
ECE 171A: Linear Control System Theory

Lecture 20: PID control

Yang Zheng

Assistant Professor, ECE, UCSD

May 17, 2024

Reading materials: Ch 11.1 - 11.3



Annoucements

▶ HW6 due tomorrow; HW7 will be out on Saturday and due by 11:59 pm,
29 May (Wednesday, Week 9)

▶ Midterm exam (II) — in class, May 22 (Wednesday in Week 8)

– Scope: Lectures 11 - 21, HW4 - HW6, HW7 (Q1, Q2), DI 5-7;
(Reading materials in the textbook)

– Closed book, closed notes, closed external links.

– Come on time (1 or 2 minutes early if you can; we will start at 9:00
am promptly)

– No MATLAB is required. No graphing calculators are permitted. A
basic arithmetic calculator is allowed.

– The exams must be done in a blue book. Bring a blue book with you.

– No collaboration and discussions are allowed. It is dishonest to
cheat on exams. Instances of academic dishonesty will be referred to
the Office of Student Conduct for adjudication. You don’t want to
take a risk for such a small thing.
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Overview

Proportional-integral-derivative (PID) control is by far the most common
way of using feedback in engineering systems

▶ A survey of controllers for more than 100 boiler-turbine units: 94.4% of
all controllers were PI, 3.7% PID, and 1.9% used advanced control.

Figure: PID using error feedback

PID control

▶ the proportional term (P) —
the present error;

▶ the integral term (I) — the
past errors;

▶ the derivative term (D) —
anticipated future errors.

▶ PID control appears in both simple and complex systems: as stand-alone
controllers, as elements of hierarchical, distributed control systems, etc.
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PID controller

Input/output relation

u = kpe+ ki

∫ t

0

e(τ)dτ + kd
de

dt
= kp

(
e+

1

Ti

∫ t

0

e(τ)dτ + Td
de

dt

)
.

▶ Time constant Ti = kp/ki (Integral time); Td = kd/kp (Derivative time)

▶ Also known as three-term controllers.

Figure: PID using error feedback

Example
▶ Consider a system with dynamics

P (s) =
1

(s+ 1)3
.

▶ Consider a controller C(s)

▶ The transfer function from
reference to error is

Ger(s) =
1

1 + C(s)P (s)
.
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Numerical experiments
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Intuition about PID control – P term

The transfer function from reference to error is

Ger(s) =
1

1 + C(s)P (s)
=

1

1 + kpP (s)
.

▶ Assuming the closed loop is stable, the steady-state error for a unit step is

Ger(0) =
1

1 + kpP (0)
.

▶ The error decreases with increasing gain, but the system also become
more oscillatory.

▶ To avoid having a steady-state error, the P term can be changed to

u(t) = kpe(t) + uff .

where uff is a feedforward term (also known as reset value — manually
adjusted in early controllers).

Basic Control Functions 8/22



Intuition about PID control – I term

Integral action guarantees that the process output agrees with the reference
in steady state and provides an alternative to the feedforward term.

▶ Since this result is SO IMPORTANT, we provide a general proof below.

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ.

▶ Assume that u(t) and e(t) converge to u = u0 and e = e0

u0 = kpe0 + ki lim
t→∞

∫ t

0

e(τ)dτ.

▶ The limit of the right hand side is not finite unless e(t) goes to zero.

Integral control: if a steady state exists, the error will always be zero.

▶ This property is sometimes called the magic of integral action.

▶ Notice that we have NOT assumed that the process is linear or
time-invariant (we have assumed that there is an equilibrium point).
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Intuition about PID control – I term

The effect of integral action can also be understood from frequency domain
analysis.

▶ The transfer function of a PID controller is

C(s) = kp +
ki
s

+ kds.

▶ This controller has infinite gain at zero frequency — no steady-state
error

C(0) = ∞ ⇒ Ger(0) =
1

1 + C(0)P (0)
= 0.

▶ Integral action as Automatic reset
— one of the early inventions (magic
of integral action)

Gue = kp
1 + sTi

sTi
= kp +

kp
sTi

▶ Converges more quickly for larger integral gains, but the system also
becomes more oscillatory
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Intuition about PID control – D term

The original motivation for derivative feedback was to provide predictive or
anticipatory action.

▶ The combination of the P and D terms can be written

u(t) = kpe(t) + kd
de

dt
= kp

(
e(t) + Td

de

dt

)
:= kpep,

where ep — prediction of the error at time t+ Td by linear extrapolation.

▶ Filtered derivative: difference
between the signal and its low-pass
filtered version

Gue = kp

(
1− 1

1 + sTd

)
= kp

sTd

1 + sTd
=

kds

1 + sTd
.

▶ The transfer function Gue acts like a differentiator for signals with low
frequencies and as a constant gain kp for high-frequency signals
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PID control in engineering and biological systems

Although PID control was developed in the context of engineering applications,
it also appears in nature.

▶ In biological systems proportional, integral, and derivative action are
generated by combining subsystems with dynamical behavior.

Disturbance attenuation by feedback in biological systems is often called
adaptation.
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Model reduction (simplification)

▶ Practical systems are always complex and nonlinear.

▶ Simplify the models to capture the essential properties that are needed
for PID design.

All models are wrong and some are useful!

Low-order simplified models can be obtained from the first principles.

▶ Example:

– Any stable system can be modeled by a static system if its inputs are
sufficiently slow.

– A first-order model is sufficient if the storage of mass, momentum,
or energy can be captured by only one variable

– System dynamics are of second order if the storage of mass, energy,
and momentum can be captured by two state variables

▶ A wide range of techniques for model reduction are also available
(beyond the scope of this class).
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PI for first-order systems

Consider a first-order system with the transfer function P (s) =
b

s+ a
.

▶ Consider a PI controller

C(s) = kp + ki
1

s
.

▶ The closed-loop transfer function
from r to y is

Gyr(s) =
PC

1 + PC

=
bkps+ bki

s2 + (a+ bkp)s+ bki
. Figure: PID using error feedback

▶ Requiring that the closed loop system have the characteristic polynomial

p(s) = s2 + a1s+ a2.

▶ Controller parameters are

kp =
a1 − a

b
, ki =

a2

b
.
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PID control for Second-order Systems

Figure: PID using error feedback

▶ Consider a second-order plant:

P (s) =
b0

s2 + a1s+ a0

▶ Consider a PID controller

C(s) = kp + ki
1

s
++kds.

▶ The closed-loop transfer function
from r to y is

Gyr(s) =
PC

1 + PC

How should the controller C(s) be designed to ensure that the closed-loop
system is stable and its step response has zero steady-state error?
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Case 1: Proportional (P) Control

A proportional (P) controller uses a constant gain kp:

C(s) = kp ⇔ u(t) = kpe(t)

▶ Closed-loop transfer function:

Gyr(s) =
PC

1 + PC
=

kpb0
s2 + a1s+ (a0 + kpb0)

▶ P control can accelerate the response of a second-order system by
changing the natural frequency ω2

0 = (a0 + kpb0)

▶ To ensure stability, we need a1 > 0 and a0 + kpb0 > 0.

▶ P control can stabilize only some systems because it adjusts one
coefficient of the characteristic equation.

For a0 ̸= 0, the closed-loop system step response will have a constant finite
steady-state error.

Gyr(0) =
kpb0

a0 + kpb0
< 1.
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Case 2: Proportional-Integral (PI) Control

A proportional-integral (PI) controller uses a proportional gain kp and an
integral gain ki:

C(s) = kp +
ki
s

⇔ u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ

▶ Closed-loop transfer function:

Gyr(s) =
PC

1 + PC
=

b0(kps+ ki)

s3 + a1s2 + (a0 + kpb0)s+ kib0

▶ Zero steady-state error if the closed-loop system is stable

Gyr(0) =
b0ki
kib0

= 1.

We achieved the steady-state error specification but the closed-loop system
might still be unstable if a1 < 0.
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Case 3: PID Control

A proportional-integral-derivative (PID) controller uses a proportional gain
kp, an integral gain ki, and a derivative gain kd:

C(s) = kp +
ki
s

+ kds u = kpe+ ki

∫ t

0

e(τ)dτ + kd
de

dt

▶ Closed-loop transfer function:

Gyr(s) =
PC

1 + PC
=

b0(kps+ ki + kds
2)

s3 + (a1 + kdb0)s2 + (a0 + kpb0)s+ kib0

▶ The coefficients of the characteristic polynomial can be set arbitrarily via
an appropriate choice of kp, ki, kd

For a second-order plant, PID control can guarantee

▶ stability, good transient behavior, and zero steady-state step error.
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PID Control Example

Example
Consider the plant

P (s) =
1

s2 − 3s− 1

Design a PID controller C(s) to achieve step response with zero steady-state
error and place the closed-loop system poles at −1, −2, −3

▶ PID controller: C(s) = kp + ki
s
+ kds

▶ Closed-loop transfer function:

Gyr(s) =
PC

1 + PC
=

kds
2 + kps+ ki

s3 + (kd − 3)s2 + (kp − 1)s+ ki

▶ Matching coefficients with

p(s) = (s+ 1)(s+ 2)(s+ 3)

= (s2 + 3s+ 2)(s+ 3)

= s3 + 6s2 + 11s+ 6,

we have kd = 9, kp = 12, ki = 6.
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Summary

Figure: PID using error feedback

PID control

▶ the proportional term (P) —
the present error;

▶ the integral term (I) — the
past errors;

▶ the derivative term (D) —
anticipated future errors.

▶ Magic of integral action

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ ⇒ u0 = kpe0 + ki lim
t→∞

∫ t

0

e(τ)dτ.

▶ PID controller design for first-order and second-order systems

▶ PID tuning (such as Ziegler-Nichols’ Tuning, not covered in this class)
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