ECE 171A: Linear Control System Theory Lecture 17: Nyquist plot and Nyquist Criterion

Yang Zheng
Assistant Professor, ECE, UCSD

May 10, 2024

Announcement

- Midterm exam II: May 22 (Wednesday in class, Week 8)

4	Apr 22	L10: Input/output system response (I)	Ch 6.1, 6.2	Practice 1 [Solutions]
	Apr 24	L11: Input/output system response (II)	Ch 6.3	
	Apr 24	D4: Review, HW1/HW2, Two excercies		
	Apr 26	Midterm I - in class		Homework 4 [Solution 4]
5	Apr 29	L12: Transfer function (I)	Ch 9.1, 9.2	Midterm 1 [Solutions]
	May ol	L13: Transfer function (II)	Ch 9.2, 9.3, 9.4	
	May ol	D5: Review on complex numbers		
	May 03	L14: Poles, zeros and Bode plot	Ch 9.5, Ch 9.6	Homework 5
6	May 06	L15: Bode plot	Ch 2.2, Ch 9.6	
	May 08	L16: Routh-Hurwitz stability and Loop transfer functions	Ch 2.2, Ch 10.1	
	May 08	D6: Bode plot examples		
	May 10	L17: Nyquist plot and Nyquist criterion	Ch 10.210 .3	Homework 6
7	May 13	L18: Stability margins and Root locus	Ch 10.3, Ch 12.5	
	May 15	L19: PID control (I)	Ch 11.1, 11.2	
	May 15	D7: Nyquist plot examples		
	May 17	L20: PID control (II)	Ch 11.2, 11.3	Homework 7
8	May 20	L21: Review		
	May 22	Midterm II - in class		
	May 22	D8: Q\&A		
	May 24	L22: Performance specification	Ch 12.1, 12.2	
9	May 27	Memorial Day observance (no lecture)		
	May 29	L23: Loop shaping	Ch 12.3	

- Office hours: Week 6 - Week 10
- Yang Zheng (Tuesdays, 6:30 pm - 8:30 pm; FAH 3002)
- Chih-fan Pai (Thursdays, 6:30 pm-8:30 pm; FAH 3002)
- Brady Liu (Fridays, 6:30 pm - 8:30 pm; FAH 3002)

Nyquist's idea and Critical point -1

(a) Closed loop system

(b) Open loop system

- Nyquist's idea was to first investigate conditions under which oscillations can occur in a feedback loop.
- Tracing signals around the loop, we find that the signals at A and B are identical if there is a frequency ω_{0} such that

$$
\begin{equation*}
L\left(i \omega_{0}\right)=-1 \tag{1}
\end{equation*}
$$

- The condition (1) implies that the frequency response goes through the value -1 , which is called the critical point.

Letting ω_{c} represent a frequency at which $\angle L\left(i \omega_{c}\right)=180^{\circ}$,

- we can further reason that the closed-loop system is stable if $\left|L\left(i \omega_{c}\right)\right|<1$.
- A rigorous version is the Nyquist's stability criterion.

Outline

Nyquist plot

Nyquist Stability Criterion

Summary

Outline

Nyquist plot

Nyquist Stability Criterion

Summary

Nyquist contour

The (standard or simplest) Nyquist contour, also known as "Nyquist D contour" $(\Gamma \subset \mathbb{C})$, is made up of three parts:

- Contour C_{1} : points $s=i \omega$ on the positive imaginary axis, as ω ranges from 0 to ∞
- Contour C_{2} : points $s=R e^{i \theta}$ on a semi-circle as $R \rightarrow \infty$ and θ ranges from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$
- Contour C_{3} : points $s=i \omega$ on the negative imaginary axis, as ω ranges from
 $-\infty$ to 0

The image of $L(s)$ when s traverses Γ gives a closed curve in the complex plane and is referred to as the Nyquist plot for $L(s)$.

Example 1: a third-order system

Draw a Nyquist plot for $L(s)=\frac{1}{(s+a)^{3}}$.

- Part $C_{1}: s=i \omega$ with ω from 0 to ∞

$$
L(i 0)=\frac{1}{a^{3}} \angle 0^{\circ}, \quad L(i \infty)=0 \angle-270^{\circ}
$$

- for $0<\omega<\infty$

$$
L(i \omega)=\frac{1}{(i \omega+a)^{3}}
$$

- Part $C_{2}: s=R e^{i \theta}$ for $R \rightarrow \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$.

$$
L\left(R e^{i \theta}\right)=\frac{1}{\left(R e^{i \theta}+a\right)^{3}} \rightarrow 0
$$

- Part $C_{3}: s=i \omega$ with $\omega \in(-\infty, 0)$

$$
L(-i \omega)=L(\bar{i} \omega)=\overline{L(i \omega)}
$$

which is a reflection (complex conjugate) of $L\left(C_{1}\right)$ about the real axis.

Example 1: a third-order system

Figure 10.5: Nyquist plot for a third-order transfer function $L(s)$. The Nyquist plot consists of a trace of the loop transfer function $L(s)=1 /(s+a)^{3}$ with $a=0.6$. The solid line represents the portion of the transfer function along the positive imaginary axis, and the dashed line the negative imaginary axis. The outer arc of the Nyquist contour Γ maps to the origin.

Example 2: a second-order system

Draw a Nyquist plot for

$$
L(s)=\frac{100}{(1+s)(1+s / 10)} .
$$

- Contour $C_{1}: L(i 0)=100 \angle 0^{\circ}, L(i \infty)=0 \angle-180^{\circ}$
- Contour $C_{2}: \lim _{R \rightarrow \infty} L\left(\operatorname{Re}^{i \theta}\right)=0$

(a)

(b)

Simplified Nyquist Criterion

(a) Closed loop system

(b) Open loop system

Theorem (Simplified Nyquist Criterion)

Let $L(s)$ be the loop transfer function for a negative feedback system, and assume that L has no poles in the closed right half-plane $(\operatorname{Re}(s) \geq 0)$ except possibly at the origin $(s=0)$. Then the closed loop system

$$
G_{\mathrm{cl}}(s)=\frac{L(s)}{1+L(s)}
$$

is stable if and only if the image of $L(s)$ along the closed contour Γ (i.e., its Nyquist plot) has no net encirclements of the critical point $s=-1$.

Winding number

A conceptual procedure to determine that there are no net encirclements.

- Step 1: Fix a pin at the critical point $s=-1$, orthogonal to the plane.
- Step 2: Attach a string with one end at the critical point and the other on the Nyquist plot.
- Step 3: Let the end of the string attached to the Nyquist curve

Nyquist plot for $L(s)=\frac{1}{(s+a)^{3}}$ with $a=0.6$ traverse the whole curve.

There are no encirclements if the string does not wind up on the pin when the curve is encircled.

- The number of encirclements is called the winding number.
- By the Nyquist stability criterion, the closed-loop system should be stable:

$$
G_{\mathrm{cl}}(s)=\frac{L(s)}{1+L(s)}=\frac{1}{(s+0.6)^{3}+1}, \quad \lambda_{1}=-1.6000, \lambda_{2,3}=-0.1 \pm 0.8660 i
$$

Outline

Nyquist plot

Nyquist Stability Criterion

Summary

Nyquist Stability Criterion

(a) Closed loop system

(b) Open loop system

- Consider the closed-loop transfer function $G_{\mathrm{cl}}(s)=\frac{L(s)}{1+L(s)}=\frac{L(s)}{\Delta(s)}$
- The poles of $\Delta(s)$ are the poles of $L(s)$ - open-loop poles
- The zeros of $\Delta(s)$ are the poles of $G_{\mathrm{cl}}(s)$ - closed-loop poles

Theorem (Nyquist Stability Criterion)

Consider a unity feedback control system with open-loop transfer function $L(s)$. Let Γ be a Nyquist contour. The closed-loop system is stable if and only if the number of counterclockwise encirclements of the critical point $-1+i 0$ by the Nyquist plot $L(\Gamma)$ is equal to the number of open-loop unstable poles of $L(s)$.

Nyquist Stability: Example

Determine the closed-loop stability of the loop transfer function

$$
L(s)=\frac{\kappa}{s\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right)}=\frac{\kappa}{s(1+s)^{2}}
$$

Copmight czo17 Pearson Educotion, All Rights Reserved

- The Nyquist plot crosses the critical point $-1+i 0$ when $\kappa=2$
- The closed-loop system is stable when $0<\kappa<2$.

Pole/Zero on the Imaginary Axis

- When the loop transfer function has poles on the imaginary axis, the gain is infinite at the poles.
- The Nyquist contour needs to be modified to take a small detour around such poles or zeros
- So, we add another part: Contour C_{4}
- plot $L\left(\epsilon e^{i \theta}\right)$ for $\epsilon \rightarrow 0$ and

$$
\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

- substitute $s=\epsilon e^{i \theta}$ into $L(s)$ and examine what happens as

$$
\epsilon \rightarrow 0
$$

Example 3

Draw a Nyquist plot for a loop transfer system:

$$
L(s)=\frac{\kappa}{s(1+\tau s)}
$$

- Since there is a pole at the origin, we need to use a modified Nyquist contour

Example 3

- Contour C_{4} with $s=\epsilon e^{i \theta}$ for $\epsilon \rightarrow 0$ and $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

$$
\lim _{\epsilon \rightarrow 0} L\left(\epsilon e^{i \theta}\right)=\lim _{\epsilon \rightarrow 0} \frac{\kappa}{\epsilon e^{i \theta}}=\lim _{\epsilon \rightarrow 0} \frac{\kappa}{\epsilon} e^{-i \theta}=\infty \angle-\theta
$$

- The phase of $L(s)$ changes from $\frac{\pi}{2}$ at $\omega=0^{-}$to $-\frac{\pi}{2}$ at $\omega=0^{+}$
- Contour C_{1} with $\omega \in(0, \infty)$:

$$
\begin{aligned}
L\left(i 0^{+}\right) & =\infty \angle-90^{\circ} \\
L(i \infty) & =\lim _{\omega \rightarrow \infty} \frac{\kappa}{i \omega(1+i \omega \tau)}=\lim _{\omega \rightarrow \infty}\left|\frac{\kappa}{\tau \omega^{2}}\right| \angle-\pi / 2-\tan ^{-1}(\omega \tau) \\
& =0 \angle-180^{\circ}
\end{aligned}
$$

- Contour C_{2} with $s=r e^{i \theta}$ for $r \rightarrow \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$:

$$
\lim _{r \rightarrow \infty} L\left(r e^{i \theta}\right)=\lim _{r \rightarrow \infty}\left|\frac{\kappa}{\tau r^{2}}\right| e^{-2 i \theta}=0 \angle-2 \theta
$$

- The phase of $L(s)$ changes from $-\pi$ at $\omega=\infty$ to π at $\omega=-\infty$
- Contour C_{3} with $\omega \in(-\infty, 0)$:
- $L\left(C_{3}\right)$ is a reflection of $L\left(C_{1}\right)$ about the real axis

Proof via Principle of the Argument

- Principle of the Argument applied to $\Delta(s)=1+L(s)$:
- Let Γ be a Nyquist contour.
- Z : the number of zeros of $\Delta(s)$ inside Γ (closed-loop unstable poles).
- P : the number of poles of $\Delta(s)$ inside Γ (open-loop unstable poles).
- Then, the image of Γ under $\Delta(s)$, denoted as $\Delta(\Gamma)$, encircles the origin in clockwise direction $N=Z-P$ times.
- Thus, the number of closed-loop poles in the closed right half-plane is:

$$
Z=N+P
$$

- N : the clockwise encirclements of the origin by $\Delta(\Gamma)$, which corresponds to the clockwise encirclements of $-1+i 0$ by the Nyquist plot $L(\Gamma)$
- P : the number of poles of $\Delta(s)$ inside Γ, which corresponds to the number of open-loop unstable poles of $L(s)$.
- The closed-loop stability requires $Z=0$, thus we need to have $N=-P$:
- the number of counterclockwise encirclements of $-1+i 0$ by the Nyquist plot is equal to the number of open-loop unstable poles of $L(s)$.

Outline

Nyquist plot

Nyquist Stability Criterion

Summary

Summary

- Nyquist's idea was to first investigate conditions under which oscillations can occur in a feedback loop - The Loop transfer function:

$$
L(s)=P(s) C(s)
$$

(a) Closed loop system

(b) Open loop system

- Nyquist plot and (Simplified) Nyquist criterion

(a)

(b)

Summary

Theorem (Simplified Nyquist Criterion)

Let $L(s)$ be the loop transfer function for a negative feedback system, and assume that L has no poles in the closed right half-plane $(\operatorname{Re}(s) \geq 0)$ except possibly at the origin. Then the closed-loop system

$$
G_{\mathrm{cl}}(s)=\frac{L(s)}{1+L(s)}
$$

is stable if and only if the image of $L(s)$ along the closed contour Γ (i.e., its Nyquist plot) has no net encirclements of the critical point $s=-1$.

Theorem (Nyquist Stability Criterion)

Consider a unity feedback control system with open-loop transfer function $L(s)$. Let Γ be a Nyquist contour. The closed-loop system is stable if and only if the number of counterclockwise encirclements of the critical point $-1+i 0$ by the Nyquist plot $L(\Gamma)$ is equal to the number of open-loop unstable poles of $L(s)$.

Outline

Cauchy's Principle of the Argument (for your reference only)

Loop Transfer Function

Loop transfer function

$$
L(s)=P(s) C(s) \quad \Rightarrow \quad G_{\mathrm{cl}}(s)=\frac{L(s)}{1+L(s)}
$$

- Consider a control system with a loop transfer function:

$$
L(s)=\kappa \frac{\left(s-z_{1}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)}
$$

- At each $s, L(s)$ is a complex number with magnitude and phase:

$$
|L(s)|=|\kappa| \frac{\prod_{i=1}^{m}\left|s-z_{i}\right|}{\prod_{i=1}^{n}\left|s-p_{i}\right|} \quad \angle L(s)=\angle \kappa+\sum_{i=1}^{m} \angle\left(s-z_{i}\right)-\sum_{i=1}^{n} \angle\left(s-p_{i}\right)
$$

- Graphical evaluation of the magnitude and phase:
$-\left|s-z_{i}\right|$ is the length of the vector from z_{i} to s
$-\left|s-p_{i}\right|$ is the length of the vector from p_{i} to s
$-\angle\left(s-z_{i}\right)$ is the angle from the real axis to the vector from z_{i} to s
$-\angle\left(s-p_{i}\right)$ is the angle from the real axis to the vector from p_{i} to s

Evaluating $L(s)$ along a Contour

- A zero z_{i} outside the contour C : The net change in $\angle\left(s-z_{i}\right)$ is 0
- A zero z_{i} inside the contour C : The net change in $\angle\left(s-z_{i}\right)$ is -2π
- A pole p_{i} outside the contour C : the net change in $\angle\left(s-p_{i}\right)$ is 0
- A pole p_{i} inside the contour C : the net change in $\angle\left(s-p_{i}\right)$ is -2π

Evaluating $L(s)$ along a Contour

Let C be a simple closed clockwise contour in the complex plane; Evaluating $L(s)$ at all points on C produces a new closed contour $L(C)$

- image of C under $L(s)$.

Assumption: C does not pass through the origin or any of the poles or zeros of $L(s)$ (otherwise $\angle L(s)$ is undefined). Effects of poles and zeros:

- A zero z_{i} outside the contour C :
- As s moves around the contour C, the vector $s-z_{i}$ swings up and down but not all the way around
- Thus, the net change in $\angle\left(s-z_{i}\right)$ is 0
- A zero z_{i} inside the contour C :
- As s moves around the contour C, the vector $s-z_{i}$ turns all the way around
- Thus, the net change in $\angle\left(s-z_{i}\right)$ is -2π
- A pole p_{i} outside the contour C : the net change in $\angle\left(s-p_{i}\right)$ is 0
- A pole p_{i} inside the contour C : the net change in $\angle\left(s-p_{i}\right)$ is -2π

Principle of the Argument

- Let Z and P be the number of zeros and poles of $L(s)$ inside C
- As s moves around $C, \angle L(s)$ undergoes a net change of $-(Z-P) 2 \pi$
- A net change of -2π means that the vector from 0 to $L(s)$ swings clockwise around the origin one full rotation
- A net change of $-(Z-P) 2 \pi$ means that the vector from 0 to $L(s)$ must encircle the origin in clockwise direction $(Z-P)$ times

Theorem (Cauchy's Principle of the Argument)

Consider a transfer function $L(s)$ and a simple closed clockwise contour C. Let Z and P be the number of zeros and poles of $L(s)$ inside C.

- Then, the contour generated by evaluating $L(s)$ along C will encircle the origin in a clockwise direction $Z-P$ times.
- Note that Cauchy's Principle of the Argument works for any transfer function - $L(s)$ above does not need to be a loop transfer function.

Principle of the Argument: Example

- Pole-zero map for

$$
G(s)=\frac{10(s+1)}{(s+2)\left(s^{2}+1\right)(s+6)}
$$

Principle of the Argument: Example

- A circle contour C centered at the origin with radius 0.5 (green)
- The contour may be parameterized by $z(t)=0.5 e^{-i t}$ for $t \in[0,2 \pi]$
- The contour C is mapped by $G(s)$ to a new contour (from blue to red), e.g., parameterized by $G(z(t))$ for $t \in[0,2 \pi]$

Figure: Encircle the origin in a clockwise direction $Z-P=0$ times

Principle of the Argument: Example

- A circle contour C centered at $(-1,0)$ with radius 1 (red)
- The contour C is mapped by $G(s)$ to a new contour (from blue to red)

Figure: Encircle the origin in a clockwise direction $Z-P=1$ time

Principle of the Argument: Example

- A circle contour C centered at the origin with radius 1.5 (magenta)
- The contour C is mapped by $G(s)$ to a new contour (from blue to red)

Figure: Encircle the origin in a clockwise direction $Z-P=1-2=-1$ time

