ECE 171A: Linear Control System Theory Lecture 14: Zeros, Poles and Bode plot

Yang Zheng

Assistant Professor, ECE, UCSD

May 03, 2024

Reading materials: Ch 9.5, 9.6

Survey Feedback

(d) Difficulty - Midterm 1

Survey Feedback

 ${\bf Q}:$ Which aspect(s) of this course have you particularly enjoyed or valued so far? Any other comments on the course 1

"Representative hw and exams"

▶

- "The structure of lectures are very organized and clear."
- "The professor is a very nice person (creating a welcoming environment both in class and in office hours). The course settings, lecture slides, and the homework description is all very clear. The professor answers questions on piazza on time."
- "HW and office hours have been engaging and fun to work on. Practice exam and lecture 9 materials were super helpful to get a grasp of what we had."
- "The professor is cool and I like his lecture structures and his teaching style"
- "I enjoy learning about how to determine the stability of a system using mathematic methods."

 $^{^{1}}$ These are copied from the answers. If you do not want them to be here, I'll remove them.

Survey Feedback

 $\mbox{\bf Q} {:}$ Which aspect(s) of this course do you think could be improved or changed for the rest of this quarter?²

- Nothing. Best course I've ever took.
- I think so far everything looks good
- More homework instructions

▶ ...

- I feel lectures do not include a lot of examples. Or they go through them too fast, but I understand the time constraint
- More questions/examples during class more similar to the questions we see in the homework.
- I hope attendance can be bonus credits
- I am interested in learning about more system analysis techniques, and not about how specific systems behave (e.g. predator-prey, inverted pendulum).

 $^{^2 {\}rm These}$ are adapted from the answers. If you do not want them to be here, I'll remove them.

Outline

Zeros and Poles

Bode plot

Summary

Outline

Zeros and Poles

Bode plot

Summary

Transfer functions

Туре	System	Transfer function
Integrator	$\dot{y} = u$	1
Differentiator	$y = \dot{u}$	8 S
First-order system	$\dot{y} + ay = u$	$\frac{1}{s_1+a}$
Double integrator	$\ddot{y} = u$	$\frac{1}{s^2}$
Damped oscillator	$\ddot{y} + 2\zeta\omega_0\dot{y} + \omega_0^2y = u$	$\frac{1}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$
State-space system	$\dot{x} = Ax + Bu$	$C(sI - A)^{-1}B + D$
	y = Cx + Du	U(SI - A) D + D

The **features** of a transfer function are often associated with **important** system properties.

- zero frequency gain
- the locations of the poles and zeros.

Zero frequency gain

Zero frequency gain: the magnitude of the transfer function at s = 0.

▶ Interpretation: The steady-state value of the output with respect to a unit step input (which can be represented as $u = e^{st}$ with s = 0).

Examples:

State-space model (steady state of a step response on Page 6 of L12):

$$G(s) = C(sI - A)^{-1}B + D \qquad \Rightarrow \qquad G(0) = D - CA^{-1}B$$

Linear differential equation:

$$\frac{d^2y}{dt^2} + a_1\frac{dy}{dt} + a_0y = b_1\frac{du}{dt} + b_0u \qquad \Rightarrow \qquad G(s) = \frac{b_1s + b_0}{s^2 + a_1s + a_0}$$
$$\Rightarrow \qquad G(0) = \frac{b_0}{a_0}.$$

• Integrator $\dot{y} = u$, $G(s) = \frac{1}{s}$: we have $G(0) = \infty$.

• Differentiator $y = \dot{u}$, G(s) = s: we have G(0) = 0.

Example: computing steady-state responses

Example

• Consider a transfer function (which has **stable** poles)

$$G(s) = \frac{1}{s^2 + s + 2}.$$

• The steady-state response to a step input u(t) = 1 is e^{st} with s = 0, i.e.

$$y_{ss} = G(0)u = \frac{1}{2}.$$

Poles and zeros

Consider a linear system with the rational transfer function

$$G(s) = \frac{b(s)}{a(s)}.$$

- **Poles**: The roots of the polynomial a(s).
- **Zeros**: The roots of the polynomial b(s).

Interpretation of poles: Stability of the system

- Unstable pole if $\operatorname{Re}(p) > 0$; Stable pole if $\operatorname{Re}(p) < 0$.
- Consider a linear differential equation

$$\frac{d^{n}y}{dt^{n}} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \ldots + a_{0}y = b_{m}\frac{d^{m}u}{dt^{m}} + b_{m-1}\frac{d^{m-1}y}{dt^{m-1}} + \ldots + b_{0}u.$$
 (1)

Let u = 0 (no external force; homogeneous ODE). If p is a pole, i.e., p is a solution to

$$s^{n} + a_{n-1}s^{n-1} + \ldots + a_{0} = 0$$

• then, $y(t) = y_0 e^{pt}$ is a particular solution to (1) for initial response.

Poles and zeros

Interpretation of zeros:

- Consider an exponential input e^{st}
- The exponential output is $y(t) = G(s)e^{st}$.
- If G(s) = 0, then the (steady-state) output is zero.

Zeros of a **stable** transfer function thus **block** transmission of the corresponding exponential signals.

Example (Vibration dampers)

$$G_{q_1F}(s) = \frac{m_2 s^2 + k_2}{m_1 m_2 s^4 + m_2 c_1 s^3 + (m_1 k_2 + m_2 (k_1 + k_2)) s^2 + k_2 c_1 s + k_1 k_2}$$

• The transfer function has a zero at $s = \pm i \sqrt{k_2/m_2}$ — Blocking property

Example: Vibration damper

Figure: A vibration damper. Vibrations of the mass m_1 can be damped by providing it with an auxiliary mass m_2 , attached to m_1 by a spring with stiffness k_2 . The parameters m_2 and k_2 are chosen so that the frequency $\sqrt{k_2/m_2}$ matches the frequency of the vibration.

Blocking property

Parameters $m_1 = 1, c_1 = 1, k_1 = 1, m_2 = 1, k_2 = 1.$

The following external input is blocked; the output of mass 1 becomes zero after some transient

Pole zero diagram

Pole-zero diagram: A convenient way to view the poles and zeros of a transfer function.

Figure: A pole zero diagram for a transfer function with zeros at -5 and -1 and poles at -3 and $-2 \pm 2j$. The circles represent the locations of the zeros, and the crosses the locations of the poles.

- **Stable poles**: Poles in the left half-plane
- Unstable poles: Poles in the right half-plane

Some connections

State-space models vs. transfer function representations (assuming SISO system)

	State-space model	Transfer function
Model	$\dot{x} = Ax + Bu$ $y = Cx + Du$	$G(s) = C(sI - A)^{-1}B + D = \frac{b(s)}{a(s)}$
Variables	input $u(t) \in \mathbb{R},$ output $y(t) \in \mathbb{R},$ state $x(t) \in \mathbb{R}^n$	$\begin{array}{ll} \text{input} \ u(t) \in \mathbb{R}, \\ \text{output} \ y(t) \in \mathbb{R}, \end{array}$
Stability	Poles (eigenvalues) of A	Poles of $G(s)$

Poles (eigenvalues) of the matrix A = Poles of the transfer function G(s)

▶ The inverse of (sI - A) can be computed below $\Rightarrow a(s) = \det(sI - A)$.

$$(sI - A)^{-1} = \frac{1}{\det(sI - A)} \operatorname{adj}(sI - A).$$

Outline

Zeros and Poles

Bode plot

Summary

Bode plot

Bode plot

The **frequency response** of a linear system can be computed from its transfer function by setting $s = i\omega$, i.e.,

$$u(t) = e^{i\omega t} = \cos(\omega t) + i\sin(\omega t).$$

The resulting output is

$$y(t) = G(i\omega)e^{i\omega t} = Me^{i(\omega t+\theta)} = M\cos(\omega t+\theta) + iM\sin(\omega t+\theta)$$

▶ Thus, we have $\cos(\omega t) \to M \cos(\omega t + \theta)$ and $\sin(\omega t) \to M \sin(\omega t + \theta)$

The frequency response $G(i\omega)$ can be represented by two curves — **Bode plot**

- ► Gain curve: gives $|G(i\omega)|$ as a function of frequency $\omega \log/\log$ scale (traditionally often in dB $20 \log |G(i\omega)|$; but we use $\log |G(i\omega)|$)
- ▶ Phase curve: gives $\angle G(i\omega)$ as a function of frequency $\omega \log/\text{linear}$ scale in degrees

Sketching Bode plots

- Part of the popularity of Bode plots is that they are easy to sketch and interpret.
- Since the frequency scale is logarithmic, they cover the behavior of a linear system over a wide frequency range.

Consider a transfer function

$$G(s) = \frac{b_1(s)b_2(s)}{a_1(s)a_2(s)}$$

Gain curve: simply adding and subtracting gains corresponding to terms in the numerator and denominator

$$\log |G(s)| = \log |b_1(s)| + \log |b_2(s)| - \log |a_1(s)| - \log |a_2(s)|.$$

Phase curve: similarly we have

$$\angle G(s) = \angle b_1(s) + \angle b_2(s) - \angle a_1(s) - \angle a_2(s).$$

Bode plot - Blocks

A polynomial can be written as a product of terms of the type

$$k, \qquad s, \qquad s+a, \qquad s^2+2\zeta\omega_0s+\omega_0^2$$

Sketch Bode diagrams for these terms;

Complex systems: add the gains and phases of the individual terms

Case 1: $G(s) = s^k$ — Two special cases: k = 1, a differentiator; k = -1, an integrator

$$\log |G(s)| = k \times \log \omega, \qquad \angle G(i\omega) = k \times 90^{\circ}$$

- ▶ The gain curve is a straight line with slope k, and the phase curve is a constant at $k \times 90^{\circ}$
- ▶ The case when k = 1 corresponds to a differentiator and has slope 1 with phase 90°
- \blacktriangleright The case when k=-1 corresponds to an integrator and has slope -1 with phase -90°

Case 1: $G(s) = s^k$

Figure: Bode plots of the transfer functions $G(s) = s^k$ for k = -2, -1, 0, 1, 2. On a log-log scale, the gain curve is a straight line with slope k. The phase curves for the transfer functions are constants, with phase equal to $k \times 90^\circ$.

Bode plot

Case 1: $G(s) = s^k$

Figure: Bode plots of the transfer functions $G(s)=s^k$ for k=-2,-1,0,1,2 — from Matlab

G0 = tf([1],[1]); % create a transfer function
G1 = tf([1 0],[1]); % create a transfer function
W = {0.1,10}; bode(G0,G1,W); % Bode plot

Bode plot

Outline

Zeros and Poles

Bode plot

Summary

Summary

Summary

The features of a transfer function are often associated with important system properties.

- zero frequency gain
- the locations of the poles and zeros: Poles stability of a system;
 Zeros Block transmission of certain signals

Poles (eigenvalues) of the matrix A = Poles of the transfer function G(s)

- The frequency response $G(i\omega)$ can be represented by two curves Bode plot
 - Gain curve: gives $|G(i\omega)|$ as a function of frequency $\omega \log/\log |G(i\omega)|$ scale (often in dB $20 \log |G(i\omega)|$)
 - Phase curve: gives $\angle G(i\omega)$ as a function of frequency ω log/linear scale in degrees