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Survey Feedback

Q: Which aspect(s) of this course have you particularly enjoyed or valued so
far? Any other comments on the course 1

▶ “Representative hw and exams”

▶ “The structure of lectures are very organized and clear.”

▶ “The professor is a very nice person (creating a welcoming environment
both in class and in office hours). The course settings, lecture slides, and
the homework description is all very clear. The professor answers
questions on piazza on time.”

▶ “HW and office hours have been engaging and fun to work on. Practice
exam and lecture 9 materials were super helpful to get a grasp of what we
had.”

▶ “The professor is cool and I like his lecture structures and his teaching
style”

▶ “I enjoy learning about how to determine the stability of a system using
mathematic methods.”

▶ . . . . . .

1These are copied from the answers. If you do not want them to be here, I’ll remove them.
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Survey Feedback

Q: Which aspect(s) of this course do you think could be improved or changed
for the rest of this quarter?2

▶ Nothing. Best course I’ve ever took.

▶ I think so far everything looks good

▶ More homework instructions

▶ I feel lectures do not include a lot of examples. Or they go through them
too fast, but I understand the time constraint

▶ More questions/examples during class more similar to the questions we
see in the homework.

▶ I hope attendance can be bonus credits

▶ I am interested in learning about more system analysis techniques, and
not about how specific systems behave (e.g. predator-prey, inverted
pendulum).

▶ . . .

2These are adapted from the answers. If you do not want them to be here, I’ll remove them.
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Transfer functions

Type System Transfer function

Integrator ẏ = u
1

s
Differentiator y = u̇ s

First-order system ẏ + ay = u
1

s+ a

Double integrator ÿ = u
1

s2

Damped oscillator ÿ + 2ζω0ẏ + ω2
0y = u

1

s2 + 2ζω0s+ ω2
0

State-space system
ẋ = Ax+Bu

y = Cx+Du
C(sI −A)−1B +D

The features of a transfer function are often associated with important
system properties.

▶ zero frequency gain

▶ the locations of the poles and zeros.
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Zero frequency gain

Zero frequency gain: the magnitude of the transfer function at s = 0.

▶ Interpretation: The steady-state value of the output with respect to a
unit step input (which can be represented as u = est with s = 0).

Examples:

▶ State-space model (steady state of a step response on Page 6 of L12):

G(s) = C(sI −A)−1B +D ⇒ G(0) = D − CA−1B

▶ Linear differential equation:

d2y

dt2
+ a1

dy

dt
+ a0y = b1

du

dt
+ b0u ⇒ G(s) =

b1s+ b0
s2 + a1s+ a0

⇒ G(0) =
b0
a0

.

▶ Integrator ẏ = u, G(s) =
1

s
: we have G(0) = ∞.

▶ Differentiator y = u̇, G(s) = s: we have G(0) = 0.
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Example: computing steady-state responses

Example

▶ Consider a transfer function (which has stable poles)

G(s) =
1

s2 + s+ 2
.

▶ The steady-state response to a step input u(t) = 1 is est with s = 0, i.e.

yss = G(0)u =
1

2
.
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Poles and zeros

Consider a linear system with the rational transfer function

G(s) =
b(s)

a(s)
.

▶ Poles: The roots of the polynomial a(s).

▶ Zeros: The roots of the polynomial b(s).

Interpretation of poles: Stability of the system

▶ Unstable pole if Re(p) > 0; Stable pole if Re(p) < 0.

▶ Consider a linear differential equation

dny

dtn
+an−1

dn−1y

dtn−1
+ . . .+a0y = bm

dmu

dtm
+ bm−1

dm−1y

dtm−1
+ . . .+ b0u. (1)

▶ Let u = 0 (no external force; homogeneous ODE). If p is a pole, i.e., p is
a solution to

sn + an−1s
n−1 + . . .+ a0 = 0

▶ then, y(t) = y0e
pt is a particular solution to (1) for initial response.
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Poles and zeros

Interpretation of zeros:

▶ Consider an exponential input est

▶ The exponential output is y(t) = G(s)est.

▶ If G(s) = 0, then the (steady-state) output is zero.

Zeros of a stable transfer function thus block transmission of the
corresponding exponential signals.

Example (Vibration dampers)

Gq1F (s) =
m2s

2 + k2
m1m2s4 +m2c1s3 + (m1k2 +m2(k1 + k2))s2 + k2c1s+ k1k2

▶ The transfer function has a zero at s = ±i
√

k2/m2 — Blocking property
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Example: Vibration damper

Figure: A vibration damper. Vibrations of the mass m1 can be damped by
providing it with an auxiliary mass m2, attached to m1 by a spring with
stiffness k2. The parameters m2 and k2 are chosen so that the frequency√

k2/m2 matches the frequency of the vibration.
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Blocking property

Parameters m1 = 1, c1 = 1, k1 = 1,m2 = 1, k2 = 1.

▶ The following external input is blocked; the output of mass 1 becomes
zero after some transient

u = sin(ωt), with ω = 1.

(a) Input u = sin(t)

⇒

(b) Position of mass 1

(c) Postion of mass 2
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Pole zero diagram

Pole-zero diagram: A convenient way to view the poles and zeros of a transfer
function.

Figure: A pole zero diagram for a transfer function with zeros at -5 and -1 and
poles at −3 and −2± 2j. The circles represent the locations of the zeros, and
the crosses the locations of the poles.

▶ Stable poles: Poles in the left half-plane

▶ Unstable poles: Poles in the right half-plane
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Some connections

State-space models vs. transfer function representations
(assuming SISO system)

State-space model Transfer function

Model
ẋ = Ax+Bu

y = Cx+Du
G(s) = C(sI −A)−1B +D =

b(s)

a(s)

Variables

input u(t) ∈ R,
output y(t) ∈ R,
state x(t) ∈ Rn

input u(t) ∈ R,
output y(t) ∈ R,

Stability Poles (eigenvalues) of A Poles of G(s)

Poles (eigenvalues) of the matrix A = Poles of the transfer function G(s)

▶ The inverse of (sI −A) can be computed below ⇒ a(s) = det(sI −A).

(sI −A)−1 =
1

det(sI −A)
adj(sI −A).
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Bode plot

The frequency response of a linear system can be computed from its transfer
function by setting s = iω, i.e.,

u(t) = eiωt = cos(ωt) + i sin(ωt).

▶ The resulting output is

y(t) = G(iω)eiωt = Mei(ωt+θ) = M cos(ωt+ θ) + iM sin(ωt+ θ)

▶ Thus, we have cos(ωt) → M cos(ωt+ θ) and sin(ωt) → M sin(ωt+ θ)

The frequency response G(iω) can be represented by two curves — Bode plot

▶ Gain curve: gives |G(iω)| as a function of frequency ω — log/log scale
(traditionally often in dB — 20 log |G(iω)|; but we use log |G(iω)|)

▶ Phase curve: gives ∠G(iω) as a function of frequency ω — log/linear
scale in degrees
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Sketching Bode plots

▶ Part of the popularity of Bode plots is that they are easy to sketch and
interpret.

▶ Since the frequency scale is logarithmic, they cover the behavior of a
linear system over a wide frequency range.

Consider a transfer function

G(s) =
b1(s)b2(s)

a1(s)a2(s)

▶ Gain curve: simply adding and subtracting gains corresponding to terms
in the numerator and denominator

log |G(s)| = log |b1(s)|+ log |b2(s)| − log |a1(s)| − log |a2(s)|.

▶ Phase curve: similarly we have

∠G(s) = ∠b1(s) + ∠b2(s)− ∠a1(s)− ∠a2(s).
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Bode plot - Blocks

A polynomial can be written as a product of terms of the type

k, s, s+ a, s2 + 2ζω0s+ ω2
0

▶ Sketch Bode diagrams for these terms;

▶ Complex systems: add the gains and phases of the individual terms

Case 1: G(s) = sk — Two special cases: k = 1, a differentiator; k = −1, an
integrator

log |G(s)| = k × logω, ∠G(iω) = k × 90◦

▶ The gain curve is a straight line with slope k, and the phase curve is a
constant at k × 90◦

▶ The case when k = 1 corresponds to a differentiator and has slope 1 with
phase 90◦

▶ The case when k = −1 corresponds to an integrator and has slope −1
with phase −90◦
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Case 1: G(s) = sk

Figure: Bode plots of the transfer functions G(s) = sk for k = −2,−1, 0, 1, 2.
On a log-log scale, the gain curve is a straight line with slope k. The phase
curves for the transfer functions are constants, with phase equal to k × 90◦.
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Case 1: G(s) = sk
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(a) sk, k < 0
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(b) sk, k > 0

Figure: Bode plots of the transfer functions G(s) = sk for k = −2,−1, 0, 1, 2
— from Matlab

G0 = tf([1],[1]); % create a transfer function

G1 = tf([1 0],[1]); % create a transfer function

W = {0.1,10}; bode(G0,G1,W); % Bode plot
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Summary

▶ The features of a transfer function are often associated with important
system properties.

– zero frequency gain
– the locations of the poles and zeros: Poles — stability of a system;

Zeros – Block transmission of certain signals

Poles (eigenvalues) of the matrix A = Poles of the transfer function G(s)

▶ The frequency response G(iω) can be represented by two curves — Bode
plot

– Gain curve: gives |G(iω)| as a function of frequency ω — log/log
scale (often in dB — 20 log |G(iω)|)

– Phase curve: gives ∠G(iω) as a function of frequency ω —
log/linear scale in degrees
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