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Nyquist’s Stability Criterion

▶ Nyquist’s idea was to use the property of the Loop transfer function
(i.e., Nyquist plot) to determine the closed-loop stability.

L(s) = P (s)C(s).

Theorem (Nyquist’s Stability Criterion)
Consider a unity feedback control system with open-loop transfer function
L(s). Let Γ be a Nyquist contour. The closed-loop system is stable if and only
if the number of counterclockwise encirclements of −1 + i0 by the Nyquist
plot L(Γ) is equal to the number of poles of L(s) inside Γ (i.e. open-loop
unstable poles).
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Stability Margin

In practice, it is not enough that a system is stable. There must also be some
margins of stability that describe how far from instability the system is and its
robustness to perturbation.

▶ Stability margins express how well the Nyquist curve of the loop transfer
avoids the critical point −1.

▶ The shortest distance sm of the Nyquist curve to the critical point is a
natural criterion — stability margin.
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Gain Margin

▶ Gain Margin:

– the factor by which the open-loop gain can be increased before a
stable closed-loop system becomes unstable

– It is the inverse of the distance between the origin and the point
between −1 and 0 where the loop transfer function crosses the
negative real axis.

– On a Nyquist plot, the gain margin is the inverse of the distance to
the first point where L(s) crosses the real axis.
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Phase Margin

▶ Phase Margin:

– the amount by which the open-loop phase can be decreased before a
stable closed-loop system becomes unstable

– i.e. the amount of phase lag required to reach the stability limit

▶ On a Nyquist plot, the phase margin is the smallest angle on the unit
circle between −1 and L(s)

Stability margins 7/26



Algebraic Definitions

▶ Phase-Crossover frequency

– ωpc at which L(iω) crosses the real axis: ∠L(iωpc) = −180◦

▶ Gain Margin

– the inverse of the open-loop gain at ωpc: gm = 1
|L(iωpc)|

▶ Gain-Crossover frequency

– ωgc at which G(jω) crosses the unit circle: |L(iωgc)| = 1

▶ Phase Margin

– the amount by which the open-loop phase at ωg exceeds −180◦:

φm = ∠L(iωgc) + 180◦
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Stability margins for a third-order system

Example
Consider a loop transfer function L(s) =

3

(s+ 1)3

Figure: Stability margins for a third-order transfer function. (a) Nyquist plot; (b) Bode plot.

▶ We can use its Nyquist plot or Bode plot. This yields the following values:

gm = 2.67, φm = 41.7◦, sm = 0.464.
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Root locus - Overview

Motivation: System responses are affected by the locations of the poles of its
transfer function in the complex domain, e.g., stability, convergence speed, etc.

▶ Feedback control can move the closed-loop system poles by designing an
appropriate controller – pole placement (not covered in this course).

What is the root locus method? — Another graphical tool

▶ The root locus is a graph of the roots of the characteristic polynomial as
a function of a parameter — give insight into the effects of the parameter.

▶ i.e., the root locus provides all possible pole locations as a system
parameter (e.g., the controller gain) varies

▶ Obtain the root locus — find the roots of the closed loop characteristic
polynomial for different values of the parameter (easy for computers).

▶ The general shape of the root locus can be obtained with very little
computational effort, and that it often gives considerable insight.
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Root locus: Example 1

Figure: Feedback control system

▶ Consider a single-loop feedback control system with

P (s) =
1

s(s+ 2)
, C(s) = k

▶ The closed-loop transfer function from the reference r to output y is:

Gyr(s) =
kP (s)

1 + kP (s)
=

k

s2 + 2s+ k

▶ How do the closed-loop poles vary as a function of k?

– We can actually compute the roots as λ1,2 = −1±
√
1− k.
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Root Locus: Example 1

Example

▶ Root locus for

P (s) =
1

s(s+ 2)

▶ Matlab command: rlocus(tf([1],[1 2 0])).
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Root Locus: Example 2

Figure: Feedback control system

Example

▶ Consider a single-loop feedback control system with

P (s) =
(s+ 3)

s(s+ 2)
, C(s) = k

▶ The closed-loop transfer function from r to y is:

Gyr(s) =
kP (s)

1 + kP (s)
=

k(s+ 3)

s2 + (2 + k)s+ 3k
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Root Locus: Example 2

▶ Root locus for

P (s) =
(s+ 3)

s(s+ 2)

▶ Matlab command: rlocus(tf([1 3],[1 2 0])).
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▶ In this case, adding a stable zero in the open-loop system increases the
relative stability of the closed-loop system by attracting the branches of
the root locus.
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Root Locus: Example 3

Figure: Feedback control system

Example

▶ Consider a single-loop feedback control system with

P (s) =
1

s(s+ 2)(s+ 3)
, C(s) = k

▶ The closed-loop transfer function from r to y is:

Gyr(s) =
k

s3 + 5s2 + 6s+ k
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Root Locus: Example 3

▶ Root locus for

P (s) =
1

s(s+ 2)(s+ 3)

▶ Matlab command: rlocus(tf([1],[1 5 6 0])).
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▶ In this case, adding a stable pole in the open-loop system makes the
closed-loop system less stable (stable for some values of k);

Root locus 17/26



Root Locus: Definition

Figure: Feedback control system

▶ Closed-loop transfer function:

Gyr(s) =
kP (s)

1 + kP (s)

▶ The closed-loop poles satisfy:

1 + kP (s) = 0

▶ The root locus is the set of points s such that 1 + kP (s) = 0 as k varies
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Root Locus: Definition

Consider the zeros and poles of P (s) explicitly:

P (s) =
b(s)

a(s)
=

bmsm + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0

= bm
(s− z1) · · · (s− zm)

(s− p1) · · · (s− pn)

▶ The closed loop characteristic polynomial is:

1 + kP (s) = 0 ⇒ acl(s) := a(s) + kb(s) = 0

▶ The closed loop poles are the roots of acl(s).

▶ The root locus is a graph of the roots of acl(s) as the gain k is varied
from 0 to ∞.

▶ Since the polynomial acl(s) has degree n, the plot will have n branches.
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Starting and ending points of Root locus

▶ Each branch starts at a different open-loop pole.

▶ m of the branches end at different open-loop zeros.

▶ The remaining n−m branches go to infinity

Example
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(a) P (s) = 1
s(s+2)
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(b) P (s) = s+3
s(s+2)
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(c) P (s) = 1
s(s+2)(s+3)
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Starting and ending points of Root locus

▶ The closed loop characteristic polynomial is:

1 + kP (s) = 0 ⇒ acl(s) := a(s) + kb(s) = 0

▶ The root locus is a graph of the roots of acl(s) as the gain k is varied
from 0 to ∞.

Starting points when k = 0: we have acl(s) := a(s) + kb(s) = a(s).

▶ The closed-loop poles are equal to the open-loop poles.

▶ Open-loop poles at s = p with multiplicity l ⇒

a(s) + kb(s) = (s− p)lã(s) + kb(s) ≈ (s− p)lã(p) + kb(p) = 0

For small value of k, we have the roots are

s = p+
l
√

−kb(p)/ã(p)

▶ The root locus has a star pattern with l branches from the open-loop
pole s = p, and the angle between two neighboring branches is 2π

l
.
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Examples
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(a) P (s) = 1
s(s+2)
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(b) P (s) = 1
s(s+2)2
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(c) P (s) = 1
s(s+2)3
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(d) P (s) = 1
s2(s+2)2
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Starting and ending points of Root locus

▶ The closed loop characteristic polynomial is:

1 + kP (s) = 0 ⇒ acl(s) := a(s) + kb(s) = 0

▶ The root locus is a graph of the roots of acl(s) as the gain k is varied
from 0 to ∞.

Ending points when k goes to infinity: we have

acl(s) := b(s)

(
a(s)

b(s)
+ k

)
≈ b(s)

(
sn−m

b0
+ k

)
▶ For large K, the closed-loop poles are approximately the roots (zeros of

P (s)) of b(s) and
n−m√−b0k

▶ A better approximation of the closed-loop poles is

s = s0 +
n−m√−b0k, s0 =

1

n−m

(
n∑

k=1

pk −
m∑

k=1

zk

)
.
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Examples

Example
Show the root loci for the following open-loop transfer functions

Pa(s) =
s+ 1

s2
, Pb(s) =

s+ 1

s(s+ 2)(s2 + 2s+ 4)
,

Pc(s) =
s+ 1

s(s2 + 1)
, Pd(s) =

s2 + 2s+ 2

s(s2 + 1)
.
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Summary

▶ Stability margins express how well the Nyquist curve of the loop transfer
avoids the critical point −1.

▶ The shortest distance sm of the Nyquist curve to the critical point is a
natural criterion — stability margin; Another two criteria are gain
margin and phase margin.

▶ Root locus: a graph of the closed-loop roots as k is varied from 0 to ∞.

– The plot of root locus will have n branches.

– Each branch starts at a different open-loop pole.

– m of the branches end at different open-loop zeros.

– The remaining n−m branches go to infinity.
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