ECE 171A: Linear Control System Theory

Discussion 5: Review on Complex numbers, rational functions, and laplace transform

Yang Zheng
Assistant Professor, ECE, UCSD

May 01, 2024

Outline

Complex numbers

Complex functions and Rational functions

Laplace transform

Outline

Complex numbers

Complex functions and Rational functions

Laplace transform

Complex numbers

A complex number $z \in \mathbb{C}$ has a real and an imaginary part, and can be represented in either Cartesian or Polar coordinates.

- Cartesian form: z is represented as a linear combination of basis vectors in the complex plane, i.e., the sum of the real part and imaginary part.
- Polar form: z is represented by a magnitude r and phase θ.

Figure: An illustration of the complex plane. The real part of a complex number $z=x+i y$ is x, and its imaginary part is y.

Operations

Cartesian
 Polar

$$
z \quad z=a+b i, \quad a, b \in \mathbb{R} \quad z=r e^{i \theta}, r, \theta \in \mathbb{R}
$$

\bar{z} Conjugate

$$
\bar{z}=a-b i
$$

$$
\bar{z}=r e^{-i \theta}, r, \theta \in \mathbb{R}
$$

Conversion $\quad a=r \cos \theta, b=r \sin \theta \quad r=\sqrt{a^{2}+b^{2}}, \theta=\arctan \left(\frac{b}{a}\right)$

$$
\begin{array}{llrl}
\operatorname{Re}(z) & a & =\frac{1}{2}(z+\bar{z}) & r \cos \theta
\end{array}=\frac{r}{2}\left(e^{i \theta}+e^{-i \theta}\right)
$$

- In this course, we typically express the frequency variable s as a complex number $s=\sigma+i \omega$:

Euler's Formula

Definition

For any real number t, we define $e^{i t}=\cos t+i \sin t$

Figure: Euler's definition of $e^{i \theta}$.

Euler's formula: A famous example is $e^{\pi i}=\cos \pi+i \sin \pi=-1$, leading to

$$
e^{\pi i}+1=0
$$

This combines the five most basic quantities in mathematics $e, \pi, i, 1$ and 0 .

Computation

- Addition and subtraction in Cartesian form tend to be simpler:

$$
\begin{aligned}
z_{1} & =a+b i, \quad z_{2}=c+d i \\
\Rightarrow \quad z_{1}+z_{2} & =a+c+(b+d) i \\
\Rightarrow \quad z_{1}-z_{2} & =a-c+(b-d) i
\end{aligned}
$$

- On the other hand, multiplication and division tend to be simpler in polar form:

$$
\begin{aligned}
z_{1} & =r_{1} e^{i \theta_{1}}, \quad z_{2}=r_{2} e^{i \theta_{2}} \\
\Rightarrow \quad z_{1} z_{2} & =r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)} \\
\Rightarrow \quad \frac{z_{1}}{z_{2}} & =\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
\end{aligned}
$$

Multiplication and division and in the complex plane correspond to

- scaling the magnitude by the original magnitudes,
- and shifting phase by the sum or difference of the original phases.

Example

Example

Let $z_{1}=-1+\sqrt{3} i$ and $z_{2}=\bar{z}_{1}$. Find polar forms for z_{1} and z_{2}. Calculate $z_{1}+z_{2}, z_{1} z_{2}$, and $\frac{z_{1}}{z_{2}}$.

- In polar form, we have the magnitude is given by

$$
|z|=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=2 .
$$

- The phase is given by

$$
\theta=\arctan \left(\frac{\sqrt{3}}{-1}\right)=\frac{2 \pi}{3}
$$

- Then, we have

$$
z_{1}=2 e^{\frac{2 \pi}{3} i}, \quad z_{2}=2 e^{\frac{-2 \pi}{3} i} .
$$

- In the Cartesian form, we have

$$
z_{2}=\bar{z}_{1}=-1-\sqrt{3} i, \quad z_{1}+z_{2}=-2, \quad z_{1}-z_{2}=2 \sqrt{3} i .
$$

Example

- In the Cartesian form, we have

$$
\begin{aligned}
& z_{1} z_{2}=(-1+\sqrt{3} i)(-1-\sqrt{3} i)=1-\sqrt{3} i+\sqrt{3} i-3 i^{2}=4 \\
& \frac{z_{1}}{z_{2}}=\frac{-1+\sqrt{3} i}{-1-\sqrt{3} i} \cdot \frac{-1+\sqrt{3} i}{-1+\sqrt{3} i}=\frac{1-2 \sqrt{3} i+3 i^{2}}{4}=\frac{-1-\sqrt{3} i}{2}
\end{aligned}
$$

- In the polar form, we have

$$
\begin{aligned}
z_{2} & =\bar{z}_{1}=2 e^{\frac{-2 \pi}{3} i} \\
z_{1}+z_{2} & =2\left(e^{\frac{2 \pi}{3} i}+e^{\frac{-2 \pi}{3} i}\right)=2\left(2 \cos \left(\frac{2 \pi}{3}\right)\right)=-2 \\
z_{1}-z_{2} & =2\left(e^{\frac{2 \pi}{3} i}-e^{\frac{-2 \pi}{3} i}\right)=2\left(2 \sin \left(\frac{2 \pi}{3}\right)\right) i=2 \sqrt{3} i
\end{aligned}
$$

and

$$
\begin{aligned}
z_{1} \cdot z_{2} & =2 e^{\frac{2 \pi}{3} i} \cdot 2 e^{\frac{-2 \pi}{3} i}=4 e^{\left(\frac{2 \pi}{3} i-\frac{2 \pi}{3} i\right)}=4 \\
\frac{z_{1}}{z_{2}} & =\frac{2 e^{\frac{2 \pi}{3} i}}{2 e^{\frac{-2 \pi}{3} i}}=e^{\frac{4 \pi}{3} i}
\end{aligned}
$$

Outline

Complex numbers

Complex functions and Rational functions

Laplace transform

Complex functions

A complex valued function ${ }^{1}$ on some interval $I=(a, b) \subseteq \mathbb{R}$ is $f: I \rightarrow \mathbb{C}$.

- Such a function can be written as in terms of its real and imaginary parts,

$$
f(t)=u(t)+i v(t)
$$

in which $u, v: I \rightarrow \mathbb{R}$ are two real valued functions.

A complex valued function of a complex variable is a function $f(z): \mathbb{C} \rightarrow \mathbb{C}$.

- If $z=x+i y$, then $f(z)$ corresponds to a function

$$
F(x, y)=u(x, y)+i v(x, y)
$$

of the two real variables x and y.

- We can consider $f(z)$ is a function from \mathbb{R}^{2} to \mathbb{R}^{2}.

[^0]
Example

Example

1. $f(z)=z$ corresponds to $F(x, y)=x+i y \quad(u=x, v=y)$;
2. $f(z)=\bar{z}$ corresponds to $F(x, y)=x-i y \quad(u=x, v=-y)$;
3. $f(z)=\operatorname{Re}(z)$ corresponds to $F(x, y)=x \quad(u=x, v=0)$;
4. $f(z)=|z|$ corresponds to $F(x, y)=\sqrt{x^{2}+y^{2}} \quad\left(u=\sqrt{x^{2}+y^{2}}, v=0\right)$;
5. $f(z)=z^{2}$ corresponds to $F(x, y)=\left(x^{2}-y^{2}\right)+i(2 x y)$ $\left(u=x^{2}-y^{2}, v=2 x y\right) ;$
6. $f(z)=e^{z}$ corresponds to $F(x, y)=e^{x} \cos y+i\left(e^{x} \sin y\right)$ $\left(u=e^{x} \cos y, v=e^{x} \sin y\right) ;$
7. $f(z)=\frac{1}{z}$ corresponds to $F(x, y)=\frac{x}{x^{2}+y^{2}}+i \frac{-y}{x^{2}+y^{2}}$

$$
\left(u=\frac{x}{x^{2}+y^{2}}, v=\frac{-y}{x^{2}+y^{2}}\right) ;
$$

Polynomials

A polynomial of a complex variable $z=x+i y$ is a function of the form

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}
$$

where $a_{i}, i=0,1, \ldots, n$ are complex numbers.

- We focus on polynomials with real coefficient ($a_{i} \in \mathbb{R}, i=1, \ldots, n$).
- The real and imaginary parts of a polynomial $P(z)$ are polynomials in x, y :

$$
\begin{aligned}
& P_{1}(z)=z^{2}=\left(x^{2}-y^{2}\right)+i(2 x y) \\
& P_{2}(z)=(1+i) z^{2}-3 i z=\left(x^{2}-y^{2}-2 x y+3 y\right)+\left(x^{2}-y^{2}+2 x y-3 x\right) i .
\end{aligned}
$$

- In the polar form $z=r e^{i \theta}$, we have

$$
z^{n}=r^{n} e^{i n \theta}, \quad(\bar{z})^{n}=r^{n} e^{-i n \theta}
$$

- Thus, we have $\overline{\left(z^{n}\right)}=(\bar{z})^{n}$.
- In general, for any polynomial $p(z)$ with real coefficients, we have

$$
\overline{p(z)}=p(\bar{z}), \quad \overline{p(i \omega)}=p(-i \omega)
$$

Fundamental Theorem of Algebra

Fundamental Theorem of Algebra (first proved by Gauss in 1799): if $P(z)$ is a non-constant polynomial, then $P(z)$ has a complex root. In other words, there exists a complex number c such that $P(c)=0$.

- If $P(z)$ is a polynomial of degree $n>0$, then $P(z)$ can be factorized into linear factors:

$$
P(z)=a\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{n}\right),
$$

for complex numbers a and $\lambda_{1}, \ldots, \lambda_{n}$.

Every non-constant polynomial $P(z)$ with real coefficients can be factorized into (real) polynomials of degree one or two.

- In other words, the roots of polynomial $P(z)$ with real coefficients come with pairs $\lambda_{i}=x+y i$ and $\lambda_{i+1}=x-y i$.

Rational functions

A rational function $G(z)$ is a quotient of two polynomials

$$
G(z)=\frac{P(z)}{Q(z)}
$$

where $P(z)$ and $Q(z)$ are polynomials and $Q(z)$ is not identically zero.

Example

Here are some examples

$$
\begin{aligned}
G_{1}(z) & =\frac{1}{z} \\
G_{2}(z) & =\frac{1}{z+1} \\
G_{3}(z) & =\frac{z+1}{z^{2}+z+1}
\end{aligned}
$$

Outline

Complex numbers
\section*{Complex functions and Rational functions}

Laplace transform

Laplace transform

Definition

The Laplace transform of a function $f(t)$ is defined by the integral

$$
F(s)=\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

for those complex variable s where the integral converges.

The Laplace transform ${ }^{2}$ takes a function of time and transforms it to a function of a complex variable s.

- Because the transform is invertible, no information is lost
- It is reasonable to think of a function $f(t)$ and its Laplace transform $F(s)$ as two views of the same phenomenon.
- Each view has its uses and some features of the phenomenon are easier to understand in one view or the other.

[^1]
Example 1

Example

Calculate the Laplace transform of the step function

$$
f(t)= \begin{cases}0 & t<0 \\ 1 & t \geq 0\end{cases}
$$

Give the region in the complex s-plane where the integral converges. We have

$$
\begin{aligned}
F(s)=\mathcal{L}(f(t)) & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{\infty} e^{-s t} d t \\
& =\left.\frac{e^{-s t}}{-s}\right|_{0} ^{\infty} \\
& =\frac{1}{s}
\end{aligned}
$$

if $\operatorname{Re}(s)>0$, otherwise it is undefined.

Example 2

Example

Calculate the Laplace transform of the shifted delta function

$$
\delta(t-a)=\left\{\begin{array}{ll}
\infty & t=a \\
0 & \text { otherwise }
\end{array}, \quad \int_{-\infty}^{\infty} \delta(t-a) d t=1 .\right.
$$

By definition, we have

$$
\begin{aligned}
F(s)=\mathcal{L}(f(t)) & =\int_{0}^{\infty} e^{-s t} \delta(t-a) d t \\
& =\int_{0}^{\infty} e^{-s a} \delta(t-a) d t \\
& =e^{-s a} \int_{0}^{\infty} \delta(t-a) d t \\
& =e^{-s a}
\end{aligned}
$$

In particular, when $a=0$, we have

$$
F(s)=\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} \delta(t) d t=1
$$

Example 3

Example

Calculate the Laplace transform of the exponential function

$$
f(t)=e^{a t}
$$

- Given the region in the complex s-plane where the integral converges.
- We have

$$
\begin{aligned}
F(s)=\mathcal{L}(f(t)) & =\int_{0}^{\infty} e^{-s t} e^{a t} d t \\
& =\int_{0}^{\infty} e^{(a-s) t} d t \\
& =\left.\frac{e^{(a-s) t}}{a-s}\right|_{0} ^{\infty} \\
& =\frac{1}{s-a}
\end{aligned}
$$

if $\operatorname{Re}(s)>\operatorname{Re}(a)$, otherwise, it is undefined.

Example 4

Example

Compute the Laplace transform of the cosine function

$$
f(t)=\cos (\omega t)
$$

- We use the formula

$$
\cos (\omega t)=\frac{e^{i \omega t}+e^{-i \omega t}}{2}
$$

- So we have

$$
\begin{aligned}
F(s)=\mathcal{L}(f(t)) & =\int_{0}^{\infty} e^{-s t}\left(\frac{e^{i \omega t}+e^{-i \omega t}}{2}\right) d t \\
& =\frac{1}{2}\left(\frac{1}{s-i \omega}+\frac{1}{s+i \omega}\right) \\
& =\frac{s}{s^{2}+\omega^{2}}
\end{aligned}
$$

[^0]: ${ }^{1}$ See https://www.math. columbia.edu/~rf/complex2.pdf.

[^1]: ${ }^{2}$ See https://math.mit.edu/~jorloff/18.04/notes/topic12.pdf.

