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Stability

Theorem (Stability of a linear system (Lyapunov sense))
The system ẋ = Ax is

▶ asymptotically stable if and only if all eigenvalues of A have a strictly
negative real part, i.e., Re(λi) < 0

▶ unstable if any eigenvalues A has a strictly positive real part.

Consider an LTI system

ẋ = Ax+Bu,

y = Cx+Du
⇐⇒ G(s) = C(sI −A)−1B +D

Poles (eigenvalues) of the matrix A = Poles of the transfer function G(s)

▶ A system is bounded-input bounded-output (BIBO) stable if every
bounded input u(t) leads to a bounded output y(t).

▶ BIBO stable: if all poles of G(s) are in the open left half-plane in the s
domain (i.e., having negative real parts).
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Routh-Hurwitz Criterion

▶ Eigenvalues or poles

G(s) =
b(s)

a(s)
, a(s) = det(sI −A)

▶ In the 1870s-1890s, Edward Routh (English
Mathematician, 1831 – 1907) and Adolf Hurwitz
(German Mathematician, 1859 – 1919) independently

– developed a method for determining the locations
in the s plane but not the actual values of the
roots of a polynomial with constant real coefficients

▶ Characteristic polynomial:

a(s) = ans
n + an−1s

n−1 + · · ·+ a2s
2 + a1s+ a0

▶ The Routh-Hurwitz method

– constructs a table with n+ 1 rows from the
coefficients ai of a polynomial a(s)

– relates the number of sign changes in the first
column of the table to the number of roots in the
closed right half-plane

E. Routh

A. Hurwitz
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Routh Table

▶ a(s) = ans
n + an−1s

n−1 + · · ·+ a2s
2 + a1s+ a0

sn an an−2 an−4 · · · a0

sn−1 an−1 an−3 an−5 · · · 0

sn−2 bn−1 = −

∣∣∣∣∣∣∣∣∣
an an−2

an−1 an−3

∣∣∣∣∣∣∣∣∣
an−1

bn−3 = −

∣∣∣∣∣∣∣∣∣
an an−4

an−1 an−5

∣∣∣∣∣∣∣∣∣
an−1

bn−5 · · · 0

sn−3 cn−1 = −

∣∣∣∣∣∣∣∣∣
an−1 an−3

bn−1 bn−3

∣∣∣∣∣∣∣∣∣
bn−1

cn−3 = −

∣∣∣∣∣∣∣∣∣
an−1 an−5

bn−1 bn−5

∣∣∣∣∣∣∣∣∣
bn−1

cn−5 · · · 0

...
...

...
... · · ·

...

s0 a0 0 0 · · · 0

▶ Any row can be multiplied by a positive constant without changing the
result
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Routh-Hurwitz BIBO Stability Criterion

Theorem
Consider a Routh table from the polynomial a(s) in

G(s) =
b(s)

a(s)
.

▶ The number of sign changes in the first column of the Routh table is
equal to the number of roots of a(s) in the closed right half-plane.

Corollary (BIBO Stability of LTI Systems)
The system G(s) is BIBO stable if and only if there are no sign changes in the
first column of its Routh table.

There are two special cases related to the Routh table:

1. The first element of a row is 0 but some of the other elements are not

– Solution: replace the 0 with an arbitrary small ϵ

2. All elements of a row are 0 (not required in this course)
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Example: Second-order System

Example
Consider the characteristic polynomial of a second-order system:

a(s) = as2 + bs+ c

▶ The Routh table is:

s2 a c

s1 b 0

s0 −1

b
(0− bc) = c 0

▶ A necessary and sufficient condition for BIBO stability of a second-order
system is that all coefficients of the characteristic polynomial are non-zero
and have the same sign.
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Example: Third-order System

Example
Consider the characteristic polynomial of a third-order system:

a(s) = a3s
3 + a2s

2 + a1s+ a0

▶ The Routh table is:

s3 a3 a1

s2 a2 a0

s1 − 1

a2
(a3a0 − a1a2) 0

s0 a0 0

▶ If a3 > 0, then a sufficient and necessary condition for BIBO stability
(all eigenvalues have strictly negative real parts) is

a3 > 0, a2 > 0, a1a2 > a0a3, a0 > 0

▶ If a1a2 = a0a3, one pair of roots lies on the imaginary axis in the s plane
and the system is marginally stable. This results in an all zero row in the
Routh table.
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Stability of feedback systems

▶ Lyapunov stability — eigenvalue test of the closed-loop matrix; e.g.,

Dynamics → ẋ = Ax+Bu,

Feedback controller → u = −Kx
⇒ ẋ = (A−BK)x.

▶ Poles or The Routh–Hurwitz Criterion;
P (s) =

np(s)

dp(s)

C(s) =
nc(s)

dc(s)

⇒ Gyr(s) =
PC

1 + PC
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)

They are straightforward but give little guidance for design: it is not easy to
tell how the controller should be modified to make an unstable system stable.
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Loop analysis

Figure: The loop transfer function L(s) = P (s)C(s). The stability of the
feedback system (a) can be determined by tracing signals around the loop.

▶ We break the loop in (b) and ask whether a signal injected at the point A
has the same magnitude and phase when it reaches point B.

▶ Determine stability and robustness of closed loop systems by
investigating how sinusoidal signals propagate around the feedback loop.

▶ Reason about the closed loop behavior of a system through the
frequency domain properties of the open loop transfer function.

The second very important graphical tool — the Nyquist stability theorem.
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Nyquist’s idea

▶ Nyquist’s idea was to first investigate conditions under which oscillations
can occur in a feedback loop.

▶ The Loop transfer function:

L(s) = P (s)C(s).

▶ Assume that a sinusoid of frequency ω0 is injected at point A. In steady
state, the signal at point B will also be a sinusoid with the frequency ω0.

Very intuitive idea: It seems reasonable that an oscillation can be maintained
if the signal at B has the same amplitude and phase as the injected signal!
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Critical point: −1

▶ Tracing signals around the loop, we find that the signals at A and B are
identical if there is a frequency ω0 such that

L(iω0) = −1. (1)

▶ This provides a condition for maintaining an oscillation.

▶ The condition (1) implies that the frequency response goes through the
value −1, which is called the critical point.

Letting ωc represent a frequency at which ∠L(iωc) = 180◦,

▶ we can further reason that the system is stable if |L(iωc)| < 1, since the
signal at point B will have smaller amplitude than the injected signal.

▶ A rigorous version is the Nyquist’s stability criterion.
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Nyquist1 plot

▶ Frequency response of an LTI system: Bode
plot of its transfer function

▶ Stability of a closed-loop system: Nyquist plot
of its loop transfer function

H. Nyquist (1889 – 1976)

Definition (Nyquist plot)
The Nyquist plot of the loop transfer function L(s) is the image of L(s) by
tracing s ∈ C around the Nyquist contour.

▶ A contour is a piecewise smooth path
in the complex plane

▶ A contour is closed if it starts and
ends at the same point

▶ A contour is simple if it does not
cross itself at any point

Nyquist’s stability criterion utilizes contours in the complex plane to relate
the locations of the open-loop and closed-loop poles.

1Harry Nyquist; https://en.wikipedia.org/wiki/Harry_Nyquist
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Nyquist contour

The (standard or simplest) Nyquist contour, also
known as “Nyquist D contour” (Γ ⊂ C), is made
up of three parts:

▶ Contour C1: points s = iω on the
positive imaginary axis, as ω ranges from
0 to ∞

▶ Contour C2: points s = Reiθ on a
semi-circle as R → ∞ and θ ranges from
π
2
to −π

2

▶ Contour C3: points s = iω on the
negative imaginary axis, as ω ranges from
−∞ to 0

The image of L(s) when s traverses Γ gives a closed curve in the complex
plane and is referred to as the Nyquist plot for L(s).
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Example 1: a third-order system

Draw a Nyquist plot for L(s) = 1
(s+a)3

.

▶ Part C1: s = iω with ω from 0 to ∞

L(i0) =
1

a3
∠0◦, L(i∞) = 0∠− 270◦

▶ for 0 < ω < ∞

L(iω) =
1

(iω + a)3
=

(a− iω)3

(a2 + ω2)3
=

a3 − 3aω2

(a2 + ω2)3
+ i

ω3 − 3a2ω

(a2 + ω2)3

▶ Part C2: s = Reiθ for R → ∞ and θ from π
2
to −π

2
.

L(Reiθ) =
1

(Reiθ + a)3
→ 0

▶ Part C3: s = iω with ω ∈ (−∞, 0)

L(−iω) = L(̄iω) = L(iω)

which is a reflection (complex conjugate) of L(C1) about the real axis.
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Example 1: a third-order system
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Simplified Nyquist Criterion

Theorem (Simplified Nyquist Criterion)
Let L(s) be the loop transfer function for a negative feedback system, and
assume that L has no poles in the closed right half-plane ( Re(s) ≥ 0) except
possibly at the origin. Then the closed loop system

Gcl(s) =
L(s)

1 + L(s)

is stable if and only if the image of L(s) along the closed contour Γ has no net
encirclements of the critical point s = −1.
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Winding number

The following conceptual procedure can be used to determine that there are no
net encirclements.

▶ Step 1: Fix a pin at the critical point s = −1, orthogonal to the plane.

▶ Step 2: Attach a string with one end at the critical point and the other on
the Nyquist plot.

▶ Step 3: Let the end of the string attached to the Nyquist curve traverse
the whole curve.

There are no encirclements if the string
does not wind up on the pin when the
curve is encircled.

▶ The number of encirclements is
called the winding number.

Nyquist plot for L(s) = 1
(s+a)3

with a = 0.6

▶ Closed-loop system

Gcl(s) =
L(s)

1 + L(s)
=

1

(s+ 0.6)3 + 1
, λ1 = −1.6000, λ2,3 = −0.1±0.8660i
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Summary

▶ The Routh–Hurwitz Criterion

▶ The Loop transfer function:

L(s) = P (s)C(s).

▶ Nyquist plot and Simplified Nyquist criterion
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