ECE 171A: Linear Control System Theory Lecture 11: Input/output responses (II)

Yang Zheng

Assistant Professor, ECE, UCSD

April 24, 2024

Reading materials: Ch 6.3, Ch 9.1

Impulse response

Frequency response

The convolution equation

Summary

Impulse response

Frequency response

The convolution equation

Summary

Impulse response

Impulse response

Consider two LTI systems

System 1: open-loop stable system

$$A_1 = \begin{bmatrix} -1 & 1\\ 0 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 0\\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = 0.$$

System 2: open-loop unstable system

$$A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = 0.$$

We consider the impulse response

Impulse input (also known as delta function)

$$u(t) = p_{\epsilon}(t) = \begin{cases} 0 & \text{if } t < 0\\ 1/\epsilon & \text{if } 0 \le t < \epsilon \\ 0 & \text{if } t \ge \epsilon \end{cases} \qquad \delta(t) = \lim_{\epsilon \to 0} p_{\epsilon}(t)$$

• In the simulation, we choose $\epsilon = 0.01$ seconds.

Impulse response

Matlab command: sys = ss(A, B, C, D); % create an LTI system
 y = lsim(sys,u,t,x0); % simulate the response to the input u

Case 2: Scale the input $u_2(t) = 2u_1(t) = 2\delta(t)$.

 $\ensuremath{\textbf{Q}}\xspace$: Compared to the response in Case 1, what do you observe? Impulse response

Case 3: Shift the input $u_3(t) = u_1(t-1) = \delta(t-1)$.

 $\ensuremath{\textbf{Q}}\xspace$: Compared to the response in Case 1, what do you observe? Impulse response

Case 4: Shift the input $u_4(t) = u_1(t-2) = \delta(t-2)$.

 $\ensuremath{\mathbf{Q}}\xspace$ Compared to the response in Case 1 and Case 3, what do you observe? Impulse response

Case 5: Sum three inputs $u_5(t) = u_1(t) + u_3(t) + u_4(t)$.

Q: Compared to the response in Cases 1, 3, and 4, what do you observe?

Impulse response

Impulse response

Frequency response

The convolution equation

Summary

Frequency response

Frequency response

Frequency input (also known as sinusoidal excitation)

 $u(t) = \sin(\omega t + \phi).$

Consider three LTI systems

Open-loop stable system 1:

$$A_1 = \begin{bmatrix} -1 & 4 \\ -3 & -2 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D_1 = 0.$$

Open-loop stable system 2:

$$A_2 = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 \\ 5 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D_2 = 0.$$

Open-loop unstable system:

$$A_3 = \begin{bmatrix} 1 & 4 \\ -3 & 2 \end{bmatrix}, \quad B_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_3 = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D_3 = 0.$$

Frequency response

Frequency response: unstable system

Frequency input (also known as sinusoidal excitation)

 $u(t) = \sin(\omega t + \phi).$

Take $\omega = 1, \phi = 0.$

Frequency response: stable systems

Frequency response - Bode plot

The steady output has a different **amplitude** plus a **shifted phase**.

- The gain is the ratio of the amplitudes of the sinusoids, which can be determined by measuring the height of the peaks.
- The phase is determined by comparing the ratio of the time between zero crossings of the input and output.

A convenient way to view the frequency response is to plot how the gain and phase depend on ω — Bode plot

Frequency response - Bode plot

Figure: A frequency response (gain only) computed by measuring the response of individual sinusoids. The figure on the left shows the response of the system as a function of time to a number of different unit magnitude inputs (at different frequencies). The figure on the right shows this same data in a different way, with the magnitude of the response plotted as a function of the input frequency. The filled circles correspond to the particular frequencies shown in the time responses.

Impulse response

Frequency response

The convolution equation

Summary

The convolution equation

Solution to differential equation

Consider a state-space system

$$\dot{x} = Ax + Bu,
y = Cx + Du$$
(1)

where $x \in \mathbb{R}^n, u \in \mathbb{R}^m, y \in \mathbb{R}^p$.

Theorem The solution to the linear differential equation (1) is given by

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau.$$

Proof by verification:

Step 1: satisfy the initial condition?

$$x(0) = e^{A \times 0} x(0) + \int_0^0 e^{A(t-\tau)} B u(\tau) d\tau = I \times x(0).$$

The convolution equation

Proof

Step 2: satisfy the differential question?

$$\begin{split} \frac{d}{dt}x(t) &= \frac{d}{dt}e^{At}x(0) + \frac{d}{dt}\left(\int_{0}^{t}e^{A(t-\tau)}Bu(\tau)d\tau\right)\\ &= Ae^{At}x(0) + \frac{d}{dt}\left(\int_{0}^{t}e^{A(t-\tau)}Bu(\tau)d\tau\right)\\ &= Ae^{At}x(0) + \frac{d}{dt}\left(e^{At}\int_{0}^{t}e^{-A\tau}Bu(\tau)d\tau\right)\\ \end{split}$$
Product Rule $\rightarrow = Ae^{At}x(0) + Ae^{At}\int_{0}^{t}e^{-A\tau}Bu(\tau)d\tau + e^{At} \times e^{-At}Bu(t)\\ &= Ae^{At}x(0) + A\int_{0}^{t}e^{A(t-\tau)}Bu(\tau)d\tau + Bu(t)\\ &= A\left(e^{At}x(0) + \int_{0}^{t}e^{A(t-\tau)}Bu(\tau)d\tau\right) + Bu(t)\\ &= Ax(t) + Bu(t) \end{split}$

This verifies the convolution satisfies the differential equation (1).

The convolution equation

The

The convolution equation

Theorem The solution to the linear differential equation (1) is given by

$$y(t) = Ce^{At}x(0) + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t).$$
 (2)

(2) is called the convolution equation.

- The output y(t) is jointly linear in both the initial conditions x(0) and the input u(t), which follows from the linearity of matrix/vector multiplications and integration.
- All the linear properties of LTI systems in Lecture 10 can be directly proved from the general solution (2).
- The dynamics of the system, characterized by A, play an important role in both stability and performance.

Impulse response

Frequency response

The convolution equation

Summary

Summary

Summary

$$h(t) = \int_0^t C e^{A(t-\tau)} B\delta(\tau) d\tau + D\delta(t) = C e^{At} B + D\delta(t).$$

Frequency responses

The convolution equation

$$\begin{split} y(t) &= C e^{At} x(0) + \int_0^t C e^{A(t-\tau)} B u(\tau) d\tau + D u(t). \\ \text{another version is } y(t) &= \underbrace{C e^{At} x(0)}_{\text{Initial response}} + \underbrace{\int_0^t h(t-\tau) u(\tau) d\tau}_{\text{forced response}} \end{split}$$

Summary