{x}(t)+2 x(t)=0, \quad x(0)=1 .
$$

- We have $\dot{x}(t)=-2 x(t)$ implying that

$$
x(t)=x(0) e^{-2 t}=e^{-2 t}
$$

- You can verify the answer by

$$
\dot{x}(t)+2 x(t)=-2 e^{-2 t}+2 e^{-2 t}=0
$$

and $x(0)=1$.

Example 2: stable system

Consider a first-order ODE

$$
\dot{x}(t)+2 x(t)=0, x(0)=2
$$

- It is similar to the previous problem except the different initial values are different.
- So the solution is

$$
x(t)=x(0) e^{-2 t}=2 e^{-2 t} .
$$

- You can verify the answer by

$$
\dot{x}(t)+2 x(t)=-4 e^{-2 t}+4 e^{-2 t}=0
$$

and $x(0)=2$.

Example 3: Unstable system

Consider a first-order ODE

$$
\dot{x}(t)-2 x(t)=0, \quad x(0)=1
$$

The solution is

$$
x(t)=x(0) e^{2 t}=e^{2 t} .
$$

You can verify the answer by

$$
\dot{x}(t)-2 x(t)=2 e^{2 t}-2 e^{2 t}=0
$$

and $x(0)=1$.

Stability

Stability can be judged by either their solutions or figures.

- The solutions of these stable systems are $c_{1} e^{-2 t}$ which all converge to 0 ;
- The solution of the unstable system is $c_{2} e^{2 t}$ which is unbounded.

Their solutions are shown in the following figures

Outline

First Order Linear Homogeneous ODEs

First Order Linear Nonhomogeneous ODEs

ode45 in Matlab

Nonhomogeneous ODEs

We consider the general form of a first-order linear ODE:

$$
\begin{equation*}
\dot{x}(t)+c x(t)=u(t) \tag{1}
\end{equation*}
$$

where $c \in \mathbb{R}$ is a given constant, and $u(t)$ is a given function.

- We multiply (1) by the integrating factor $\mu(t)=e^{c t}$.
- Since $\dot{\mu}(t)=c \mu(t)$, from (1), we have

$$
\begin{aligned}
\frac{d}{d t}(\mu(t) x(t)) & =\dot{\mu}(t) x(t)+\mu(t) \dot{x}(t) \\
& =\mu(t)(\dot{x}(t)+c x(t)) \\
& =\mu(t) u(t)
\end{aligned}
$$

- Now we denote $\mu(t) x(t)=g(t)$ and $\mu(t) u(t)=h(t)$. Then, we have

$$
\dot{g}(t)=h(t)
$$

Nonhomogeneous ODEs

Thus, we have

$$
g(t)=\int h(t) d t+c_{1}
$$

Let us go back to $x(t)$. This is the same as

$$
\mu(t) x(t)=\int e^{c t} u(t) d t+c_{1}
$$

Thus, the general solution is:

$$
x(t)=e^{-c t}\left(\int e^{c t} u(t) d t+c_{1}\right),
$$

where c is the same constant in (1), and c_{1} is another constant to be determined from initial conditions.

Example 4: Stable system with positive input

Consider a first-order ODE

$$
\dot{x}(t)+2 x(t)=5, x(0)=1
$$

- The general solution is

$$
\begin{aligned}
x(t) & =e^{-2 t}\left(\int 5 e^{2 t} d t+c_{1}\right) \\
& =e^{-2 t}\left(\frac{5}{2} e^{2 t}+c_{1}\right)=\frac{5}{2}+c_{1} e^{-2 t}
\end{aligned}
$$

- Let us determine the constant c_{1} from $x(0)=1$.
- It is easy to see that $c_{1}=-\frac{3}{2}$, leading to $x(0)=1$.
- We can also verify the solution via

$$
\dot{x}(t)+2 x(t)=-\frac{3}{2}(-2) e^{-2 t}+5-3 e^{-2 t}=5
$$

Example 5: Stable system with negative input

Consider a first-order ODE

$$
\dot{x}(t)+2 x(t)=-5, x(0)=1
$$

- The general solution is

$$
\begin{aligned}
x(t) & =e^{-2 t}\left(\int-5 e^{2 t} d t+c_{1}\right) \\
& =e^{-2 t}\left(-\frac{5}{2} e^{2 t}+c_{1}\right)=-\frac{5}{2}+c_{1} e^{-2 t},
\end{aligned}
$$

- Let us determine the constant c_{1} from $x(0)=1$.
- It is easy to see that $c_{1}=\frac{7}{2}$, leading to $x(0)=1$.
- We can also verify the solution via

$$
\dot{x}(t)+2 x(t)=-\frac{7}{2}(-2) e^{-2 t}-5-7 e^{-2 t}=-5 .
$$

Example 6: System with polynomial input

Consider a first-order ODE

$$
\dot{x}(t)+2 x(t)=t, x(0)=1
$$

- Using integration by parts, we have

$$
\int t e^{2 t} d t=\frac{1}{2} t e^{2 t}-\frac{1}{2} \int e^{2 t} d t=\frac{t e^{2 t}}{2}-\frac{e^{2 t}}{4}
$$

- The solution is

$$
x(t)=e^{-2 t}\left(\frac{t e^{2 t}}{2}-\frac{e^{2 t}}{4}+c_{1}\right)=\frac{1}{2} t-\frac{1}{4}+c_{1} e^{-2 t}
$$

where $c_{1}=\frac{5}{4}$ satisfies $x(0)=1$.

- We can check the answer by

$$
\dot{x}(t)+2 x(t)=\frac{1}{2}+\frac{5}{4}(-2) e^{-2 t}+t-\frac{1}{2}+\frac{5}{2} e^{-2 t}=t
$$

Example 7: System with trigonometric input

Consider a first-order ODE

$$
\dot{x}(t)+2 x(t)=\sin t, x(0)=1
$$

- Let us verify

$$
x(t)=\frac{1}{5}(2 \sin t-\cos t)+\frac{6}{5} e^{-2 t}
$$

is a valid solution.

- First, we have

$$
x(0)=-\frac{1}{5}+\frac{6}{5}=1
$$

- Second, we have

$$
\begin{aligned}
\dot{x}(t)+2 x(t) & =\frac{1}{5}(2 \cos t+\sin t)+\frac{6}{5}(-2) e^{-2 t} \\
& +\frac{2}{5}(2 \sin t-\cos t)+\frac{12}{5} e^{-2 t} \\
& =\sin t
\end{aligned}
$$

Review on Integration by parts

The integration by parts formula states:

- in the form of the indefinite integral

$$
\int u(t) \dot{v}(t) d t=u(t) v(t)-\int \dot{u}(t) v(t) d t
$$

- in the form of the definite integral

$$
\begin{aligned}
\int_{a}^{b} u(t) \dot{v}(t) d t & =[u(t) v(t)]_{a}^{b}-\int_{a}^{b} \dot{u}(t) v(t) d t \\
& =u(b) v(b)-u(a) v(a)-\int_{a}^{b} \dot{u}(t) v(t) d t
\end{aligned}
$$

In Examples 6 and 7, we have used the integration by parts to find antiderivative of $t e^{2 t}$ and $e^{2 t} \sin t$. In general, we let $\dot{v}(t)=e^{c t}$, i.e., $v(t)=\frac{1}{c} e^{c t}$.

Outline

First Order Linear Homogeneous ODEs
 First Order Linear Nonhomogeneous ODEs

ode45 in Matlab

ode45 Matlab

- Matlab ODE45 function:

$$
[t, y]=\text { ode } 45(\text { odefun, tspan, } y 0)
$$

- Many useful information can be found here https://www.mathworks.com/help/matlab/ref/ode45.html

```
%----- Example 1 -------
% \dot x = -2*x,
% with x(0) = 1
%-------------------------
```

f 1 = @(t,x) (-2*x); \% vector field
[ts,ys] = ode45(f1,[0,10],1);

ode45 Matlab - Example 2 \& 3

\%----- Example 2 --------
$\% \quad \backslash \operatorname{dot} \mathrm{x}=-2 * \mathrm{x}$,
$\%$ with $\mathrm{x}(0)=2$
\%-------------------------
$\mathrm{f} 2=@(\mathrm{t}, \mathrm{x})(-2 * \mathrm{x})$; \% vector field
[ts,ys] $=\operatorname{ode45(f2,[0,10],2);~}$
\%------ Example 3 -----------------
$\%$ dot $\mathrm{x}=2 * \mathrm{x}$,
$\%$ with $\mathrm{x}(0)=1$
\%----------------------------------
f3 $\quad=@(t, x)(2 * x) ; \%$ vector field
[ts,ys] $=\operatorname{ode45(f3,[0,5],1);~}$

ode45 Matlab - Example 4 \& 5

\%------ Example 4 -----------------
$\%$ dot $\mathrm{x}=-2 * \mathrm{x}+5$,
$\%$ with $\mathrm{x}(0)=1$
\%-----------------------------------
$\mathrm{f} 4=\mathrm{@}(\mathrm{t}, \mathrm{x})(-2 * \mathrm{x}+5)$; \% vector field
[ts,ys] $=\operatorname{ode45(f4,[0,5],1);~}$
\%------ Example 5 -----------------
$\% \quad \backslash \operatorname{dot} \mathrm{x}=-2 * \mathrm{x}-5$,
$\%$ with $\mathrm{x}(0)=1$
\%---------------------------------------
$\mathrm{f} 5=\mathrm{@}(\mathrm{t}, \mathrm{x})(-2 * \mathrm{x}-5)$; $\%$ vector field
[ts,ys] $=\operatorname{ode45(f5,[0,5],1);~}$

ode45 Matlab - Example 6 \& 7

\%------ Example 6
$\%$ dot $\mathrm{x}=-2 * \mathrm{x}+\mathrm{t}$,
$\%$ with $\mathrm{x}(0)=1$
\%-------------------------------------
$\mathrm{f} 6=\quad$ @ $(\mathrm{t}, \mathrm{x})(-2 * \mathrm{x}+\mathrm{t})$; \% vector field
[ts,ys] $=\operatorname{ode45(f6,[0,20],1);~}$

\%------ Example 7
$\% \quad \backslash \operatorname{dot} \mathrm{x}=-2 * \mathrm{x}+\sin \mathrm{t}$,
$\%$ with $\mathrm{x}(0)=1$
\%--------------------------------
f7 $=@(t, x)(-2 * x+\sin (t)) ; \%$ vector f_{1}
[ts,ys] $=\operatorname{ode45(f7,[0,20],1);~}$

