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Nyquist’s idea and Critical point −1

▶ Nyquist’s idea was to first investigate conditions under which oscillations
can occur in a feedback loop.

▶ Tracing signals around the loop, we find that the signals at A and B are
identical if there is a frequency ω0 such that → oscillation

L(iω0) = −1. (1)

▶ The condition (1) implies that the frequency response goes through the
value −1, which is called the critical point.

Letting ωc represent a frequency at which ∠L(iωc) = 180◦,

▶ we can further reason that the closed-loop system is stable if |L(iωc)| < 1.

▶ A rigorous version is the Nyquist’s stability criterion.
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Nyquist contour

The (standard or simplest) Nyquist contour, also
known as “Nyquist D contour” (Γ ⊂ C), is made
up of three parts:

▶ Contour C1: points s = iω on the
positive imaginary axis, as ω ranges from
0 to ∞

▶ Contour C2: points s = Reiθ on a
semi-circle as R → ∞ and θ ranges from
π
2
to −π

2

▶ Contour C3: points s = iω on the
negative imaginary axis, as ω ranges from
−∞ to 0

The image of L(s) when s traverses Γ gives a closed curve in the complex
plane and is referred to as the Nyquist plot for L(s).
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Example 1: a third-order system

Draw a Nyquist plot for L(s) = 1
(s+a)3

.

▶ Part C1: s = iω with ω from 0 to ∞

L(i0) =
1

a3
∠0◦, L(i∞) = 0∠− 270◦

▶ for 0 < ω < ∞
L(iω) =

1

(iω + a)3

▶ Part C2: s = Reiθ for R → ∞ and θ from π
2
to −π

2
.

L(Reiθ) =
1

(Reiθ + a)3
→ 0

▶ Part C3: s = iω with ω ∈ (−∞, 0)

L(−iω) = L(̄iω) = L(iω)

which is a reflection (complex conjugate) of L(C1) about the real axis.
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Example 1: a third-order system
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Example 2: a second-order system

Draw a Nyquist plot for

L(s) =
100

(1 + s)(1 + s/10)
.

▶ Contour C1: L(i0) = 100∠0◦, L(i∞) = 0∠−180◦

▶ Contour C2: limR→∞ L(Reiθ) = 0

Nyquist plot 9/21



Simplified Nyquist Criterion

Theorem (Simplified Nyquist Criterion)
Let L(s) be the loop transfer function for a negative feedback system, and
assume that L has no poles in the closed right half-plane ( Re(s) ≥ 0) except
possibly at the origin (s = 0). Then the closed loop system

Gcl(s) =
L(s)

1 + L(s)

is stable if and only if the image of L(s) along the closed contour Γ (i.e., its
Nyquist plot) has no net encirclements of the critical point s = −1.
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Winding number

A conceptual procedure to determine that there are no net encirclements.

▶ Step 1: Fix a pin at the critical
point s = −1, orthogonal to the
plane.

▶ Step 2: Attach a string with one
end at the critical point and the
other on the Nyquist plot.

▶ Step 3: Let the end of the string
attached to the Nyquist curve
traverse the whole curve.

Nyquist plot for L(s) = 1
(s+a)3

with a = 0.6

There are no encirclements if the string does not wind up on the pin when the
curve is encircled.

▶ The number of encirclements is called the winding number.

▶ By the Nyquist stability criterion, the closed-loop system should be stable:

Gcl(s) =
L(s)

1 + L(s)
=

1

(s+ 0.6)3 + 1
, λ1 = −1.6000, λ2,3 = −0.1±0.8660i
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Nyquist Stability Criterion

▶ Consider the closed-loop transfer function Gcl(s) =
L(s)

1 + L(s)
=

L(s)

∆(s)
▶ The poles of ∆(s) are the poles of L(s) — open-loop poles
▶ The zeros of ∆(s) are the poles of Gcl(s) — closed-loop poles

Theorem (Nyquist Stability Criterion)
Consider a unity feedback control system with open-loop transfer function
L(s). Let Γ be a Nyquist contour. The closed-loop system is stable if and only
if the number of counterclockwise encirclements of the critical point
−1 + i0 by the Nyquist plot L(Γ) is equal to the number of open-loop
unstable poles of L(s).
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Nyquist Stability: Example

Determine the closed-loop stability of the loop transfer function

L(s) =
κ

s(1 + τ1s)(1 + τ2s)
=

κ

s(1 + s)2

▶ The Nyquist plot crosses the critical point −1 + i0 when κ = 2

▶ The closed-loop system is stable when 0 < κ < 2.
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Pole/Zero on the Imaginary Axis

▶ When the loop transfer function has
poles on the imaginary axis, the gain is
infinite at the poles.

▶ The Nyquist contour needs to be
modified to take a small detour around
such poles or zeros

▶ So, we add another part: Contour C4

– plot L(ϵeiθ) for ϵ → 0 and

θ ∈
(
−π

2
,
π

2

)
– substitute s = ϵeiθ into L(s) and

examine what happens as

ϵ → 0
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Example 3

Draw a Nyquist plot for a loop transfer system:

L(s) =
κ

s(1 + τs)

▶ Since there is a pole at the origin, we need to use a modified Nyquist
contour

Nyquist Stability Criterion 16/21



Example 3

▶ Contour C4 with s = ϵeiθ for ϵ → 0 and θ ∈ (−π
2
, π
2
):

lim
ϵ→0

L(ϵeiθ) = lim
ϵ→0

κ

ϵeiθ
= lim

ϵ→0

κ

ϵ
e−iθ = ∞∠−θ

– The phase of L(s) changes from
π

2
at ω = 0− to −π

2
at ω = 0+

▶ Contour C1 with ω ∈ (0,∞):

L(i0+) = ∞∠−90◦

L(i∞) = lim
ω→∞

κ

iω(1 + iωτ)
= lim

ω→∞

∣∣∣ κ

τω2

∣∣∣∠−π/2− tan−1(ωτ)

= 0∠−180◦

▶ Contour C2 with s = reiθ for r → ∞ and θ from π
2
to −π

2
:

lim
r→∞

L(reiθ) = lim
r→∞

∣∣∣ κ

τr2

∣∣∣ e−2iθ = 0∠−2θ

– The phase of L(s) changes from −π at ω = ∞ to π at ω = −∞
▶ Contour C3 with ω ∈ (−∞, 0):

– L(C3) is a reflection of L(C1) about the real axis
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Proof via Principle of the Argument

▶ Principle of the Argument applied to ∆(s) = 1 + L(s):

– Let Γ be a Nyquist contour.

– Z: the number of zeros of ∆(s) inside Γ (closed-loop unstable poles).

– P : the number of poles of ∆(s) inside Γ (open-loop unstable poles).

– Then, the image of Γ under ∆(s), denoted as ∆(Γ), encircles the
origin in clockwise direction N = Z − P times.

▶ Thus, the number of closed-loop poles in the closed right half-plane is:

Z = N + P

– N : the clockwise encirclements of the origin by ∆(Γ), which
corresponds to the clockwise encirclements of −1 + i0 by the
Nyquist plot L(Γ)

– P : the number of poles of ∆(s) inside Γ, which corresponds to the
number of open-loop unstable poles of L(s).

▶ The closed-loop stability requires Z = 0, thus we need to have N = −P :

– the number of counterclockwise encirclements of −1 + i0 by the
Nyquist plot is equal to the number of open-loop unstable poles of
L(s).
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Summary

▶ Nyquist’s idea was to first investigate conditions under which oscillations
can occur in a feedback loop – The Loop transfer function:

L(s) = P (s)C(s).

▶ Nyquist plot and (Simplified) Nyquist criterion
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Summary

Theorem (Simplified Nyquist Criterion)
Let L(s) be the loop transfer function for a negative feedback system, and
assume that L has no poles in the closed right half-plane ( Re(s) ≥ 0) except
possibly at the origin. Then the closed-loop system

Gcl(s) =
L(s)

1 + L(s)

is stable if and only if the image of L(s) along the closed contour Γ (i.e., its
Nyquist plot) has no net encirclements of the critical point s = −1.

Theorem (Nyquist Stability Criterion)
Consider a unity feedback control system with open-loop transfer function
L(s). Let Γ be a Nyquist contour. The closed-loop system is stable if and only
if the number of counterclockwise encirclements of the critical point
−1 + i0 by the Nyquist plot L(Γ) is equal to the number of open-loop
unstable poles of L(s).
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Loop Transfer Function

Loop transfer function

L(s) = P (s)C(s) ⇒ Gcl(s) =
L(s)

1 + L(s)
.

▶ Consider a control system with a loop transfer function:

L(s) = κ
(s− z1) · · · (s− zm)

(s− p1) · · · (s− pn)

▶ At each s, L(s) is a complex number with magnitude and phase:

|L(s)| = |κ|
∏m

i=1 |s− zi|∏n
i=1 |s− pi|

∠L(s) = ∠κ+
m∑
i=1

∠(s− zi)−
n∑

i=1

∠(s− pi)

▶ Graphical evaluation of the magnitude and phase:

– |s− zi| is the length of the vector from zi to s

– |s− pi| is the length of the vector from pi to s

– ∠(s− zi) is the angle from the real axis to the vector from zi to s

– ∠(s− pi) is the angle from the real axis to the vector from pi to s
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Evaluating L(s) along a Contour

▶ A zero zi outside the contour C: The net change in ∠(s− zi) is 0

▶ A zero zi inside the contour C: The net change in ∠(s− zi) is −2π

▶ A pole pi outside the contour C: the net change in ∠(s− pi) is 0

▶ A pole pi inside the contour C: the net change in ∠(s− pi) is −2π
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Evaluating L(s) along a Contour

Let C be a simple closed clockwise contour in the complex plane; Evaluating
L(s) at all points on C produces a new closed contour L(C)

— image of C under L(s).

Assumption: C does not pass through the origin or any of the poles or zeros of
L(s) (otherwise ∠L(s) is undefined). Effects of poles and zeros:

▶ A zero zi outside the contour C:

– As s moves around the contour C, the vector s− zi swings up and
down but not all the way around

– Thus, the net change in ∠(s− zi) is 0

▶ A zero zi inside the contour C:

– As s moves around the contour C, the vector s− zi turns all the way
around

– Thus, the net change in ∠(s− zi) is −2π

▶ A pole pi outside the contour C: the net change in ∠(s− pi) is 0

▶ A pole pi inside the contour C: the net change in ∠(s− pi) is −2π

Cauchy’s Principle of the Argument (for your reference only) 25/21



Principle of the Argument

▶ Let Z and P be the number of zeros and poles of L(s) inside C

▶ As s moves around C, ∠L(s) undergoes a net change of −(Z − P )2π

▶ A net change of −2π means that the vector from 0 to L(s) swings
clockwise around the origin one full rotation

▶ A net change of −(Z − P )2π means that the vector from 0 to L(s) must
encircle the origin in clockwise direction (Z − P ) times

Theorem (Cauchy’s Principle of the Argument)
Consider a transfer function L(s) and a simple closed clockwise contour C. Let
Z and P be the number of zeros and poles of L(s) inside C.

▶ Then, the contour generated by evaluating L(s) along C will encircle the
origin in a clockwise direction Z − P times.

▶ Note that Cauchy’s Principle of the Argument works for any transfer
function — L(s) above does not need to be a loop transfer function.
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Principle of the Argument: Example

▶ Pole-zero map for

G(s) =
10(s+ 1)

(s+ 2)(s2 + 1)(s+ 6)
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Principle of the Argument: Example

▶ A circle contour C centered at the origin with radius 0.5 (green)

▶ The contour may be parameterized by z(t) = 0.5e−it for t ∈ [0, 2π]

▶ The contour C is mapped by G(s) to a new contour (from blue to red),
e.g., parameterized by G(z(t)) for t ∈ [0, 2π]
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Figure: Encircle the origin in a clockwise direction Z − P = 0 times
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Principle of the Argument: Example

▶ A circle contour C centered at (−1, 0) with radius 1 (red)

▶ The contour C is mapped by G(s) to a new contour (from blue to red)
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Figure: Encircle the origin in a clockwise direction Z − P = 1 time
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Principle of the Argument: Example

▶ A circle contour C centered at the origin with radius 1.5 (magenta)

▶ The contour C is mapped by G(s) to a new contour (from blue to red)
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Figure: Encircle the origin in a clockwise direction Z − P = 1− 2 = −1 time
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