ECE 171A: Linear Control System Theory Discussion 3: Review on Eigenvalues and Eigenvectors

Yang Zheng
Assistant Professor, ECE, UCSD

April 17, 2024

Outline

Eigenvalues and Eigenvectors

Diagonalization

Cayley-Hamilton Theorem

Outline

Eigenvalues and Eigenvectors

Diagonalization

Cayley-Hamilton Theorem

Eigenvalues and Eigenvectors

Let $A \in \mathbb{R}^{n \times n}$. If we have

$$
A x=\lambda x, \quad \lambda \in \mathbb{R}, \quad x \neq 0 \in \mathbb{R}^{n},
$$

then λ is called an eigenvalue and x is called an eigenvector of A.

- Geometrical interpretation: if we start along vector x, transforming by A simply scales the vector without affecting its direction.
- How do we find an eigenvalue and eigenvector?
- Observation 1:

$$
A x=\lambda x \Rightarrow(A-\lambda I) x=0
$$

It means that $A-\lambda I$ is rank deficient $(\operatorname{rank}(A-\lambda I)<n)$.

- Then, we have

$$
\operatorname{det}(A-\lambda I)=0
$$

which gives n eigenvalues (multiplicity is counted).

Example 1

Example

Let

$$
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right]
$$

- Step 1: determinant

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 4 \\
2 & 3-\lambda
\end{array}\right]\right) \\
& =(1-\lambda)(3-\lambda)-8=\lambda^{2}-4 \lambda-5=0
\end{aligned}
$$

- Step 2: solving the characteristic polynomial

$$
\lambda^{2}-4 \lambda-5=(\lambda-5)(\lambda+1)=0 \Rightarrow \lambda_{1}=5, \lambda_{2}=-1
$$

- Step 3: find the eigenvector associated with each eigenvalue.

Example 1

Example

- Case 1: $\lambda_{1}=5$

$$
\begin{aligned}
& \left(A-\lambda_{1} I\right) x=0 \Rightarrow\left[\begin{array}{cc}
-4 & 4 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0 \\
\Rightarrow & \left\{\begin{array}{l}
-4 x_{1}+4 x_{2}=0 \\
2 x_{1}-2 x_{2}=0
\end{array} \Rightarrow x_{2}=x_{1}\right.
\end{aligned}
$$

then $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of A associated with $\lambda_{1}=5$.

- Case 2: $\lambda_{2}=-1$

$$
\begin{aligned}
& \left(A-\lambda_{2} I\right) x=0 \Rightarrow\left[\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0 \\
\Rightarrow & \left\{\begin{array}{l}
2 x_{1}+4 x_{2}=0 \\
2 x_{1}+4 x_{2}=0 .
\end{array} \Rightarrow-2 x_{2}=x_{1},\right.
\end{aligned}
$$

then $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ is an eigenvector of A associated with $\lambda_{2}=-1$.

Example 2

Example

Consider a second-order ODE

$$
\begin{equation*}
\ddot{z}(t)-3 \dot{z}(t)-18 z(t)=0, \quad z(0)=3, \quad \dot{z}(0)=9 \tag{1}
\end{equation*}
$$

- The characteristic polynomial is $s^{2}-3 s-18=(s-6)(s+3)$ which has roots 6 and -3 .
- It is equivalent to

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
18 & 3
\end{array}\right] x \quad \text { with } \quad x(0)=\left[\begin{array}{l}
3 \\
9
\end{array}\right]
$$

- In this case, we have the eigenvalues and eigenvectors of A as

$$
A \times\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]=-3\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right], \quad A \times\left[\begin{array}{l}
\frac{1}{6} \\
1
\end{array}\right]=6\left[\begin{array}{l}
\frac{1}{6} \\
1
\end{array}\right]
$$

Examples in Matlab

Matlab eig function:

$$
[\mathrm{V}, \mathrm{D}]=\operatorname{eig}(\mathrm{A})
$$

- It returns diagonal matrix D of eigenvalues and matrix V whose columns are the corresponding right eigenvectors, so that $A \times V=V \times D$.
- Useful information can be found here https://www.mathworks.com/help/matlab/ref/eig.html

What are the eigenvalues and eigenvectors of

$$
A_{2}=\left[\begin{array}{cc}
12 & 3 \\
2 & 7
\end{array}\right], \quad A_{3}=\left[\begin{array}{lll}
1 & 5 & 4 \\
2 & 5 & 1 \\
7 & 4 & 1
\end{array}\right]
$$

2nd ODE and its matrix form

A homogeneous second-order linear ODEs (with constant coefficients) is in the form

$$
\begin{equation*}
\ddot{z}(t)+a \dot{z}(t)+b z(t)=0 \tag{2}
\end{equation*}
$$

where $a \in \mathbb{R}$ and $b \in \mathbb{R}$ are constants.

- Let us define

$$
x_{1}=z, \quad x_{2}=\dot{z} .
$$

- Then (2) is equivalent to a first-order matrix ODE

$$
\dot{x}=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-b & -a
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- What are the eigenvalues of A ?

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 1 \\
-b & -a-\lambda
\end{array}\right]\right)=\lambda^{2}+a \lambda+b=0
$$

which is identical to the characteristic polynomial of (2).

Review on solving 2nd ODE

We guess the solution to (2) is in the form of $z(t)=e^{s t}$.

- Substituting the (2) by $z(t)=e^{s t}$, we obtain that

$$
\ddot{z}(t)+a \dot{z}(t)+b z(t)=s^{2} e^{s t}+a s e^{s t}+b e^{s t}=e^{s t}\left(s^{2}+a s+b\right)=0
$$

- The value of s must satisfy

$$
\begin{equation*}
F(s):=s^{2}+a s+b=0 \tag{3}
\end{equation*}
$$

- $F(s)$ is called the characteristic polynomial associated with a homogeneous second-order ODE.

Solving the original ODE is reduced to solving an algebraic equation. Three cases:

1. $F(s)$ has two distinct roots;
2. $F(s)$ has a double root;
3. $F(s)$ has a pair of complex roots;

Why do we care?

In control theory, we can use the eigenvalues of a system to make a statement about its stability.

- The precise definition of stability is discussed in Lecture 7.

Theorem (Stability of a linear system)

The system

$$
\dot{x}=A x
$$

- is asymptotically stable if and only if all eigenvalues of A have a strictly negative real part, i.e., $\operatorname{Re}\left(\lambda_{i}\right)<0$
- is unstable if any eigenvalues A has a strictly positive real part.

Remark: This result works for any LTI system (beyond 2nd ODE). If $\operatorname{Re}\left(\lambda_{i}\right) \leq 0, i=1, \ldots, n$ and some $\operatorname{Re}\left(\lambda_{i}\right)=0$, the stability conditions are more complicated, which is beyond the scope of this class.

Unstable systems

Example (Unstable systems)

Consider the system $\ddot{q}=0$. It can be written in state-space form as

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

- The system has eigenvalues $\lambda=0$, but the solutions are not bounded

$$
\begin{aligned}
& x_{1}(t)=x_{1}(0)+x_{2}(0) t, \\
& x_{2}(t)=x_{2}(0) .
\end{aligned}
$$

Outline

Eigenvalues and Eigenvectors

Diagonalization

Cayley-Hamilton Theorem

Matrix form

As discussed in Lecture 2, any nth linear ODE can be rewritten into

$$
\dot{x}=A x
$$

for which we have a general solution $x(t)=e^{A t} x(0)$.

- For the second-order ODE in (2), we define

$$
x_{1}(t)=z(t), \quad x_{2}(t)=\dot{z}(t)
$$

- Then the second-order ODE in (2) becomes

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \tag{4}\\
-b & -a
\end{array}\right] x, \quad \text { with } x(0)=x_{0} \in \mathbb{R}^{2}
$$

Definition

Given a matrix $A \in \mathbb{R}^{n \times n}$, the exponential of A, denoted by e^{A}, is defined by

$$
e^{A}:=I+A+\frac{1}{2} A^{2}+\ldots+\frac{1}{n!} A^{n}+\ldots=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}
$$

Diagonal matrix

For a diagonal matrix Λ, we have

$$
\begin{aligned}
e^{\Lambda} & =I+\Lambda+\frac{1}{2} \Lambda^{2}+\frac{1}{3!} \Lambda^{3}+\ldots \\
& =\left[\begin{array}{cc}
1+\lambda_{1}+\frac{1}{2} \lambda_{1}^{2}+\frac{1}{3!} \lambda_{1}^{3}+\ldots & 0 \\
0 & 1+\lambda_{2}+\frac{1}{2} \lambda_{2}^{2}+\frac{1}{3!} \lambda_{2}^{3}+\ldots
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{\lambda_{1}} & 0 \\
0 & e^{\lambda_{2}}
\end{array}\right],
\end{aligned}
$$

Diagonalization

- For a diagonalizable matrix A, let v_{1}, v_{2} satisfy

$$
\{\begin{array}{l}
A v_{1}=\lambda_{1} v_{1}, \\
A v_{2}=\lambda_{2} v_{2}
\end{array} \quad \Longrightarrow \quad A \underbrace{\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]}_{P}=\underbrace{\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]}_{P} \underbrace{\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]}_{\Lambda}
$$

- Thus, we have

$$
A=P \Lambda P^{-1} .
$$

We have

$$
\begin{aligned}
e^{A} & =e^{P \Lambda P^{-1}}=I+P \Lambda P^{-1}+\frac{1}{2}\left(P \Lambda P^{-1}\right)^{2}+\frac{1}{3!}\left(P \Lambda P^{-1}\right)^{3}+\ldots \\
& =P\left(I+\Lambda+\frac{1}{2} \Lambda^{2}+\frac{1}{3!} \Lambda^{3}+\ldots\right) P^{-1} \\
& =P e^{\Lambda} P^{-1}
\end{aligned}
$$

Diagonalization

We can use eigenvectors and eigenvalues to diagonalize A in special cases

In this class, we will deal with diagonalizable matrices often. Some examples of diagonalizable matrices are

- Symmetric matrices;
- All eigenvalues are distinct;
- The matrix A has n linearly independent eigenvectors.

$$
e^{A t}=P\left[\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \ldots & 0 \\
0 & e^{\lambda_{2} t} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & e^{\lambda_{n} t}
\end{array}\right] P^{-1}
$$

If there is an eigenvalue with $\operatorname{Re}\left(\lambda_{i}\right)>0$, the system state will be growing unboundedly along that eigenvector.

Outline

Eigenvalues and Eigenvectors

Diagonalization

Cayley-Hamilton Theorem

Cayley-Hamilton Theorem

Theorem
Let $\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots a_{1} \lambda+a_{0}=0$ be the characteristic equation of A, i.e., $\operatorname{det}(\lambda I-A)=0$. Then, we have

$$
A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I=0
$$

Some implications:

- Cayley-Hamilton Theorem says that $I, A, A^{2}, A^{3}, \ldots, A^{n}$ are linearly dependent.
- It also shows that the inverse of A is a linear combination of its power sequences up to A^{n-1}

$$
A^{-1}=-\frac{1}{a_{0}}\left(A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{1} I\right)
$$

