ECE 171A: Linear Control System Theory
Lecture 17: Nyquist plot and Nyquist Criterion

Yang Zheng

Assistant Professor, ECE, UCSD

May 10, 2024

Reading materials: Ch 10.2 - 10. 4



Announcement

»> Midterm exam Il: May 22 (Wednesday in class, Week 8)

4 Apr 22 Lio: Input/output system response (I) Cho6.1,6.2 Practice 1 [Solutions]
| Apr2g Li1: Input/output system response (II) Ch6.3
Apr 24 D4: Review, HW1/HW2, Two
Apr 26 Midterm I - in class Homework 4 [Solution 4]
5 | Apr29 Li2: Transfer function (I) Cho.1,9.2 Midterm 1 [Solutions]
May o1 L13: Transfer function (IT) Cho9.2,9.3,9.4
May 01 D5: Review on complex numbers
May 03 Li4: Poles, zeros and Bode plot Ch9.5,Ch9.6 Homework 5
6 May 06 Li5: Bode plot Ch 2.2, Ch 9.6
May 08 | L16: Routh-Hurwitz stability and Loop transfer functions Ch2.2,Ch10.1
May 08 DO6: Bode plot examples
May 10 L17: Nyquist plot and Nyquist criterion Ch10.210.3 Homework 6
7 May 13 L18: Stability margins and Root locus Ch10.3,Chi2.5
May 15 L19: PID control (I) Ch11.1, 11.2
May 15 D7: Nyquist plot )l
May 17 L20: PID control (IT) Ch11.2,11.3 Homework 7
8 May 20 L21: Review
May 22 D8: Q&A
May 24 L22: Performance specification Chi2.1,12.2
9 May 27 Memorial Day observance (no lecture)
May 29 L23: Loop shaping Ch12.3

» Office hours: Week 6 - Week 10
— Yang Zheng (Tuesdays, 6:30 pm - 8:30 pm; FAH 3002)
— Chih-fan Pai (Thursdays, 6:30 pm - 8:30 pm; FAH 3002)
— Brady Liu (Fridays, 6:30 pm - 8:30 pm; FAH 3002)
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Nyquist’s idea and Critical point —1

(a) Closed loop system (b) Open loop system

» Nyquist's idea was to first investigate conditions under which oscillations
can occur in a feedback loop.
» Tracing signals around the loop, we find that the signals at A and B are
identical if there is a frequency wp such that — oscillation
L(iwg) =—1. (1)
» The condition (1) implies that the frequency response goes through the
value —1, which is called the critical point.

Letting w. represent a frequency at which ZL(iw.) = 180°,

> we can further reason that the closed-loop system is stable if |L(iw.)| < 1.

» A rigorous version is the Nyquist’s stability criterion.
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Outline

Nyquist plot

Nyquist Stability Criterion

Summary
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Outline

Nyquist plot
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Nyquist contour

The (standard or simplest) Nyquist contour, also
known as “Nyquist D contour” (I' C C), is made s
up of three parts:

» Contour C: points s = iw on the
positive imaginary axis, as w ranges from
0 to o©

> Contour C5: points s = Re'® on a
semi-circle as R — oo and 6 ranges from Cs
T to —Z
2 2

» Contour Cs: points s = iw on the
negative imaginary axis, as w ranges from
—oo to 0

The image of L(s) when s traverses I" gives a closed curve in the complex
plane and is referred to as the Nyquist plot for L(s).
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Example 1: a third-order system
Draw a Nyquist plot for L(s) = ﬁ
» Part C: s = iw with w from 0 to co

L(i0) = %40", L(ic0) = 0/ — 270°

» for 0 < w < o0 1

(iw + a)?
> Part Cy: s = Re*® for R — oo and 6 from 5 to—3.

L(iw) =

1

0y _
L(Re™) = (Re + a)3

—0

> Part C3: s = iw with w € (—o0,0)

L(—iw) = L(iw) = L(iw)

which is a reflection (complex conjugate) of L(C1) about the real axis.
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Example 1: a third-order system

Im L(iw)
— -

2 AN

Figure 10.5: Nyquist plot for a third-order transfer function L(s). The Nyquist
plot consists of a trace of the loop transfer function L(s) = 1/(s+a)® with a = 0.6.
The solid line represents the portion of the transfer function along the positive
imaginary axis, and the dashed line the negative imaginary axis. The outer arc of
the Nyquist contour I' maps to the origin.

Nyquist plot
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Example 2: a second-order system

Draw a Nyquist plot for

100

L) = asa+sm0)°

»> Contour C;: L(i0) = 100£0°, L(ico) = 0£—180°
» Contour Co: limp_0o L(Re™) =0

Negative frequency

N —0=-076
/5/0/’* ‘"\\ L(s)-plane
’ b
—w=-32 s \
i ©=00 N w=0
A X
_]“‘/ f | | Py
1 =10 100
= _
0=32 N
Positive

Nyquist

contour frequency

(@) (b)

Nyquist plot
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Simplified Nyquist Criterion

(a) Closed loop system (b) Open loop system

Theorem (Simplified Nyquist Criterion)

Let L(s) be the loop transfer function for a negative feedback system, and
assume that L has no poles in the closed right half-plane ( Re(s) > 0) except
possibly at the origin (s = 0). Then the closed loop system
L(s)
Ga(s) = ———=
)= 13706

is stable if and only if the image of L(s) along the closed contour T" (i.e., its
Nyquist plot) has no net encirclements of the critical point s = —1.
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Winding number

A conceptual procedure to determine that there are no net encirclements.

» Step 1: Fix a pin at the critical
point s = —1, orthogonal to the Im L(ie)

-

plane.

Re L(iw)

> Step 2: Attach a string with one
end at the critical point and the
other on the Nyquist plot.

> Step 3: Let the end of the string
attached to the Nyquist curve Nyquist plot for L(s) = 71z with a = 0.6
traverse the whole curve.

There are no encirclements if the string does not wind up on the pin when the
curve is encircled.

» The number of encirclements is called the winding number.

» By the Nyquist stability criterion, the closed-loop system should be stable:
_ L) _ 1

1+ L(s)  (s+06)3+1’
Nyquist plot 11/21
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Outline

Nyquist Stability Criterion
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Nyquist Stability Criterion

B A

(a) Closed loop system (b) Open loop system

_ _L(s) _ L(s)
1+ L(s)  A(s)
» The poles of A(s) are the poles of L(s) — open-loop poles

» The zeros of A(s) are the poles of Gi(s) — closed-loop poles

» Consider the closed-loop transfer function Gei(s)

Theorem (Nyquist Stability Criterion)

Consider a unity feedback control system with open-loop transfer function
L(s). Let T be a Nyquist contour. The closed-loop system is stable if and only
if the number of counterclockwise encirclements of the critical point

—1+ 40 by the Nyquist plot L(T") is equal to the number of open-loop
unstable poles of L(s).
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Nyquist Stability: Example

Determine the closed-loop stability of the loop transfer function

K K
L(S) = = 5
s(14+78)(1+72s) s(1+s)
15 T 1.5 1.5
\ IL(s)-plane 1(s)-plane L(s)-plane
1 \ 1 1
) \
\
%
1,00 '\ \\(—1.0)
| \
T \\__/
K=1, =2 E 05| k=3
stable marginally unstable
. syster - stable system . system
—15 -15 i
=2 =158 =1 =05 O 05 1 -2 -15 -1 -05 0 05 1 =2 =18 =1 08 O 05 1
Real axis Real axis Real axis
(a) (b) (c)

» The Nyquist plot crosses the critical point —1 + i0 when xk = 2
» The closed-loop system is stable when 0 < k < 2.
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Pole/Zero on the Imaginary Axis

» When the loop transfer function has

poles on the imaginary axis, the gain is

infinite at the poles.

» The Nyquist contour needs to be
modified to take a small detour around
such poles or zeros

» So, we add another part: Contour Cy
— plot L(ee®) for e — 0 and

0e(-53)

— substitute s = ee'® into L(s) and
examine what happens as

e—0

Nyquist Stability Criterion

Radius €

~
~
~
. \\
Radius ™~

r— g

s-plane

Nyquist contour
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Example 3

Draw a Nyquist plot for a loop transfer system:

» Since there is a pole at the origin, we need to use a modified Nyquist

contour

Radius €

A\ B

L(s) = s(1 —7— TS)

s-plane

Nyquist Stability Criterion

~
~
s

~
Radius™

r— oo

(a)

~
~

Nyquist contour

(b)
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Example 3

> Contour Cy with s = e’ for ¢ — 0 and 6 € (=%, 5):

. i0 . P 7]
lim L(ee'”) = lim = lim —e™ " = c0/—0
e—0 e—0 ee’ e—0 €

— The phase of L(s) changes from g atw =0 to —g at w=0"
» Contour C; with w € (0,00):
L(i0T) = c0/—90°
Licco) = lim — > = ‘
(00) w0 tw(1 + iwT) P
=0/-180°

’é 7/2 — tan” " (wT)

> Contour O with s = re*® for r — oo and 0 from g to fg:

lim L(re'’) = lim e 2 =0s—20
T—> 00 T—00
— The phase of L(s) changes from —7 at w = 0o to 7 at w = —o0

» Contour C3 with w € (—o0,0):
— L(C3) is a reflection of L(C) about the real axis

Nyquist Stability Criterion
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Proof via Principle of the Argument

> Principle of the Argument applied to A(s) =1+ L(s):
— Let I" be a Nyquist contour.
— Z: the number of zeros of A(s) inside I' (closed-loop unstable poles).
— P: the number of poles of A(s) inside I' (open-loop unstable poles).

— Then, the image of T under A(s), denoted as A(T"), encircles the
origin in clockwise direction N = Z — P times.
» Thus, the number of closed-loop poles in the closed right half-plane is:
Z=N+P
— N: the clockwise encirclements of the origin by A(T"), which
corresponds to the clockwise encirclements of —1 + 0 by the
Nyquist plot L(T")
— P: the number of poles of A(s) inside I", which corresponds to the
number of open-loop unstable poles of L(s).
» The closed-loop stability requires Z = 0, thus we need to have N = —P:
— the number of counterclockwise encirclements of —1 + 0 by the
Nyquist plot is equal to the number of open-loop unstable poles of
L(s).
Nyquist Stability Criterion 18/21
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Summary
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Summary

» Nyquist’s idea was to first investigate conditions under which oscillations

can occur in a feedback loop — The Loop transfer function:

L(s) = P(s)C
r e u y
C(s) P(s) 1
—1
[—

(a) Closed loop system

().

(b) Open loop system

> Nyquist plot and (Simplified) Nyquist criterion

jo

s-plane

v

® =0

Radius

—0,”

Radius™~

r— oo

Nyquist contour

(a)

Summary

(b)
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Summary

Theorem (Simplified Nyquist Criterion)

Let L(s) be the loop transfer function for a negative feedback system, and
assume that L has no poles in the closed right half-plane ( Re(s) > 0) except
possibly at the origin. Then the closed-loop system

L(s)
Ga(s) = ———=
(8) =10
is stable if and only if the image of L(s) along the closed contour T" (i.e., its
Nyquist plot) has no net encirclements of the critical point s = —1.

Theorem (Nyquist Stability Criterion)

Consider a unity feedback control system with open-loop transfer function
L(s). Let T' be a Nyquist contour. The closed-loop system is stable if and only
if the number of counterclockwise encirclements of the critical point

—1 440 by the Nyquist plot L(T") is equal to the number of open-loop
unstable poles of L(s).
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Outline

Cauchy’s Principle of the Argument (for your reference only)
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Loop Transfer Function

Loop transfer function

L(s) = P(s)C(s) = Gal(s) = #z)(s)

» Consider a control system with a loop transfer function:

_ smm)(s—2m)
L) = = pu)

» At each s, L(s) is a complex number with magnitude and phase:

w ZL(s) :4&—}—24(5—%)—24(5—@)
[Tz Is — pil i=1 i=1

» Graphical evaluation of the magnitude and phase:

[L(s)| = |x]

— |s — 2] is the length of the vector from z; to s
— |s — pi| is the length of the vector from p; to s
— /(s — z;) is the angle from the real axis to the vector from z; to s
— Z(s — ps) is the angle from the real axis to the vector from p; to s

Cauchy’s Principle of the Argument (for your reference only)
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Evaluating L(s) along a Contour

contour

» A zero z; outside the contour C: The net change in (s — z;) is 0
» A zero z; inside the contour C: The net change in Z(s — z;) is —2m
> A pole p; outside the contour C: the net change in Z(s — p;) is 0
»> A pole p; inside the contour C': the net change in Z(s —p;) is —27

Cauchy’s Principle of the Argument (for your reference only)
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Evaluating L(s) along a Contour

Let C' be a simple closed clockwise contour in the complex plane; Evaluating
L(s) at all points on C produces a new closed contour L(C)
— image of C under L(s).

Assumption: C does not pass through the origin or any of the poles or zeros of
L(s) (otherwise ZL(s) is undefined). Effects of poles and zeros:

» A zero z; outside the contour C:

— As s moves around the contour C, the vector s — z; swings up and
down but not all the way around
— Thus, the net change in Z(s — z) is 0

» A zero z; inside the contour C:

— As s moves around the contour C, the vector s — z; turns all the way
around
— Thus, the net change in Z(s — z;) is =27

> A pole p; outside the contour C': the net change in Z(s —p;) is 0
» A pole p; inside the contour C: the net change in Z(s — p;) is —2m

Cauchy’s Principle of the Argument (for your reference only) 25/21



Principle of the Argument

» Let Z and P be the number of zeros and poles of L(s) inside C
> As s moves around C, ZL(s) undergoes a net change of —(Z — P)2rw

> A net change of —27 means that the vector from 0 to L(s) swings
clockwise around the origin one full rotation

» A net change of —(Z — P)2m means that the vector from 0 to L(s) must
encircle the origin in clockwise direction (Z — P) times

Theorem (Cauchy'’s Principle of the Argument)

Consider a transfer function L(s) and a simple closed clockwise contour C'. Let
Z and P be the number of zeros and poles of L(s) inside C.

» Then, the contour generated by evaluating L(s) along C' will encircle the
origin in a clockwise direction Z — P times.

» Note that Cauchy’s Principle of the Argument works for any transfer
function — L(s) above does not need to be a loop transfer function.

Cauchy’s Principle of the Argument (for your reference only) 26/21



Principle of the Argument: Example

» Pole-zero map for

10 1
(s+2)(s24+1)(s+6)
, / RN
/AN
; \\ //

Real Axis (seconds ')

Cauchy'’s Principle of the Argument (for your reference only)
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Principle of the Argument: Example

» A circle contour C' centered at the origin with radius 0.5 (green)
» The contour may be parameterized by z(t) = 0.5¢™% for t € [0, 27]

» The contour C' is mapped by G(s) to a new contour (from blue to red),
e.g., parameterized by G(z(t)) for t € [0, 27]

15

—1‘5 ‘1 —0‘5 (; 0‘5 I‘ 1‘5 2‘
Figure: Encircle the origin in a clockwise direction Z — P = 0 times

Cauchy’s Principle of the Argument (for your reference only) 28/21



Principle of the Argument: Example

» A circle contour C' centered at (—1,0) with radius 1 (red)

» The contour C' is mapped by G(s) to a new contour (from blue to red)

15

L L L L L L L
25 2 15 -1 05 0 05 1 15

Figure: Encircle the origin in a clockwise direction Z — P =1 time

Cauchy’s Principle of the Argument (for your reference only) 29/21



Principle of the Argument: Example

> A circle contour C' centered at the origin with radius 1.5 (magenta)

» The contour C' is mapped by G(s) to a new contour (from blue to red)

15— T T —

L L L L — L L
2 15 Rl 05 0 05 1 15 2

Figure: Encircle the origin in a clockwise direction Z — P =1—2 = —1 time

Cauchy’s Principle of the Argument (for your reference only)
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