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Announcements

▶ Midterm I: Many of you did very well (send us an email or come to office
hours if you would like to chat)

– Maximum: 101.5
– Median: 86
– Mean: 80

▶ Anonymous survey on Midterm 1 feedback; Please spend 2 minutes filling
it out by Thursday night.

https://forms.gle/U838wkGwqCmvCMaj7

▶ Office hours

– Ideally, I would like most of you, if not all, to go to the office hours
together even if you don’t have questions. You can even help us
answer questions from others. It is important to have a supportive
community for this class!

▶ Piazza: Check it regularly, and feel free to ask questions (Lectures,
textbook, HW etc.)
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Convolution equation and Transfer functions

Consider a state-space system

ẋ = Ax+Bu,

y = Cx+Du
(1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp.

▶ The solution to the state-space system (1) is given by

y(t) = CeAtx(0) + C

∫ t

0

eA(t−τ)Bu(τ)dτ +Du(t). (2)

Transfer functions:

▶ We apply the convolution equation to u = est

y(t) = CeAt (x(0)− (sI −A)−1B
)︸ ︷︷ ︸

transient

+
(
C(sI −A)−1B +D

)
est︸ ︷︷ ︸

steady-state

▶ The transfer function for the state-space system (1) is

G(s) = C(sI −A)−1B +D
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Transfer functions - overview

▶ Transfer functions — A compact description of the input/output relation
for a linear time-invariant (LTI) system.

▶ Combining transfer functions with block diagrams gives a powerful
algebraic method to analyze linear systems with many blocks.

Figure: A block diagram for a feedback control system

▶ The transfer function allows new interpretations of system dynamics.

▶ Many graphical tools, such as the Bode plot (a powerful graphical

representation of the transfer function that was introduced by Bode.)
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Response to periodic inputs

The basic idea of the transfer function comes from looking at the frequency
response of a system.

G(s) = C(sI −A)−1B +D ← Transfer function

▶ Suppose that we have an input signal that is periodic. We can then
decompose it

u(t) =
∞∑

k=0

(ak sin(kωft) + bk cos(kωf t))

▶ The output will be sine and cosine waves, with possibly shifted
magnitude and phase, which can be determined by

G(iω) = C(iω −A)−1B +D,

where ω = kωf , k = 1, . . . ,∞.

▶ Thanks to linearity (superposition), the final steady-state response will be
a sum of these signals.
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The exponential input est

The transfer function generalizes this notion to allow a broader class of input
signals besides periodic ones.

Figure: Examples of exponential signals. The top row: exponential signals with a real
exponent, and the bottom row: those with complex exponents.

▶ The transfer function can also be introduced as the ratio of the Laplace
transforms of the output and the input.
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Frequency-domain modeling

Frequency domain modeling: Modeling a system through its response to
sinusoidal and exponential signals.

▶ We represent the dynamics of the system in terms of the generalized
frequency s rather than the time domain variable t.

▶ The transfer function provides a complete representation of a linear
system in the frequency domain.

Some benefits of transfer functions:

▶ Provide a particularly convenient representation in manipulating and
analyzing complex linear feedback systems.

▶ Graphical representations (Bode and Nyquist plots) that capture
interesting properties of the underlying dynamics — Weeks 5/6

▶ We can introduce concepts that express the degree of stability of a system
– stability margins, Week 6

▶ Express the changes/uncertainty in a system because of modeling error,
considering sensitivity to process variations – robustness, Week 9
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Linear ODEs

Consider a linear system described by the controlled differential equation

dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ a0y = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . .+ b0u, (3)

where u is the input, and y is the output.

▶ We aim to determine the transfer function of (3) (i.e., input/output
relationship in frequency domain);

▶ Let the input u(t) = est, and since the system is linear, the output is
y(t) = y0e

st.

▶ Plug u(t) = est and y(t) = y0e
st into (3),

(sn + an−1s
n−1 + . . .+ a0)y0e

st = (bmsm + bm−1s
m−1 + . . .+ b0)e

st

▶ We now have

y(t) = y0e
st =

bmsm + bm−1s
m−1 + . . .+ b0

sn + an−1sn−1 + . . .+ a0︸ ︷︷ ︸
G(s)

est.
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Example: Cruise control

Example
The system dynamics are given by

ṗ = v(t), v̇(t) =
1

m
u(t).

where p denotes the position, v denotes the velocity of the vehicle.

▶ It is the same as

p̈ =
1

m
u(t).

▶ Applying an exponential input u = est leads to

s2p0e
st =

1

m
est ⇒ s2y(t) =

1

m
u(t).

▶ The input/output relationship between p(t) and u(t) (i.e., transfer
function) in the frequency domain is

G(s) =
1

ms2
.
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Example: spring-mass system

Example
The system dynamics are given by

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) = u(t),

where x(t) denotes the position of the mass, ζ is the damping coefficient, and
ω0 denotes the natural frequency.

▶ Applying an exponential input u = est leads to

s2x0e
st + 2ζω0sx0e

st + ω2
0x0e

st = est

⇒ (s2 + 2ζω0s+ ω2
0)x(t) = u(t).

▶ The input/output relationship between x(t) and u(t) (i.e., transfer
function) in the frequency domain is

G(s) =
1

s2 + 2ζω0s+ ω2
0

.
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Example: Vibration damper

Figure: A vibration damper. Vibrations of the mass m1 can be damped by
providing it with an auxiliary mass m2, attached to m1 by a spring with
stiffness k2. The parameters m2 and k2 are chosen so that the frequency√

k2/m2 matches the frequency of the vibration.
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Example: Vibration damper

Example
The system dynamics are given by

m1q̈1 + c1q̇1 + k1q1 + k2(q1 − q2) = F,

m2q̈2 + k2(q2 − q1) = 0.

▶ Objective: determine the transfer function from the force F to the
position q1.

▶ We first find particular exponential solutions

(m1s
2 + c1s+ k1)q1 + k2(q1 − q2) = F

m2s
2q2 + k2(q2 − q1) = 0.

▶ Eliminate q2 and we have the transfer function

Gq1F (s) =
m2s

2 + k2
m1m2s4 +m2c1s3 + (m1k2 +m2(k1 + k2))s2 + k2c1s+ k1k2

▶ The transfer function has a zero at s = ±i
√

k2/m2 — Blocking property
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Blocking property

Parameters m1 = 1, c1 = 1, k1 = 1,m2 = 1, k2 = 1.

▶ Case 1: external input

u = sin(ωt), with ω = 1.

(a) Input u = sin(t)

⇒

(b) Position of mass 1

(c) Postion of mass 2
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Other frequencey responses

▶ Case 2: external input u = sin(ωt), with ω = 1.1.

(a) Input u = sin(1.1t)

⇒

(b) Position of mass 1

▶ Case 3: external input u = sin(ωt), with ω = 0.578.

(a) Input u = sin(1.1t)

⇒

(b) Position of mass 1
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Common transfer functions

Type System Transfer function

Integrator ẏ = u
1

s
Differentiator y = u̇ s

First-order system ẏ + ay = u
1

s+ a

Double integrator ÿ = u
1

s2

Damped oscillator ÿ + 2ζω0ẏ + ω2
0y = u

1

s2 + 2ζω0s+ ω2
0

State-space system
ẋ = Ax+Bu

y = Cx+Du
C(sI −A)−1B +D

PID controller y = kpu+ kdu̇+ ki

∫
u kp + kds+

ki
s

Time delay y(t) = u(t− τ) e−τs

Table: Transfer functions for some common linear time-invariant systems.
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Block diagrams

The combination of block diagrams and transfer functions is a powerful way to
represent control systems.

▶ Input-output relationship can be derived by algebraic manipulations of
the transfer functions.

Figure: Interconnections of linear systems. Series (a), parallel (b), and
feedback (c) connections are shown.
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Feedback connection

▶ It is easy to see the relationship

y = G1e, e = u−G2y

▶ Elimination of e gives

y = G1(u−G2y) ⇒ (1 +G1G2)y = G1u

⇒ y =
G1

1 +G1G2
u

▶ The transfer function of the feedback connection is thus

G =
G1

1 +G1G2
.

These three basic interconnections can be used as the basis for computing
transfer functions for more complicated systems.
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Summary

▶ Frequency domain modeling: Modeling a system through its response to
sinusoidal and exponential signals.

– We represent the dynamics of the system in terms of the generalized
frequency s rather than the time domain variable t.

– The transfer function provides a complete representation of a linear
system in the frequency domain.

▶ Transfer function for linear ODEs

dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ a0y = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . .+ b0u,

G(s) =
bmsm + bm−1s

n−1 + . . .+ b0
sn + an−1sn−1 + . . .+ a0

.

▶ Block diagram with transfer functions
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