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Bode plot

The frequency response of a stable linear system can be computed from its
transfer function by setting s = iω, i.e.,

u(t) = eiωt = cos(ωt) + i sin(ωt).

▶ The resulting steady-state output is

y(t) = G(iω)eiωt = Mei(ωt+θ) = M cos(ωt+ θ) + iM sin(ωt+ θ)

▶ Thus, we have cos(ωt) → M cos(ωt+ θ) and sin(ωt) → M sin(ωt+ θ)

The frequency response G(iω) can be represented by two curves — Bode plot

▶ Gain curve: gives |G(iω)| as a function of frequency ω — log/log scale
(traditionally often in dB — 20 log |G(iω)|; but we mainly use log |G(iω)|)

▶ Phase curve: gives ∠G(iω) as a function of frequency ω — log/linear
scale in degrees
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Sketching Bode1 plots

Hendrik Wade Bode (1905 - 1982): a pioneer of modern
control theory and electronic telecommunications.

▶ Part of the popularity of Bode plots is that they are
easy to sketch and interpret.

▶ Since the frequency scale is logarithmic, they cover
the system behavior over a wide frequency range.

Consider a transfer function

G(s) =
b1(s)b2(s)

a1(s)a2(s)
▶ Gain curve: simply adding and subtracting gains corresponding to terms

in the numerator and denominator

log |G(s)| = log |b1(s)|+ log |b2(s)| − log |a1(s)| − log |a2(s)|.

▶ Phase curve: similarly we have

∠G(s) = ∠b1(s) + ∠b2(s)− ∠a1(s)− ∠a2(s).

1https://en.wikipedia.org/wiki/Hendrik_Wade_Bode
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Bode plot — Blocks

A polynomial can be written as a product of terms of the type

k, s, s+ a, s2 + 2ζω0s+ ω2
0

▶ Sketch Bode diagrams for these terms;

▶ Complex systems: add the gains and phases of the individual terms

Case 1: G(s) = sk — Two special cases: k = 1, a differentiator; k = −1, an
integrator

log |G(s)| = k × logω, ∠G(iω) = k × 90◦

▶ The gain curve is a straight line with slope k, and the phase curve is a
constant at k × 90◦

▶ The case when k = 1 corresponds to a differentiator and has slope 1 with
phase 90◦

▶ The case when k = −1 corresponds to an integrator and has slope −1
with phase −90◦

Bode plot 6/23



Case 1: G(s) = sk

Figure: Bode plots of the transfer functions G(s) = sk for k = −2,−1, 0, 1, 2.
On a log-log scale, the gain curve is a straight line with slope k. The phase
curves for the transfer functions are constants, with phase equal to k × 90◦.
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Case 1: G(s) = sk

G0 = tf([1],[1]); % create a transfer function

G1 = tf([1 0],[1]); % create a transfer function

W = {0.1,10}; bode(G0,G1,W); % Bode plot
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(a) sk, k < 0
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(b) sk, k > 0

Figure: Bode plots of the transfer functions G(s) = sk for k = −2,−1, 0, 1, 2
— from Matlab

Bode plot 8/23



Case 2: first-order system

Consider the transfer function of a first-order system

G(s) =
a

s+ a
, a > 0.

▶ We have

|G(s)| = |a|
|s+ a| , ∠G(s) = ∠a− ∠(s+ a).

▶ The gain curve is

|G(iω)| = log a− 1

2
log(ω2 + a2) ≈

{
0, if ω < a

log a− logω, if ω > a

▶ The phase curve is

∠G(iω) = −180

π
arctan

ω

a
≈


0, if ω < a

10

−45− 45(logω − log a), if a/10 < ω < 10a

−90, if ω > 10a
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Case 2: first-order system

Figure: Bode plot of the first-order system G(s) = a/(s + a), which can be approximated by
asymptotic curves (dashed) in both the gain and the frequency, with the breakpoint in the gain
curve at ω = a and the phase decreasing by 90◦ over a factor of 100 in frequency.

A first-order system behaves like a constant for low frequencies and like an
integrator for high frequencies.
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Case 3: second-order system

Consider the transfer function of a first-order system

G(s) =
ω2
0

s2 + 2ζω0s+ ω2
0

, 0 < ζ < 1.

▶ The gain curve is

|G(iω)| = 2 logω0 −
1

2
log(ω4 + 2ω2

0ω
2(2ζ2 − 1) + ω4

0)

≈

{
0, if ω ≪ ω0

2 logω0 − 2 logω, if ω ≫ ω0

▶ The largest gain Q = maxω |G(iω)| ≈ 1/(2ζ), called the Q-value, is
obtained for ω ≈ ω0 – Resonant frequency

▶ The phase curve is

∠G(iω) = −180

π
arctan

2ζω0ω

ω2
0 − ω

≈

{
0, if ω ≪ ω0

−180, if ω ≫ ω0
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Case 3: Second-order system

Figure: Bode plot of the second-order system G(s) = ω2
0/(s

2 + 2ζω0s + ω2
0), which has a

peak at frequency ω0 and then a slope of −2 beyond the peak; the phase decreases from 0◦ to
−180◦. The height of the peak and the rate of change of phase depend on the damping ratio ζ
(ζ = 0.02, 0.1, 0.2, 0.5, and 1.0 shown).

The asymptotic approximation is poor near ω = ω0 and the Bode plot depends
strongly on ζ near this frequency. — More examples in Discussion 6
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High-order Example

Example
Draw a Bode plot for G(s) = 10

s+ 10

(s+ 1)(s+ 100)

▶ Step 1: find break points (related to poles and zeros): 1, 10, 100.

▶ Step 2: Calculate |G(i0)| and ∠G(i0) to determine the starting points

▶ Step 3: Sketch the bode plot by the rules

– Magnitude increases with a zero: if the zero is a first-order real
zero, the slop is +1; if the zero is a second-order zero (or complex
zero), the slop is +2

– Magnitude decreases with a pole: If there pole is a first-order real
pole, the slop is −1; if the pole is a second-order pole (or complex
pole), the slop is −2

– Phases changes by +90 with a first order real zero; +180 with a
second order zero (or complex zero). The change starts around a/10
and ends around 10a.

– Phases changes by −90 with a first order real pole; −180 with a
second order pole (or complex pole). Similarly, the change starts
around a/10 and ends around 10a.
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High-order Example
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System insights

The Bode plot gives a quick overview of a stable linear system. Since many
useful signals can be decomposed into a sum of sinusoids, it is possible to
visualize the behavior of a system for different frequency ranges.

u(t) = sin(ωt) → yss = |G(iω)| sin(ωt+ ∠G(iω))

▶ The system can be viewed as a filter: change the input signals according
to frequency range

▶ Type 1: Lower-pass filter, for example

G(s) =
ω2
0

s2 + 2ζω0s+ ω2
0

▶ Type 2: Band-pass filter, for example

G(s) =
2ζω0s

s2 + 2ζω0s+ ω2
0

▶ Type 3: High-pass filter, for example

G(s) =
s2

s2 + 2ζω0s+ ω2
0
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Filters

Figure: Bode plots for low-pass, band-pass, and high-pass filters. The upper
plots are the gain curves and the lower plots are the phase curves. Each system
passes frequencies in a different range and attenuates frequencies outside of
that range.
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Example: Spring-mass system

Example
Consider a spring-mass with input u (force) and output q (position) as follows

mq̈ + cq̇ + kq = u → G(s) =
1

ms2 + cs+ k

▶ Case 1: When s is small, we have

G(s) ≈ 1

k
→ q =

u

k

which implies that for low-frequency inputs, the system behaves like a
spring driven by a force.

▶ Case 2: When s is large, we have

G(s) ≈ 1

ms2
→ q̈ =

u

m

which implies that the system behaves like a mass driven by a force
(double integrator).
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Example: Spring-mass system

Figure: Bode plot for a spring–mass system. At low frequency the system
behaves like a spring with G(s) ≈ 1/k and at high frequency the system
behaves like a pure mass with G(s) ≈ 1/(ms2)
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Example: Spring-mass system

Consider parameters m = 1; k = 1; c = 0.2;

(a) Low frequency (b) High frequency

(c) Mixed frequencies
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Determine Transfer function experimentally

Model a given application by measuring the frequency response

▶ Apply a sinusoidal signal at a fixed frequency.

▶ Measure the amplitude ratio and phase lag when steady state is reached.

▶ The complete frequency response is obtained by sweeping over a range of
frequencies.

Figure: A frequency response (gain only) computed by measuring the response of
individual sinusoids.
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Summary

▶ The frequency response G(iω) can be represented by two curves —
Bode plot

– Gain curve: gives |G(iω)| as a function of frequency ω — log/log
scale (traditionally often in dB — 20 log |G(iω)|; but we mainly use
log |G(iω)|)

– Phase curve: gives ∠G(iω) as a function of frequency ω —
log/linear scale in degrees;

▶ Empirical rules of sketching Bode plots

▶ System insights from Bode plots

– A system can be viewed as a filter: change the input signals
according to the frequency range. Low-pass filter, band-pass filter,
high-pass filter;

– Determine a transfer function from experiments
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