ECE 171A: Linear Control System Theory Lecture 18: Stability Margins and Root locus

Yang Zheng

Assistant Professor, ECE, UCSD

May 13, 2024

Reading materials: Ch 10.3, Ch 12.5

Outline

[Stability margins](#page-3-0)

[Root locus](#page-9-0)

[Summary](#page-24-0)

Nyquist's Stability Criterion

▶ Nyquist's idea was to use the property of the Loop transfer function (i.e., Nyquist plot) to determine the closed-loop stability.

$$
L(s) = P(s)C(s).
$$

Theorem (Nyquist's Stability Criterion)

Consider a unity feedback control system with open-loop transfer function $L(s)$. Let Γ be a Nyquist contour. The closed-loop system is stable if and only if the number of counterclockwise encirclements of $-1 + i0$ by the Nyquist plot $L(\Gamma)$ is equal to the number of poles of $L(s)$ inside Γ (i.e. open-loop unstable poles).

Outline

[Stability margins](#page-3-0)

[Root locus](#page-9-0)

[Summary](#page-24-0)

[Stability margins](#page-3-0) 4/26

Stability Margin

In practice, it is not enough that a system is stable. There must also be some margins of stability that describe how far from instability the system is and its robustness to perturbation.

 \triangleright Stability margins express how well the Nyquist curve of the loop transfer avoids the critical point -1 .

 \blacktriangleright The shortest distance s_m of the Nyquist curve to the critical point is a natural criterion — stability margin.

Gain Margin

▶ Gain Margin:

- the factor by which the open-loop gain can be increased before a stable closed-loop system becomes unstable
- $-$ It is the inverse of the distance between the origin and the point between −1 and 0 where the loop transfer function crosses the negative real axis.
- On a Nyquist plot, the gain margin is the inverse of the distance to the first point where $L(s)$ crosses the real axis.

[Stability margins](#page-3-0) 6/26

Phase Margin

▶ Phase Margin:

- the amount by which the open-loop phase can be decreased before a stable closed-loop system becomes unstable
- i.e. the amount of phase lag required to reach the stability limit
- ▶ On a Nyquist plot, the phase margin is the smallest angle on the unit circle between -1 and $L(s)$

[Stability margins](#page-3-0) 7/26

Algebraic Definitions

▶ Phase-Crossover frequency

– ω_{pc} at which $L(i\omega)$ crosses the real axis: $\angle L(i\omega_{\text{pc}}) = -180^{\circ}$

▶ Gain Margin

 $-$ the inverse of the open-loop gain at $\omega_{\rm pc}$: $g_{\rm m} = \frac{1}{|L(i\omega_{\rm pc})|}$

▶ Gain-Crossover frequency

– $\omega_{\rm gc}$ at which $G(j\omega)$ crosses the unit circle: $|L(i\omega_{\rm gc})|=1$

▶ Phase Margin

– the amount by which the open-loop phase at ω_g exceeds -180° :

$$
\varphi_{\rm m} = \angle L(i\omega_{\rm gc}) + 180^{\circ}
$$

[Stability margins](#page-3-0) 8/26

Stability margins for a third-order system

Example

Consider a loop transfer function $L(s) = \dfrac{3}{(s+1)^3}$

Figure: Stability margins for a third-order transfer function. (a) Nyquist plot; (b) Bode plot.

 \triangleright We can use its Nyquist plot or Bode plot. This yields the following values:

$$
g_m = 2.67
$$
, $\varphi_m = 41.7^\circ$, $s_m = 0.464$.

[Stability margins](#page-3-0) 9/26

Outline

[Stability margins](#page-3-0)

[Root locus](#page-9-0)

[Summary](#page-24-0)

[Root locus](#page-9-0) 10/26

Root locus - Overview

Motivation: System responses are affected by the locations of the poles of its transfer function in the complex domain, e.g., stability, convergence speed, etc.

▶ Feedback control can move the closed-loop system poles by designing an appropriate controller – **pole placement** (not covered in this course).

What is the root locus method? — Another graphical tool

- \triangleright The root locus is a graph of the roots of the characteristic polynomial as a function of a parameter — give insight into the effects of the parameter.
- \triangleright i.e., the root locus provides all possible pole locations as a system parameter (e.g., the controller gain) varies
- \triangleright Obtain the root locus find the roots of the closed loop characteristic polynomial for different values of the parameter (easy for computers).
- ▶ The general shape of the root locus can be obtained with very little computational effort, and that it often gives considerable insight.

Figure: Feedback control system

▶ Consider a single-loop feedback control system with

$$
P(s) = \frac{1}{s(s+2)}, \qquad C(s) = k
$$

 \blacktriangleright The closed-loop transfer function from the reference r to output y is:

$$
G_{\rm yr}(s) = \frac{kP(s)}{1 + kP(s)} = \frac{k}{s^2 + 2s + k}
$$

 \blacktriangleright How do the closed-loop poles vary as a function of k ?

− We can actually compute the roots as $\lambda_{1,2} = -1 \pm \sqrt{1-k}$.

[Root locus](#page-9-0) 12/26

Example

▶ Root locus for

$$
P(s) = \frac{1}{s(s+2)}
$$

▶ Matlab command: rlocus(tf([1],[1 2 0])).

Figure: Feedback control system

Example

▶ Consider a single-loop feedback control system with

$$
P(s) = \frac{(s+3)}{s(s+2)}, \qquad C(s) = k
$$

 \blacktriangleright The closed-loop transfer function from r to y is:

$$
G_{\rm yr}(s) = \frac{kP(s)}{1 + kP(s)} = \frac{k(s+3)}{s^2 + (2+k)s + 3k}
$$

▶ Root locus for

$$
P(s) = \frac{(s+3)}{s(s+2)}
$$

 \blacktriangleright Matlab command: rlocus(tf($[1 3]$, $[1 2 0])$).

▶ In this case, adding a stable zero in the open-loop system increases the relative stability of the closed-loop system by attracting the branches of the root locus.

Figure: Feedback control system

Example

▶ Consider a single-loop feedback control system with

$$
P(s) = \frac{1}{s(s+2)(s+3)}, \qquad C(s) = k
$$

 \blacktriangleright The closed-loop transfer function from r to y is:

$$
G_{\rm yr}(s) = \frac{k}{s^3 + 5s^2 + 6s + k}
$$

$\frac{16}{26}$

▶ In this case, adding a stable pole in the open-loop system makes the closed-loop system less stable (stable for some values of k);

Root Locus: Definition

Figure: Feedback control system

▶ Closed-loop transfer function:

$$
G_{\rm yr}(s) = \frac{kP(s)}{1 + kP(s)}
$$

 \blacktriangleright The closed-loop poles satisfy:

$$
1 + kP(s) = 0
$$

▶ The root locus is the set of points s such that $1 + kP(s) = 0$ as k varies

[Root locus](#page-9-0) 18/26

Root Locus: Definition

Consider the zeros and poles of $P(s)$ explicitly:

$$
P(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}
$$

$$
= b_m \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}
$$

 \blacktriangleright The closed loop characteristic polynomial is:

$$
1 + kP(s) = 0 \qquad \Rightarrow \qquad a_{\text{cl}}(s) := a(s) + kb(s) = 0
$$

- \blacktriangleright The closed loop poles are the roots of $a_{\text{cl}}(s)$.
- ▶ The root locus is a graph of the roots of $a_{\text{cl}}(s)$ as the gain k is varied from 0 to ∞ .
- ▶ Since the polynomial $a_{\text{cl}}(s)$ has degree n, the plot will have n branches.

Starting and ending points of Root locus

- ▶ Each branch starts at a different open-loop pole.
- \blacktriangleright m of the branches end at different open-loop zeros.
- ▶ The remaining $n m$ branches go to infinity

Example

Starting and ending points of Root locus

 \blacktriangleright The closed loop characteristic polynomial is:

$$
1 + kP(s) = 0 \qquad \Rightarrow \qquad a_{\text{cl}}(s) := a(s) + kb(s) = 0
$$

 \blacktriangleright The root locus is a graph of the roots of $a_{\text{cl}}(s)$ as the gain k is varied from 0 to ∞ .

Starting points when $k = 0$: we have $a_{c1}(s) := a(s) + kb(s) = a(s)$.

- ▶ The closed-loop poles are equal to the open-loop poles.
- ▶ Open-loop poles at $s = p$ with multiplicity $l \Rightarrow$

$$
a(s) + kb(s) = (s - p)1 \tilde{a}(s) + kb(s) \approx (s - p)1 \tilde{a}(p) + kb(p) = 0
$$

For small value of k , we have the roots are

$$
s = p + \sqrt[l]{-kb(p)/\tilde{a}(p)}
$$

 \blacktriangleright The root locus has a star pattern with *l* branches from the open-loop pole $s = p$, and the angle between two neighboring branches is $\frac{2\pi}{l}$.

Examples

 $\overline{2}$

 $\,4$

6

 $\,2\,$

Starting and ending points of Root locus

 \blacktriangleright The closed loop characteristic polynomial is:

 $1 + kP(s) = 0$ \Rightarrow $a_{c1}(s) := a(s) + kb(s) = 0$

 \triangleright The root locus is a graph of the roots of $a_{\text{cl}}(s)$ as the gain k is varied from 0 to ∞ .

Ending points when k goes to infinity: we have

$$
a_{\text{cl}}(s) := b(s) \left(\frac{a(s)}{b(s)} + k \right) \approx b(s) \left(\frac{s^{n-m}}{b_0} + k \right)
$$

 \blacktriangleright For large K, the closed-loop poles are approximately the roots (zeros of $P(s)$) of $b(s)$ and ⁿ[−]√^m

$$
\sqrt[n-m]{-b_0k}
$$

 \triangleright A better approximation of the **closed-loop poles** is

$$
s = s_0 + \sqrt[n-m]{-b_0k}
$$
, $s_0 = \frac{1}{n-m} \left(\sum_{k=1}^n p_k - \sum_{k=1}^m z_k \right)$.

Examples

Example

Show the root loci for the following open-loop transfer functions

$$
P_a(s) = \frac{s+1}{s^2}, \qquad P_b(s) = \frac{s+1}{s(s+2)(s^2+2s+4)},
$$

$$
P_c(s) = \frac{s+1}{s(s^2+1)}, \quad P_d(s) = \frac{s^2+2s+2}{s(s^2+1)}.
$$

Outline

[Stability margins](#page-3-0)

[Root locus](#page-9-0)

[Summary](#page-24-0)

[Summary](#page-24-0) 25/26

Summary

- ▶ Stability margins express how well the Nyquist curve of the loop transfer avoids the critical point -1 .
- \blacktriangleright The shortest distance s_m of the Nyquist curve to the critical point is a natural criterion - stability margin; Another two criteria are gain margin and phase margin.

▶ Root locus: a graph of the closed-loop roots as k is varied from 0 to ∞ .

- The plot of root locus will have n branches.
- Each branch starts at a different open-loop pole.
- m of the branches end at different open-loop zeros.
- The remaining $n m$ branches go to infinity.