ECE 171A: Linear Control System Theory Lecture 23: Loop Shaping

Yang Zheng

Assistant Professor, ECE, UCSD

May 29, 2024

Announcements

- ▶ HW8 will be out this afternoon; due by 11:59 pm on June 7 (next Friday)
 - From the survey feedback: HW8 is now optional.
 - We will drop the lowest score from your HW1 HW8 for the final grade.
 - So you can choose to skip this homework, and then your HW1-HW7 will account for 35% of the final grade.
 - However, we suggest you try this final HW since
 - ▶ 1) it will only increase your HW performance,
 - ▶ 2) the material here is within the scope of the final exam.
- ► From the survey feedback: we take a maximum of the following methods for your final grade (HW 35%, in-class quiz 5%)
 - 1. Midterm I 10 % + Midterm II 10 % + Final 40 %
 - 2. Midterm I 5 % + Midterm II 10 % + Final 45 %
 - 3. Midterm I 10 % + Midterm II 5 % + Final 45 %

(Grades are important; what you have really learned is even more important. As suggested, I hope this change will promote the growth of students over the course more effectively)

Outline

Feedback design via loop shaping

Design examples

Summary

Outline

Feedback design via loop shaping

Design examples

Summary

Loop shaping

Loop shaping: choose a compensator C(s) that gives a loop transfer function L(s) = P(s)C(s) with a desired shape. — **Trial and error procedure**

- **Example Nyquist stability theorem**: To make an unstable system stable we simply have to bend the Nyquist curve away from the critical point s=-1+i0.
- ▶ Method 1 (backward): Determine a loop transfer function that gives a closed loop system with the desired properties and then compute the controller as C(s) = L(s)/P(s). Drawbacks:
 - lead to controllers of high order
 - there are limits if the process transfer function P(s) has poles and zeros in the right half-plane,
- Method 2: (forward)
 - Start with the process transfer function P(s)
 - Change its gain to obtain the desired bandwidth,
 - Add (stable) poles and zeros on ${\cal C}(s)$ until the desired shape is obtained.

Design considerations

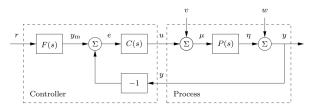


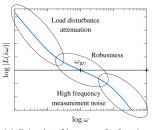
Figure: Block diagram of a control system with two degrees of freedom.

We need a suitable shape for the loop transfer function L(s)=P(s)C(s) that gives good closed-loop performance and good stability margins.

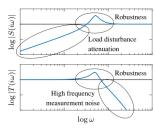
- ▶ Good performance requires that the loop transfer function L(s)
 - is large for low frequencies good tracking of reference signals
 - has good attenuation of low-frequency load disturbances.
- For example, since $G_{\rm yw}=S=1/(1+L(s))$ (note that $G_{\rm er}=S$ if F(s)=1), for frequencies ω where $|L(i\omega)|>100$
 - disturbances will be attenuated by approximately a factor of 100
 - the steady-state tracking error |e(t)| = |r(t) y(t)| is less than 1%.

Design considerations

The loop transfer function should thus have roughly the shape shown in the following figure



(a) Gain plot of loop transfer function



(b) Gain plot of sensitivity functions

- lacktriangle It has unit gain at the gain crossover frequency (i.e., $|L(i\omega_{
 m gc})|=1$),
- ▶ large gain for lower frequencies $\omega < \omega_{\rm gc}$ (good for S = 1/(1 + PC))
- small gain for higher frequencies $\omega > \omega_{\rm gc}$ (good for $G_{uw} = C/(1+PC)$)

Robustness is determined by the shape of the loop transfer function around the gain-crossover frequency $\omega_{\rm gc}$.

Design considerations



Load disturbance attenuation Robustness High frequency $\log \omega$

Robustness

- lt would be desirable to transition from high loop gain $|L(i\omega)|$ at low frequencies to low loop gain as quickly as possible,
- Robustness requirements restrict how fast the gain can decrease:
 - In general 1 , the relationship between slope $n_{
 m gc}$ and phase margin $arphi_{
 m m}$ (in degrees) is (no need to memorize this equation)

$$n_{\rm gc} \approx -2 + \frac{\varphi_{\rm m}}{90}$$
.

¹this is true for minimum phase systems; see Chapter 10.4 of the textbook Feedback design via loop shaping

Outline

Feedback design via loop shaping

Design examples

Summary

Design examples 9/22

Loop shaping via Lead and Lag Compensation

Loop shaping is a **trial-and-error** procedure.

- Many specific procedures are available they all require experience, but they also give good insight into the conflicting specifications.
- ▶ Start with a Bode plot of the process transfer function P(s)
- ightharpoonup Choose the gain crossover frequency $\omega_{
 m gc}$
 - A compromise between attenuation of load disturbances and injection of measurement noise.
- Attempt to shape the loop transfer function by changing the **controller** gain and adding poles and zeros to the controller transfer function C(s)
 - the loop gain at low frequencies can be increased by so-called "lag compensation"
 - the behavior around the crossover frequency can be changed by so-called "lead compensation".

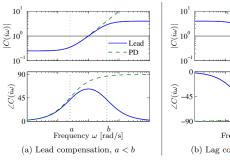
Design examples 10/22

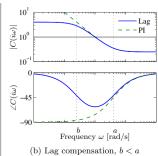
Lead and Lag Compensation

Simple compensators with transfer function

$$C(s) = k \frac{s+a}{s+b}, \quad a > 0, \ b > 0$$

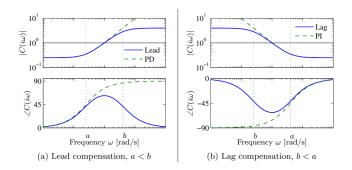
- ▶ Lag compensator (Phase) if a > b; a PI controller is a special case with b = 0.
- Lead compensator (Phase) if a < b, which can be viewed as a PD controller with filtering.</p>





Design examples 11/22

Lead and Lag Compensation

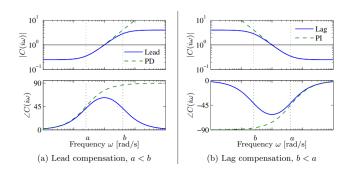


General purpose of Lag compenstation

- increases the gain at low frequencies
- improve tracking performance at low frequencies
- ▶ improve disturbance attenuation at low frequencies

Design examples 12/22

Lead and Lag Compensation



General purpose of Lead compenstation

- ▶ Add **phase lead** in the frequency range between the pole and zero pair (b,a)
- By appropriately choosing the location of this phase lead, we can provide additional phase margin at the gain crossover frequency.

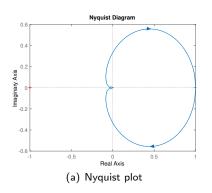
Design examples 13/22

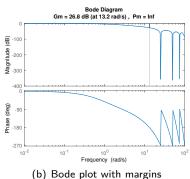
Example 1

Example (Example 12.4)

The transfer function for the system dynamics is

$$P(s) = \frac{a(1 - e^{-s\tau})}{s\tau(s+a)}, \qquad a = 1, \ \tau = 0.25$$





Design examples 14/22

Example 1 - unite negative feedback

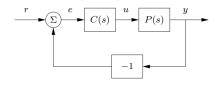
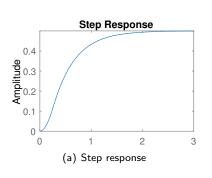
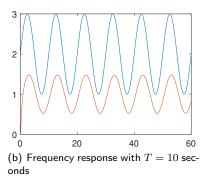


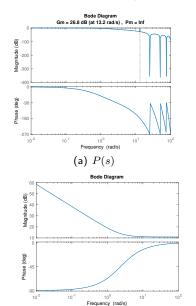
Figure: Unit negative feedback control C(s) = 1





Design examples 15/22

Example 1 - Lag compensation



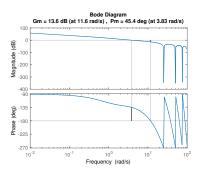


Figure: Margins for L(s) = P(s)C(s)

$$C(s) = 3.5 + \frac{8.3}{s}$$

Example 1 - Lag compensation

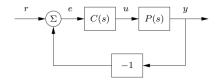
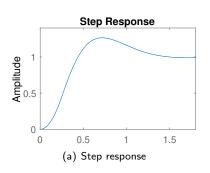
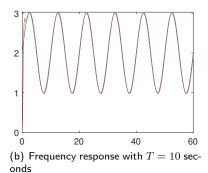


Figure: Feedback control with a lag compensator $C(s) = k_p + \frac{k_i}{s}$





Design examples 17/22

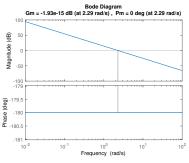
Example 2

Example (Example 12.5)

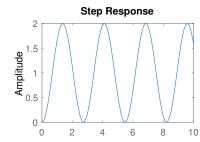
The transfer function for the system dynamics is

$$P(s) = \frac{r}{Js^2}, \qquad r = 0.25, \ J = 0.0475$$

lacktriangle less than 1 % error in steady state; $\leq 10\%$ tracking error up to 10 rad/s

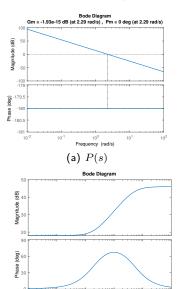


(a) Bode plot with margins



(b) Step response for unit negative feedback

Example 2 - Lead compensation



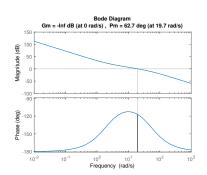


Figure: Margins for L(s) = P(s)C(s)

$$C(s) = k \frac{s+a}{s+b},$$

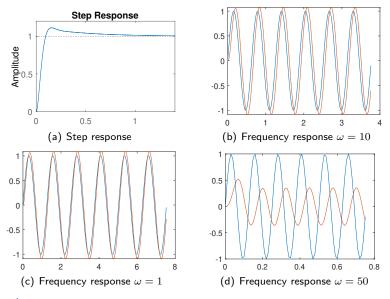
$$a=2, b=50, k=200;$$

10²

10'2

10-1

Example 2 - time domain simulations



Design examples 20/22

Outline

Feedback design via loop shaping

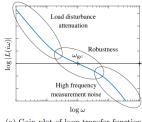
Design examples

Summary

Summary 21/22

Summary

► The loop transfer function should have roughly the shape below



- (a) Gain plot of loop transfer function
- - (b) Gain plot of sensitivity functions
- General purpose of Lag compenstation
 - increases the gain at low frequencies
 - improve tracking performance at low frequencies
 - improve disturbance attenuation at low frequencies
- General purpose of Lead compenstation
 - Add phase lead in the frequency range between the pole and zero pair
 - By appropriately choosing the location of this phase lead, we can provide additional phase margin at the gain crossover frequency.

Summary 22/22