ECE 171A: Linear Control System Theory Discussion 7: Nyquist plot - Review & Examples

Yang Zheng

Assistant Professor, ECE, UCSD

May 15, 2024

Outline

[Nyquist stability criterion](#page-2-0)

[Nyquist plot - examples](#page-8-0)

Outline

[Nyquist stability criterion](#page-2-0)

[Nyquist plot - examples](#page-8-0)

Stability of feedback systems

 \blacktriangleright Lyapunov stability — eigenvalue test of the closed-loop matrix; e.g.,

Dynamics $\rightarrow \quad \dot{x} = Ax + Bu$, Feedback controller $\rightarrow u = -Kr$ \Rightarrow $\dot{x} = (A - BK)x$.

▶ Poles or The Routh–Hurwitz Criterion:

$$
\begin{cases}\nP(s) & = \frac{n_{\rm p}(s)}{d_{\rm p}(s)} \\
C(s) & = \frac{n_{\rm c}(s)}{d_{\rm c}(s)}\n\end{cases}\n\Rightarrow\nG_{yr}(s) = \frac{PC}{1+PC} = \frac{n_{\rm p}(s)n_{\rm c}(s)}{d_{\rm p}(s)d_{\rm c}(s) + n_{\rm p}(s)n_{\rm c}(s)}
$$

They are straightforward but give little guidance for design: it is not easy to tell how the controller should be modified to make an unstable system stable.

[Nyquist stability criterion](#page-2-0) $4/21$

Nyquist's idea

- ▶ Nyquist's idea was to first investigate conditions under which oscillations can occur in a feedback loop.
- ▶ The Loop transfer function:

$$
L(s) = P(s)C(s).
$$

Assume that a sinusoid of frequency ω_0 is injected at point A. In steady state, the signal at point B will also be a sinusoid with the frequency ω_0 .

Very intuitive idea: It seems reasonable that an oscillation can be maintained if the signal at B has the same amplitude and phase as the injected signal!

▶ In this case, $L(i\omega_0) = -1$ (thus, $s = -1 + i0$) is called the critical point).

Nyquist contour

The (standard or simplest) Nyquist contour, also known as "Nyquist D contour" ($\Gamma \subset \mathbb{C}$), is made up of three parts:

- ▶ Contour C_1 : points $s = i\omega$ on the positive imaginary axis, as ω ranges from 0 to ∞
- ▶ Contour C_2 : points $s = Re^{i\theta}$ on a semi-circle as $R \to \infty$ and θ ranges from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$
- ▶ Contour C_3 : points $s = i\omega$ on the negative imaginary axis, as ω ranges from $-\infty$ to 0

The image of $L(s)$ when s traverses Γ gives a closed curve in the complex plane and is referred to as the **Nyquist plot** for $L(s)$.

▶ Nyquist's stability criterion utilizes contours in the complex plane to relate the locations of the open-loop and closed-loop poles.

Simplified Nyquist Criterion

Theorem (Simplified Nyquist Criterion)

Let $L(s)$ be the loop transfer function for a negative feedback system, and assume that L has no poles in the closed right half-plane ($Re(s) > 0$) except possibly at the origin. Then the closed loop system

$$
G_{\rm cl}(s) = \frac{L(s)}{1 + L(s)}
$$

is stable if and only if the image of $L(s)$ along the closed contour Γ (i.e., its Nyquist plot) has no net encirclements of the critical point $s = -1$.

[Nyquist stability criterion](#page-2-0) $7/21$

Nyquist's Stability Criterion

Theorem (Nyquist Stability Criterion)

Consider a unity feedback control system with open-loop transfer function $L(s)$. Let Γ be a Nyquist contour. The closed-loop system is stable if and only if the number of counterclockwise encirclements of the critical point $-1 + i0$ by the Nyquist plot $L(\Gamma)$ is equal to the number of open-loop unstable poles of $L(s)$.

Classical robustness measures: stability margin, phase margin, gain margin

[Nyquist stability criterion](#page-2-0) 8/21

Outline

[Nyquist stability criterion](#page-2-0)

[Nyquist plot - examples](#page-8-0)

Example 1: a third-order system

Draw a Nyquist plot for $L(s) = \frac{1}{(s+a)^3}$.

► Counter C_1 : $s = i\omega$ with ω from 0 to ∞

$$
L(i0) = \frac{1}{a^3} \angle 0^\circ
$$
, $L(i\infty) = 0 \angle -270^\circ$

• for
$$
0 < \omega < \infty
$$

$$
L(i\omega) = \frac{1}{(i\omega + a)^3}
$$

▶ Counter C_2 : $s = Re^{i\theta}$ for $R \to \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$.

$$
L(Re^{i\theta}) = \frac{1}{(Re^{i\theta} + a)^3} \to 0
$$

► Counter C_3 : $s = i\omega$ with $\omega \in (-\infty, 0)$ $L(-i\omega) = L(\overline{i}\omega) = \overline{L(i\omega)}$

which is a reflection (complex conjugate) of $L(C_1)$ about the real axis.

[Nyquist plot - examples](#page-8-0) 10/21

Example 1: a third-order system

Figure 10.5: Nyquist plot for a third-order transfer function $L(s)$. The Nyquist plot consists of a trace of the loop transfer function $L(s) = 1/(s+a)^3$ with $a = 0.6$. The solid line represents the portion of the transfer function along the positive imaginary axis, and the dashed line the negative imaginary axis. The outer arc of the Nyquist contour Γ maps to the origin.

Example 2: a second-order system

Draw a Nyquist plot for

$$
L(s) = \frac{100}{(1+s)(1+s/10)}.
$$

▶ Contour C_1 : $L(i0) = 100 \angle 0^\circ$, $L(i\infty) = 0 \angle -180^\circ$ ▶ Contour C_2 : $\lim_{R\to\infty} L(Re^{i\theta}) = 0$

Copyright (2002) Norson Education, All Rights Reserve

[Nyquist plot - examples](#page-8-0) 12/21

Pole/Zero on the Imaginary Axis

- ▶ When the loop transfer function has poles on the imaginary axis, the gain is infinite at the poles.
- ▶ The Nyquist contour needs to be modified to take a small detour around such poles or zeros
- \blacktriangleright So, we add another part: **Contour** C_4

$$
-\text{ plot }L(\epsilon e^{i\theta})\text{ for }\epsilon\to 0\text{ and }
$$

$$
\theta\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)
$$

– substitute $s = \epsilon e^{i\theta}$ into $L(s)$ and examine what happens as

$$
\epsilon\to 0
$$

[Nyquist plot - examples](#page-8-0) 13/21

Draw a Nyquist plot for a loop transfer system:

$$
L(s) = \frac{\kappa}{s(1+\tau s)}
$$

▶ Since there is a pole at the origin, we need to use a modified Nyquist contour

▶ Contour C_4 with $s = \epsilon e^{i\theta}$ for $\epsilon \to 0$ and $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$: $\lim_{\epsilon \to 0} L(\epsilon e^{i\theta}) = \lim_{\epsilon \to 0} \frac{\kappa}{\epsilon e^{i\theta}} = \lim_{\epsilon \to 0} \frac{\kappa}{\epsilon}$ $\frac{\kappa}{\epsilon}e^{-i\theta} = \infty \angle -\theta$ – The phase of $L(s)$ changes from $\frac{\pi}{2}$ at $\omega = 0^-$ to $-\frac{\pi}{2}$ $\frac{\pi}{2}$ at $\omega = 0^+$

▶ Contour C_1 with $\omega \in (0, \infty)$:

$$
L(i0^{+}) = \infty \angle -90^{\circ}
$$

\n
$$
L(i\infty) = \lim_{\omega \to \infty} \frac{\kappa}{i\omega(1 + i\omega\tau)}
$$

\n
$$
= 0 \angle -180^{\circ}
$$

▶ Contour C_2 with $s = re^{i\theta}$ for $r \to \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$:

$$
\lim_{r \to \infty} L(re^{i\theta}) = \lim_{r \to \infty} \left| \frac{\kappa}{\tau r^2} \right| e^{-2i\theta} = 0 \angle -2\theta
$$

 $-$ The phase of $L(s)$ changes from $-\pi$ at $ω = ∞$ to $π$ at $ω = -∞$ ▶ Contour C_3 with $\omega \in (-\infty, 0)$:

– $L(C_3)$ is a reflection of $L(C_1)$ about the real axis

[Nyquist plot - examples](#page-8-0) 15/21

Summary - Nyquist contour

- ▶ Open-loop transfer function: $L(s) = P(s)C(s)$
- ▶ Close-loop transfer function

$$
G_{\rm yr} = \frac{L(s)}{1 + L(s)}
$$

Nyquist Contour is a D-shape curve in the complex domain, avoiding all the poles of $L(s)$ on the imaginary axis.

- \triangleright Only poles on the imaginary axis needs to be avoided.
- ▶ The default orientation of traveling along the contour is clockwise.
- \blacktriangleright The semi-circle centered at pole p on the imaginary axis, rotating in counter clockwise direction, is represented by $p+Re^{i\theta},\ \theta\sim -\frac{\pi}{2}\rightarrow \frac{\pi}{2}.$
- ▶ The big semi-circle of the contour, rotating in clockwise direction, is represented by $Re^{i\theta},\ \theta: +\frac{\pi}{2}\rightarrow -\frac{\pi}{2},R\rightarrow\infty$

Summary - Nyquist plots

The Nyquist Plot is the image of the Nyquist Contour after going through the function $L(s)$. Nyquist Contour $\Gamma \Rightarrow N$ yquist Plot $L(\Gamma)$.

- Start with the expression of $L(s)$ when s is on the imaginary axis $s = i\omega$.
- \blacktriangleright When drawing the plot, it is helpful to first think about how $|L(s)|$ will change, then think about how $\angle(L(s))$ will change.
- ▶ In many cases, $|L(s)| \to 0$ when $|s| \to \infty$. Many Nyquist plots are stuck at 0 as you travel along the big semi-circle of the Nyquist Contour.
- ▶ The part of the Nyquist Plot corresponding to the negative imaginary axis in the Nyquist Contour is symmetrical (reflection) to the other half.
- ▶ Cautions with using MATLAB
	- MATLAB doesn't generate the portion of plot for corresponding to the poles on imaginary axis
	- These must be drawn in by hand (get the orientation right!)

Theorem (Nyquist stability theorem)

 $1 + L(s)$ has $Z = N + P$ zeros in the right half plane (i.e., closed-loop unstable poles), where P is the number of open-loop unstable poles and N is the number of clockwise encirclements of -1 by the Nyquist plot.

$$
L(s)=\frac{1}{s+1}
$$

Figure: Nyquist plot for $L(s) = \frac{1}{s+1}$

[Nyquist plot - examples](#page-8-0) 18/21

$$
L(s) = \frac{1}{(s+1)^2}
$$

Figure: Nyquist plot for $L(s) = \frac{1}{(s+1)^2}$

 $Z = N + P = 0$

Then,

$$
G_{\rm yr} = \frac{L(s)}{1 + L(s)}
$$

=
$$
\frac{1}{s^2 + 2s + 2}
$$

is stable. Indeed, closed-loop poles are

 $p_{1,2} = -1 \pm 1i$

[Nyquist plot - examples](#page-8-0) 19/21

$$
L(s) = \frac{1}{s(s+1)}
$$

Figure: Nyquist plot for $L(s) = \frac{1}{s(s+1)}$

$$
Z = N + P = 0
$$

Then,

$$
G_{\rm yr} = \frac{L(s)}{1 + L(s)}
$$

$$
= \frac{1}{s^2 + s + 1}
$$

is stable. Closed-loop poles

 $p_{1,2} = -0.5 \pm 0.866i$

[Nyquist plot - examples](#page-8-0) 20/21

$$
L(s) = \frac{1}{s(s+1)(s+0.5)}
$$

 $Z = N + P = 2$

Then,

$$
G_{\rm yr} = \frac{L(s)}{1 + L(s)}
$$

=
$$
\frac{1}{s^3 + 1.5s^2 + 0.5s + 1}
$$

is unstable. Closed-loop poles

$$
p_{1,2} = 0.0416 \pm 0.7937i
$$

$$
p_3 = -1.5832
$$

[Nyquist plot - examples](#page-8-0) 21/21