ECE 171A: Linear Control System Theory Lecture 14: Zeros, Poles and Bode plot

Yang Zheng
Assistant Professor, ECE, UCSD

May 03, 2024

Survey Feedback

(a) First Control course
(b) Work load

- Above 20 hours

(d) Difficulty - Midterm 1

- High

- Above average
- Average
- Below average
- Low

(c) hours each week - 5-10 hours
- 10-20 hours - below 5 hours

Survey Feedback

Q: Which aspect(s) of this course have you particularly enjoyed or valued so far? Any other comments on the course ${ }^{1}$

- "Representative hw and exams"
- "The structure of lectures are very organized and clear."
- "The professor is a very nice person (creating a welcoming environment both in class and in office hours). The course settings, lecture slides, and the homework description is all very clear. The professor answers questions on piazza on time."
- "HW and office hours have been engaging and fun to work on. Practice exam and lecture 9 materials were super helpful to get a grasp of what we had."
- "The professor is cool and I like his lecture structures and his teaching style"
- "I enjoy learning about how to determine the stability of a system using mathematic methods."

[^0]
Survey Feedback

Q: Which aspect(s) of this course do you think could be improved or changed for the rest of this quarter? ${ }^{2}$

- Nothing. Best course I've ever took.
- I think so far everything looks good
- More homework instructions
- I feel lectures do not include a lot of examples. Or they go through them too fast, but I understand the time constraint
- More questions/examples during class more similar to the questions we see in the homework.
- I hope attendance can be bonus credits
- I am interested in learning about more system analysis techniques, and not about how specific systems behave (e.g. predator-prey, inverted pendulum).

[^1]
Outline

Zeros and Poles

Bode plot

Summary

Outline

Zeros and Poles

Bode plot

Summary

Transfer functions

Type	System	Transfer function
Integrator	$\dot{y}=u$	$\frac{1}{s}$
Differentiator	$y=\dot{u}$	s
First-order system	$\dot{y}+a y=u$	$\frac{1}{s+a}$
Double integrator	$\ddot{y}=u$	$\frac{1}{s^{2}}$
Damped oscillator	$\ddot{y}+2 \zeta \omega_{0} \dot{y}+\omega_{0}^{2} y=u$	$\frac{1}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}}$
State-space system	$\dot{x}=A x+B u$ $y=C x+D u$	$C(s I-A)^{-1} B+D$

The features of a transfer function are often associated with important system properties.

- zero frequency gain
- the locations of the poles and zeros.

Zero frequency gain

Zero frequency gain: the magnitude of the transfer function at $s=0$.

- Interpretation: The steady-state value of the output with respect to a unit step input (which can be represented as $u=e^{s t}$ with $s=0$).

Examples:

- State-space model (steady state of a step response on Page 6 of L12):

$$
G(s)=C(s I-A)^{-1} B+D \quad \Rightarrow \quad G(0)=D-C A^{-1} B
$$

- Linear differential equation:

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}+a_{1} \frac{d y}{d t}+a_{0} y=b_{1} \frac{d u}{d t}+b_{0} u \quad & \Rightarrow \quad G(s)=\frac{b_{1} s+b_{0}}{s^{2}+a_{1} s+a_{0}} \\
& \Rightarrow \quad G(0)=\frac{b_{0}}{a_{0}}
\end{aligned}
$$

- Integrator $\dot{y}=u, G(s)=\frac{1}{s}$: we have $G(0)=\infty$.
- Differentiator $y=\dot{u}, G(s)=s$: we have $G(0)=0$.

Example: computing steady-state responses

Example

- Consider a transfer function (which has stable poles)

$$
G(s)=\frac{1}{s^{2}+s+2}
$$

- The steady-state response to a step input $u(t)=1$ is $e^{s t}$ with $s=0$, i.e.

$$
y_{\mathrm{ss}}=G(0) u=\frac{1}{2} .
$$

Poles and zeros

Consider a linear system with the rational transfer function

$$
G(s)=\frac{b(s)}{a(s)}
$$

- Poles: The roots of the polynomial $a(s)$.
- Zeros: The roots of the polynomial $b(s)$.

Interpretation of poles: Stability of the system

- Unstable pole if $\operatorname{Re}(p)>0$; Stable pole if $\operatorname{Re}(p)<0$.
- Consider a linear differential equation

$$
\begin{equation*}
\frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\ldots+a_{0} y=b_{m} \frac{d^{m} u}{d t^{m}}+b_{m-1} \frac{d^{m-1} y}{d t^{m-1}}+\ldots+b_{0} u \tag{1}
\end{equation*}
$$

- Let $u=0$ (no external force; homogeneous ODE). If p is a pole, i.e., p is a solution to

$$
s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}=0
$$

- then, $y(t)=y_{0} e^{p t}$ is a particular solution to (1) for initial response.

Poles and zeros

Interpretation of zeros:

- Consider an exponential input $e^{s t}$
- The exponential output is $y(t)=G(s) e^{s t}$.
- If $G(s)=0$, then the (steady-state) output is zero.

Zeros of a stable transfer function thus block transmission of the corresponding exponential signals.

Example (Vibration dampers)

$$
G_{q_{1} F}(s)=\frac{m_{2} s^{2}+k_{2}}{m_{1} m_{2} s^{4}+m_{2} c_{1} s^{3}+\left(m_{1} k_{2}+m_{2}\left(k_{1}+k_{2}\right)\right) s^{2}+k_{2} c_{1} s+k_{1} k_{2}}
$$

- The transfer function has a zero at $s= \pm i \sqrt{k_{2} / m_{2}}$ - Blocking property

Example: Vibration damper

Figure: A vibration damper. Vibrations of the mass m_{1} can be damped by providing it with an auxiliary mass m_{2}, attached to m_{1} by a spring with stiffness k_{2}. The parameters m_{2} and k_{2} are chosen so that the frequency $\sqrt{k_{2} / m_{2}}$ matches the frequency of the vibration.

Blocking property

Parameters $m_{1}=1, c_{1}=1, k_{1}=1, m_{2}=1, k_{2}=1$.

- The following external input is blocked; the output of mass 1 becomes zero after some transient

$$
u=\sin (\omega t), \quad \text { with } \omega=1
$$

(a) Input $u=\sin (t)$

(b) Position of mass 1

(c) Postion of mass 2

Pole zero diagram

Pole-zero diagram: A convenient way to view the poles and zeros of a transfer function.

Figure: A pole zero diagram for a transfer function with zeros at -5 and -1 and poles at -3 and $-2 \pm 2 j$. The circles represent the locations of the zeros, and the crosses the locations of the poles.

- Stable poles: Poles in the left half-plane
- Unstable poles: Poles in the right half-plane

Some connections

State-space models vs. transfer function representations (assuming SISO system)

	State-space model	Transfer function
Model	$\dot{x}=A x+B u$	$G(s)=C(s I-A)^{-1} B+D=\frac{b(s)}{a(s)}$
	$y=C x+D u$	
input $u(t) \in \mathbb{R}$,	input $u(t) \in \mathbb{R}$,	
Variables	output $y(t) \in \mathbb{R}$,	output $y(t) \in \mathbb{R}$,
	state $x(t) \in \mathbb{R}^{n}$	Poles of $G(s)$
Stability	Poles (eigenvalues) of A	

Poles (eigenvalues) of the matrix $A=$ Poles of the transfer function $G(s)$

- The inverse of $(s I-A)$ can be computed below $\Rightarrow a(s)=\operatorname{det}(s I-A)$.

$$
(s I-A)^{-1}=\frac{1}{\operatorname{det}(s I-A)} \operatorname{adj}(s I-A)
$$

Outline

Zeros and Poles

Bode plot

Summary

Bode plot

The frequency response of a linear system can be computed from its transfer function by setting $s=i \omega$, i.e.,

$$
u(t)=e^{i \omega t}=\cos (\omega t)+i \sin (\omega t)
$$

- The resulting output is

$$
y(t)=G(i \omega) e^{i \omega t}=M e^{i(\omega t+\theta)}=M \cos (\omega t+\theta)+i M \sin (\omega t+\theta)
$$

- Thus, we have $\cos (\omega t) \rightarrow M \cos (\omega t+\theta)$ and $\sin (\omega t) \rightarrow M \sin (\omega t+\theta)$

The frequency response $G(i \omega)$ can be represented by two curves - Bode plot

- Gain curve: gives $|G(i \omega)|$ as a function of frequency ω - log/log scale (traditionally often in $\mathrm{dB}-20 \log |G(i \omega)|$; but we use $\log |G(i \omega)|$)
- Phase curve: gives $\angle G(i \omega)$ as a function of frequency ω - log/linear scale in degrees

Sketching Bode plots

- Part of the popularity of Bode plots is that they are easy to sketch and interpret.
- Since the frequency scale is logarithmic, they cover the behavior of a linear system over a wide frequency range.

Consider a transfer function

$$
G(s)=\frac{b_{1}(s) b_{2}(s)}{a_{1}(s) a_{2}(s)}
$$

- Gain curve: simply adding and subtracting gains corresponding to terms in the numerator and denominator

$$
\log |G(s)|=\log \left|b_{1}(s)\right|+\log \left|b_{2}(s)\right|-\log \left|a_{1}(s)\right|-\log \left|a_{2}(s)\right|
$$

- Phase curve: similarly we have

$$
\angle G(s)=\angle b_{1}(s)+\angle b_{2}(s)-\angle a_{1}(s)-\angle a_{2}(s)
$$

Bode plot - Blocks

A polynomial can be written as a product of terms of the type

$$
k, \quad s, \quad s+a, \quad s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}
$$

- Sketch Bode diagrams for these terms;
- Complex systems: add the gains and phases of the individual terms

Case 1: $G(s)=s^{k}$ - Two special cases: $k=1$, a differentiator; $k=-1$, an integrator

$$
\log |G(s)|=k \times \log \omega, \quad \angle G(i \omega)=k \times 90^{\circ}
$$

- The gain curve is a straight line with slope k, and the phase curve is a constant at $k \times 90^{\circ}$
- The case when $k=1$ corresponds to a differentiator and has slope 1 with phase 90°
- The case when $k=-1$ corresponds to an integrator and has slope -1 with phase -90°

Case 1: $G(s)=s^{k}$

Figure: Bode plots of the transfer functions $G(s)=s^{k}$ for $k=-2,-1,0,1,2$. On a log-log scale, the gain curve is a straight line with slope k. The phase curves for the transfer functions are constants, with phase equal to $k \times 90^{\circ}$.

Case 1: $G(s)=s^{k}$

Figure: Bode plots of the transfer functions $G(s)=s^{k}$ for $k=-2,-1,0,1,2$ - from Matlab

$$
\begin{gathered}
\mathrm{GO}=\operatorname{tf}([1],[1]) ; \% \text { create a transfer function } \\
\mathrm{G} 1=\mathrm{tf}([10],[1]) ; \% \text { create a transfer function } \\
\mathrm{W}=\{0.1,10\} ; \text { bode }(G 0, \mathrm{G} 1, \mathrm{~W}) ; \% \text { Bode plot }
\end{gathered}
$$

Outline

Zeros and Poles

Bode plot

Summary

Summary

- The features of a transfer function are often associated with important system properties.
- zero frequency gain
- the locations of the poles and zeros: Poles - stability of a system; Zeros - Block transmission of certain signals

Poles (eigenvalues) of the matrix $A=$ Poles of the transfer function $G(s)$

- The frequency response $G(i \omega)$ can be represented by two curves - Bode plot
- Gain curve: gives $|G(i \omega)|$ as a function of frequency ω - log/log scale (often in dB - $20 \log |G(i \omega)|$)
- Phase curve: gives $\angle G(i \omega)$ as a function of frequency ω $\mathrm{log} /$ linear scale in degrees

[^0]: ${ }^{1}$ These are copied from the answers. If you do not want them to be here, I'll remove them.

[^1]: ${ }^{2}$ These are adapted from the answers. If you do not want them to be here, I'll remove them.

