ECE 171A: Linear Control System Theory Lecture 17: Nyquist plot and Nyquist Criterion

Yang Zheng

Assistant Professor, ECE, UCSD

May 10, 2024

Reading materials: Ch 10.2 - 10. 4

Announcement

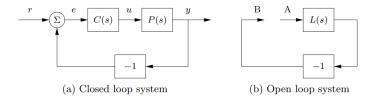
Midterm exam II: May 22 (Wednesday in class, Week 8)

4	Apr 22	L10: Input/output system response (I)	Ch 6.1, 6.2	Practice 1 [Solutions]
	Apr 24	L11: Input/output system response (II)	Ch 6.3	
	Apr 24	D4: Review, HW1/HW2, Two excercies		
	Apr 26	Midterm I - in class		Homework 4 [Solution 4
5	Apr 29	L12: Transfer function (I)	Ch 9.1, 9.2	Midterm 1 [Solutions]
	May 01	L13: Transfer function (II)	Ch 9.2, 9.3, 9.4	
	May 01	D5: Review on complex numbers		
	May 03	L14: Poles, zeros and Bode plot	Ch 9.5, Ch 9.6	Homework 5
6	May 06	L15: Bode plot	Ch 2.2, Ch 9.6	
	May 08	L16: Routh-Hurwitz stability and Loop transfer functions	Ch 2.2, Ch 10.1	
	May 08	D6: Bode plot examples		
	May 10	L17: Nyquist plot and Nyquist criterion	Ch 10.2 10.3	Homework 6
7	May 13	L18: Stability margins and Root locus	Ch 10.3, Ch 12.5	
	May 15	L19: PID control (I)	Ch 11.1, 11.2	
	May 15	D7: Nyquist plot examples		
	May 17	L20: PID control (II)	Ch 11.2, 11.3	Homework 7
8	May 20	L21: Review		
	May 22	Midterm II - in class		
	May 22	D8: Q&A		
	May 24	L22: Performance specification	Ch 12.1, 12.2	
9	May 27	Memorial Day observance (no lecture)		
	May 29	L23: Loop shaping	Ch 12.3	

Office hours: Week 6 - Week 10

- Yang Zheng (Tuesdays, 6:30 pm 8:30 pm; FAH 3002)
- Chih-fan Pai (Thursdays, 6:30 pm 8:30 pm; FAH 3002)
- Brady Liu (Fridays, 6:30 pm 8:30 pm; FAH 3002)

Nyquist's idea and Critical point -1



- Nyquist's idea was to first investigate conditions under which oscillations can occur in a feedback loop.
- ► Tracing signals around the loop, we find that the signals at A and B are identical if there is a frequency ω_0 such that \rightarrow oscillation

$$L(i\omega_0) = -1. \tag{1}$$

The condition (1) implies that the frequency response goes through the value -1, which is called the critical point.

Letting ω_c represent a frequency at which $\angle L(i\omega_c) = 180^\circ$,

- we can further reason that the closed-loop system is stable if $|L(i\omega_c)| < 1$.
- A rigorous version is the **Nyquist's stability criterion**.

Outline

Nyquist plot

Nyquist Stability Criterion

Summary

Outline

Nyquist plot

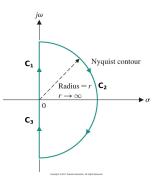
Nyquist Stability Criterion

Summary

Nyquist contour

The (standard or simplest) Nyquist contour, also known as "Nyquist D contour" ($\Gamma \subset \mathbb{C}$), is made up of three parts:

- Contour C₁: points s = iω on the positive imaginary axis, as ω ranges from 0 to ∞
- Contour C_2 : points $s = Re^{i\theta}$ on a semi-circle as $R \to \infty$ and θ ranges from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$
- Contour C₃: points s = iω on the negative imaginary axis, as ω ranges from -∞ to 0



The image of L(s) when s traverses Γ gives a closed curve in the complex plane and is referred to as the **Nyquist plot** for L(s).

Example 1: a third-order system

Draw a Nyquist plot for $L(s) = \frac{1}{(s+a)^3}$. **Part** C_1 : $s = i\omega$ with ω from 0 to ∞ $L(i0) = \frac{1}{c^3} \angle 0^\circ, \qquad L(i\infty) = 0 \angle -270^\circ$ • for $0 < \omega < \infty$ $L(i\omega) = \frac{1}{(i\omega + a)^3}$ • Part C_2 : $s = Re^{i\theta}$ for $R \to \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$. $L(Re^{i\theta}) = \frac{1}{(Re^{i\theta} + a)^3} \to 0$ • Part C_3 : $s = i\omega$ with $\omega \in (-\infty, 0)$ $L(-i\omega) = L(\overline{i}\omega) = \overline{L(i\omega)}$

which is a *reflection* (complex conjugate) of $L(C_1)$ about the real axis.

Example 1: a third-order system

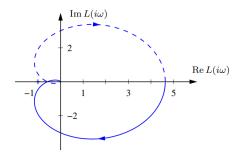


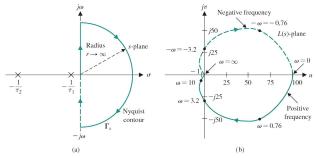
Figure 10.5: Nyquist plot for a third-order transfer function L(s). The Nyquist plot consists of a trace of the loop transfer function $L(s) = 1/(s+a)^3$ with a = 0.6. The solid line represents the portion of the transfer function along the positive imaginary axis, and the dashed line the negative imaginary axis. The outer arc of the Nyquist contour Γ maps to the origin.

Example 2: a second-order system

Draw a Nyquist plot for

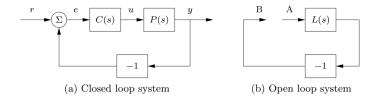
$$L(s) = \frac{100}{(1+s)(1+s/10)}.$$

Contour C₁: L(i0) = 100∠0°, L(i∞) = 0∠−180°
 Contour C₂: lim_{R→∞} L(Re^{iθ}) = 0



Copyright @2017 Pearson Education, All Rights Reserved

Simplified Nyquist Criterion



Theorem (Simplified Nyquist Criterion)

Let L(s) be the loop transfer function for a negative feedback system, and assume that L has no poles in the closed right half-plane ($\operatorname{Re}(s) \ge 0$) except possibly at the origin (s = 0). Then the closed loop system

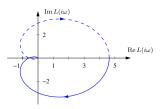
$$G_{\rm cl}(s) = \frac{L(s)}{1 + L(s)}$$

is stable if and only if the image of L(s) along the closed contour Γ (i.e., its Nyquist plot) has no net encirclements of the critical point s = -1.

Winding number

A conceptual procedure to determine that there are no net encirclements.

- Step 1: Fix a pin at the critical point s = −1, orthogonal to the plane.
- Step 2: Attach a string with one end at the critical point and the other on the Nyquist plot.
- Step 3: Let the end of the string attached to the Nyquist curve traverse the whole curve.



Nyquist plot for $L(s)=\frac{1}{(s+a)^3}$ with a=0.6

There are no encirclements if the string does not wind up on the pin when the curve is encircled.

> The number of encirclements is called the winding number.

By the Nyquist stability criterion, the closed-loop system should be stable:

$$G_{\rm cl}(s) = \frac{L(s)}{1+L(s)} = \frac{1}{(s+0.6)^3+1}, \qquad \lambda_1 = -1.6000, \lambda_{2,3} = -0.1 \pm 0.8660i$$

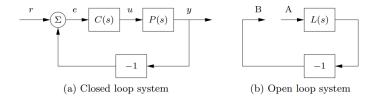
Outline

Nyquist plot

Nyquist Stability Criterion

Summary

Nyquist Stability Criterion



► Consider the closed-loop transfer function $G_{cl}(s) = \frac{L(s)}{1 + L(s)} = \frac{L(s)}{\Delta(s)}$

- The **poles** of $\Delta(s)$ are the poles of L(s) open-loop poles
- ▶ The zeros of $\Delta(s)$ are the poles of $G_{cl}(s)$ closed-loop poles

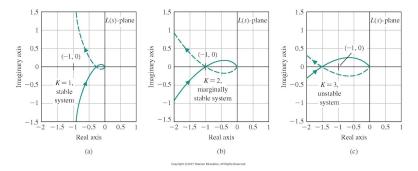
Theorem (Nyquist Stability Criterion)

Consider a unity feedback control system with open-loop transfer function L(s). Let Γ be a Nyquist contour. The closed-loop system is stable if and only if the number of counterclockwise encirclements of the critical point -1 + i0 by the Nyquist plot $L(\Gamma)$ is equal to the number of open-loop unstable poles of L(s).

Nyquist Stability: Example

Determine the closed-loop stability of the loop transfer function

$$L(s) = \frac{\kappa}{s(1+\tau_1 s)(1+\tau_2 s)} = \frac{\kappa}{s(1+s)^2}$$



- ▶ The Nyquist plot crosses the critical point -1 + i0 when $\kappa = 2$
- The closed-loop system is stable when $0 < \kappa < 2$.

Pole/Zero on the Imaginary Axis

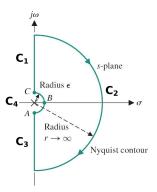
- When the loop transfer function has poles on the imaginary axis, the gain is infinite at the poles.
- The Nyquist contour needs to be modified to take a small detour around such poles or zeros
- **>** So, we add another part: **Contour** C_4

- plot
$$L(\epsilon e^{i\theta})$$
 for $\epsilon \to 0$ and

$$\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

– substitute $s=\epsilon e^{i\theta}$ into L(s) and examine what happens as

$$\epsilon \to 0$$

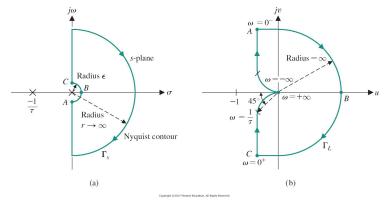


Example 3

Draw a Nyquist plot for a loop transfer system:

$$L(s) = \frac{\kappa}{s(1+\tau s)}$$

Since there is a pole at the origin, we need to use a modified Nyquist contour



Example 3

• Contour
$$C_4$$
 with $s = \epsilon e^{i\theta}$ for $\epsilon \to 0$ and $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

$$\lim_{\epsilon \to 0} L(\epsilon e^{i\theta}) = \lim_{\epsilon \to 0} \frac{\kappa}{\epsilon e^{i\theta}} = \lim_{\epsilon \to 0} \frac{\kappa}{\epsilon} e^{-i\theta} = \infty \angle -\theta$$
- The phase of $L(s)$ changes from $\frac{\pi}{2}$ at $\omega = 0^-$ to $-\frac{\pi}{2}$ at $\omega = 0^+$

• Contour
$$C_1$$
 with $\omega \in (0, \infty)$:
 $L(i0^+) = \infty \angle -90^\circ$
 $L(i\infty) = \lim_{\omega \to \infty} \frac{\kappa}{i\omega(1+i\omega\tau)} = \lim_{\omega \to \infty} \left| \frac{\kappa}{\tau \omega^2} \right| \angle -\pi/2 - \tan^{-1}(\omega\tau)$
 $= 0 \angle -180^\circ$

• **Contour** C_2 with $s = re^{i\theta}$ for $r \to \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$:

$$\lim_{r \to \infty} L(re^{i\theta}) = \lim_{r \to \infty} \left| \frac{\kappa}{\tau r^2} \right| e^{-2i\theta} = 0 \angle -2\theta$$

The phase of L(s) changes from -π at ω = ∞ to π at ω = -∞
Contour C₃ with ω ∈ (-∞, 0):

- $L(C_3)$ is a **reflection** of $L(C_1)$ about the real axis

Proof via Principle of the Argument

• Principle of the Argument applied to $\Delta(s) = 1 + L(s)$:

- Let Γ be a Nyquist contour.
- Z: the number of zeros of $\Delta(s)$ inside Γ (closed-loop unstable poles).
- P: the number of poles of $\Delta(s)$ inside Γ (open-loop unstable poles).
- Then, the image of Γ under $\Delta(s)$, denoted as $\Delta(\Gamma)$, encircles the origin in clockwise direction N = Z P times.

Thus, the number of closed-loop poles in the closed right half-plane is:

$$Z = N + P$$

- N: the clockwise encirclements of the origin by $\Delta(\Gamma)$, which corresponds to the clockwise encirclements of -1 + i0 by the Nyquist plot $L(\Gamma)$
- P: the number of poles of $\Delta(s)$ inside Γ , which corresponds to the number of **open-loop unstable poles** of L(s).

▶ The closed-loop stability requires Z = 0, thus we need to have N = -P:

- the number of counterclockwise encirclements of -1 + i0 by the Nyquist plot is equal to the number of open-loop unstable poles of L(s).

Outline

Nyquist plot

Nyquist Stability Criterion

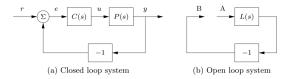
Summary

Summary

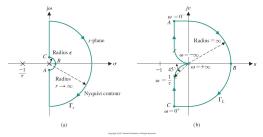
Summary

Nyquist's idea was to first investigate conditions under which oscillations can occur in a feedback loop – The Loop transfer function:

L(s) = P(s)C(s).



Nyquist plot and (Simplified) Nyquist criterion



Summary

Theorem (Simplified Nyquist Criterion)

Let L(s) be the loop transfer function for a negative feedback system, and assume that L has no poles in the closed right half-plane ($\operatorname{Re}(s) \ge 0$) except possibly at the origin. Then the closed-loop system

$$G_{\rm cl}(s) = \frac{L(s)}{1 + L(s)}$$

is stable if and only if the image of L(s) along the closed contour Γ (i.e., its Nyquist plot) has no net encirclements of the critical point s = -1.

Theorem (Nyquist Stability Criterion)

Consider a unity feedback control system with open-loop transfer function L(s). Let Γ be a Nyquist contour. The closed-loop system is stable if and only if the number of counterclockwise encirclements of the critical point -1 + i0 by the Nyquist plot $L(\Gamma)$ is equal to the number of open-loop unstable poles of L(s).

Outline

Cauchy's Principle of the Argument (for your reference only)

Loop Transfer Function

Loop transfer function

$$L(s) = P(s)C(s) \qquad \Rightarrow \qquad G_{\rm cl}(s) = \frac{L(s)}{1 + L(s)}.$$

Consider a control system with a loop transfer function:

$$L(s) = \kappa \frac{(s-z_1)\cdots(s-z_m)}{(s-p_1)\cdots(s-p_n)}$$

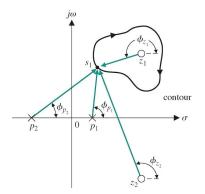
At each s, L(s) is a complex number with magnitude and phase:

$$|L(s)| = |\kappa| \frac{\prod_{i=1}^{m} |s - z_i|}{\prod_{i=1}^{n} |s - p_i|} \qquad \angle L(s) = \angle \kappa + \sum_{i=1}^{m} \angle (s - z_i) - \sum_{i=1}^{n} \angle (s - p_i)$$

Graphical evaluation of the magnitude and phase:

- $|s-z_i|$ is the length of the vector from z_i to s
- $\ |s-p_i|$ is the length of the vector from p_i to s
- $\angle(s-z_i)$ is the angle from the real axis to the vector from z_i to s
- $\angle(s-p_i)$ is the angle from the real axis to the vector from p_i to s

Evaluating L(s) along a Contour



A zero z_i outside the contour C: The net change in $\angle (s - z_i)$ is 0

- A zero z_i inside the contour C: The net change in $\angle (s z_i)$ is -2π
- A pole p_i outside the contour C: the net change in $\angle (s p_i)$ is 0

A pole p_i inside the contour C: the net change in $\angle (s - p_i)$ is -2π

Evaluating L(s) along a Contour

Let C be a simple closed clockwise contour in the complex plane; Evaluating L(s) at all points on C produces a new closed contour L(C)— image of C under L(s).

Assumption: *C* does not pass through the origin or any of the poles or zeros of L(s) (otherwise $\angle L(s)$ is undefined). Effects of poles and zeros:

- A zero z_i outside the contour C:
 - As s moves around the contour C, the vector $s z_i$ swings up and down but not all the way around
 - Thus, the net change in $\angle(s-z_i)$ is 0
- A zero z_i inside the contour C:
 - As s moves around the contour C, the vector $s-z_i$ turns all the way around

– Thus, the net change in $\angle(s-z_i)$ is -2π

- A pole p_i outside the contour C: the net change in $\angle (s p_i)$ is 0
- A pole p_i inside the contour C: the net change in $\angle (s p_i)$ is -2π

Principle of the Argument

- Let Z and P be the number of zeros and poles of L(s) inside C
- ▶ As s moves around C, ∠L(s) undergoes a net change of $-(Z P)2\pi$
- A net change of -2π means that the vector from 0 to L(s) swings **clockwise** around the origin one full rotation
- A net change of $-(Z P)2\pi$ means that the vector from 0 to L(s) must encircle the origin in **clockwise** direction (Z P) times

Theorem (Cauchy's Principle of the Argument)

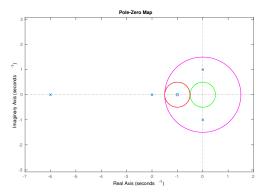
Consider a transfer function L(s) and a simple closed clockwise contour C. Let Z and P be the number of zeros and poles of L(s) inside C.

▶ Then, the contour generated by evaluating L(s) along C will encircle the origin in a clockwise direction Z - P times.

Note that Cauchy's Principle of the Argument works for any transfer function — L(s) above does not need to be a loop transfer function.

Pole-zero map for

$$G(s) = \frac{10(s+1)}{(s+2)(s^2+1)(s+6)}$$



- A circle contour C centered at the origin with radius 0.5 (green)
- ▶ The contour may be parameterized by $z(t) = 0.5e^{-it}$ for $t \in [0, 2\pi]$
- ► The contour C is mapped by G(s) to a new contour (from blue to red), e.g., parameterized by G(z(t)) for t ∈ [0, 2π]

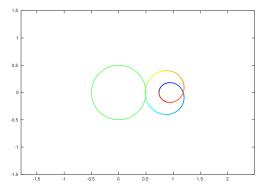


Figure: Encircle the origin in a clockwise direction Z - P = 0 times

A circle contour C centered at (-1, 0) with radius 1 (red)

• The contour C is mapped by G(s) to a new contour (from blue to red)

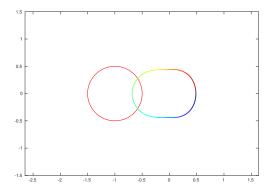


Figure: Encircle the origin in a clockwise direction Z - P = 1 time

A circle contour C centered at the origin with radius 1.5 (magenta)

• The contour C is mapped by G(s) to a new contour (from blue to red)

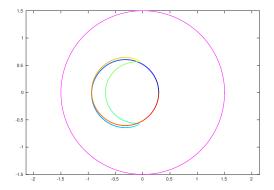


Figure: Encircle the origin in a clockwise direction Z - P = 1 - 2 = -1 time