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Survey Feedback

Q: Which aspect(s) of this course have you particularly enjoyed or valued so

far?

>
>
>

Any other comments on the course *

“Representative hw and exams”

“The structure of lectures are very organized and clear.”

“The professor is a very nice person (creating a welcoming environment
both in class and in office hours). The course settings, lecture slides, and
the homework description is all very clear. The professor answers
questions on piazza on time.”

“HW and office hours have been engaging and fun to work on. Practice
exam and lecture 9 materials were super helpful to get a grasp of what we
had.”

“The professor is cool and | like his lecture structures and his teaching
style”

“l enjoy learning about how to determine the stability of a system using
mathematic methods.”

I These are copied from the answers. If you do not want them to be here, I'll remove them.
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Survey Feedback

Q: Which aspect(s) of this course do you think could be improved or changed
for the rest of this quarter??

vVvyVvVvyy

Nothing. Best course I've ever took.
| think so far everything looks good
More homework instructions

| feel lectures do not include a lot of examples. Or they go through them
too fast, but | understand the time constraint

More questions/examples during class more similar to the questions we
see in the homework.

| hope attendance can be bonus credits

| am interested in learning about more system analysis techniques, and
not about how specific systems behave (e.g. predator-prey, inverted
pendulum).

2These are adapted from the answers. If you do not want them to be here, I'll remove them.
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Transfer functions

Type System Transfer function
T
Integrator y=u -
S
Differentiator Yy=1u s
. . 1
First-order system y+ay=1u
s+ a
. .. 1
Double integrator j=u —
S

1

Damped oscillator 4 2Cwot + wiy = u m
T = Ax + Bu 1

State-space system C(sI-A)""B+D
y=Cz+ Du

The features of a transfer function are often associated with important
system properties.

» zero frequency gain

» the locations of the poles and zeros.
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Zero frequency gain

Zero frequency gain: the magnitude of the transfer function at s = 0.

» Interpretation: The steady-state value of the output with respect to a
unit step input (which can be represented as u = e** with s = 0).

Examples:

> State-space model (steady state of a step response on Page 6 of L12):

G(s)=C(sI —A)'B+D = G0)=D-CA™'B

» Linear differential equation:

d?y dy du _ bis+bo
@it tov=bhig v = Gl = Gt
bo
= G(0) = w0
> Integrator y = u, G(s) = %: we have G(0) = oo.

» Differentiator y = @, G(s) = s: we have G(0) = 0.
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Example: computing steady-state responses

Example

» Consider a transfer function (which has stable poles)

1
G(s) = ———.
(5) s2+s+2
> The steady-state response to a step input u(t) = 1 is e** with s =0, i.e.
1
Yss = G(0)u = =.
2
Step response
06}
=
204
2
202
<
0 L
0 2 4 6 8 10 12
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Poles and zeros

Consider a linear system with the rational transfer function

)
» Poles: The roots of the polynomial a(s).
)

S).

—~ —~

» Zeros: The roots of the polynomial b

Interpretation of poles: Stability of the system
> Unstable pole if Re(p) > 0; Stable pole if Re(p) < 0.
» Consider a linear differential equation

dny dn71 m dm71

y d™u
24 4 = b, By — b
g TOn—1 gy T a0y = bme 4 1dtm1+ ~+bou. (1)

» Let u =0 (no external force; homogeneous ODE). If p is a pole, i.e., pis
a solution to
S Fn1s" P dag=0

> then, y(t) = yoe?! is a particular solution to (1) for initial response.
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Poles and zeros

Interpretation of zeros:
» Consider an exponential input e**
st

> The exponential output is y(t) = G(s)e
> If G(s) =0, then the (steady-state) output is zero.

Zeros of a stable transfer function thus block transmission of the
corresponding exponential signals.

Example (Vibration dampers)

szQ + ko

G =
Q1F(S) mimas* + maci 83 + (mll’v‘z + mQ(kl + kQ))SQ + kacis + kiko

» The transfer function has a zero at s = +i/k2/m2 — Blocking property
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Example: Vibration damper

TF

e 1=k 4, %
my

Figure: A vibration damper. Vibrations of the mass m can be damped by
providing it with an auxiliary mass mg, attached to m, by a spring with
stiffness k2. The parameters ms and k2 are chosen so that the frequency

\/k2/mz2 matches the frequency of the vibration.

12/23
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Blocking property

Parameters m1 = 1,c1 = 1,k1 = 1,ma = 1,ks = 1.
» The following external input is blocked; the output of mass 1 becomes
zero after some transient

u = sin(wt), with w = 1.

T TETR TR .
:. \HH‘H \/\/WW\/U\W\/\ \’ = §w H‘ A
‘M’w JHELLEEHLE [ | —

(a) Input u = sin(t) (b) Position of mass 1

5: \'W\\Apmﬂﬂpmﬂﬁ
Uv"m’\/\/vwv\/\/u\/

Time ¢

(c) Postion of mass 2
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Pole zero diagram

Pole-zero diagram: A convenient way to view the poles and zeros of a transfer
function.

A Im
x r2
Re
-6 -4 -2 2
x -2

Figure: A pole zero diagram for a transfer function with zeros at -5 and -1 and
poles at —3 and —2 4 2j. The circles represent the locations of the zeros, and
the crosses the locations of the poles.

» Stable poles: Poles in the left half-plane
» Unstable poles: Poles in the right half-plane
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Some connections

State-space models vs. transfer function representations
(assuming SISO system)

State-space model Transfer function
& = Az + Bu
Model G(s)=C(sI —A)'B+D= bs)
y=Czx+ Du a(s)
input u(t) € R,
) P ® input u(t) € R,
Variables output y(t) € R,
n output y(t) € R,
state z(t) € R
Stability  Poles (eigenvalues) of A Poles of G(s)

Poles (eigenvalues) of the matrix A = Poles of the transfer function G(s)

» The inverse of (sI — A) can be computed below = a(s) = det(sI — A).

(s —A)" adj(sI — A).

1
~ det(sI — A)
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Bode plot

The frequency response of a linear system can be computed from its transfer
function by setting s = iw, i.e.,

u(t) = ™" = cos(wt) + isin(wt).
» The resulting output is
y(t) = Giw)e™' = Me" ' = M cos(wt + 0) + iM sin(wt + 6)

» Thus, we have cos(wt) — M cos(wt + 0) and sin(wt) — M sin(wt + 0)

The frequency response G(iw) can be represented by two curves — Bode plot

> Gain curve: gives |G(iw)| as a function of frequency w — log/log scale
(traditionally often in dB — 201log |G(iw)|; but we use log |G (iw)|)

> Phase curve: gives ZG(iw) as a function of frequency w — log/linear
scale in degrees

Bode plot
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Sketching Bode plots

» Part of the popularity of Bode plots is that they are easy to sketch and
interpret.

» Since the frequency scale is logarithmic, they cover the behavior of a
linear system over a wide frequency range.

Consider a transfer function

» Gain curve: simply adding and subtracting gains corresponding to terms
in the numerator and denominator

log |G/(s)| = log [b1(s)| + log |b2(s)[ — log |a1(s)| — log[az(s)|.

» Phase curve: similarly we have
LG(s) = £bi(s) + Lba(s) — ZLai(s) — ZLaa(s).

Bode plot
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Bode plot - Blocks

A polynomial can be written as a product of terms of the type
k, s, s+ a, 2+ 2Cwos + wg

» Sketch Bode diagrams for these terms;

» Complex systems: add the gains and phases of the individual terms

Case 1: G(s) = s® — Two special cases: k = 1, a differentiator; k = —1, an
integrator
log |G(s)] = k x log w, ZG(iw) =k x 90°

» The gain curve is a straight line with slope k, and the phase curve is a
constant at k x 90°

» The case when k = 1 corresponds to a differentiator and has slope 1 with
phase 90°

» The case when k = —1 corresponds to an integrator and has slope —1
with phase —90°

Bode plot
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Case 1: G(s) = s*

10

Frequency w [rad/s|
(a) ¥, k<0
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s

107
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1

Figure: Bode plots of the transfer functions G(s) = s* for k = —2, 1,0, 1, 2.
On a log-log scale, the gain curve is a straight line with slope k. The phase
curves for the transfer functions are constants, with phase equal to k& x 90°.

Bode plot
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Case 1: G(s) = s*

Bode Diagram Bode Diagram

&
S
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S
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Figure: Bode plots of the transfer functions G(s) = s* for k = —2,-1,0,1,2
— from Matlab

GO = tf([1],[1]); % create a transfer function
Gl = tf([1 0],[1]); % create a transfer function
W = {0.1,10}; bode(GO,G1,W); % Bode plot
Bode plot 21/23



Outline

Summary

Summary 22/23



Summary

» The features of a transfer function are often associated with important
system properties.
— zero frequency gain

— the locations of the poles and zeros: Poles — stability of a system;
Zeros — Block transmission of certain signals

Poles (eigenvalues) of the matrix A = Poles of the transfer function G(s)

» The frequency response G(iw) can be represented by two curves — Bode
plot

— Gain curve: gives |G (iw)| as a function of frequency w — log/log
scale (often in dB — 201log |G(iw)]|)

— Phase curve: gives Z/G(iw) as a function of frequency w —
log/linear scale in degrees
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