ECE 171A: Linear Control System Theory Lecture 24: Uncertainty and robustness

Yang Zheng

Assistant Professor, ECE, UCSD

May 31, 2024

Reading materials: Ch 13.1, 13.2

Outline

Review on Loop-shaping

Modeling uncertainty

Robust stability

Summary

Outline

Review on Loop-shaping

Modeling uncertainty

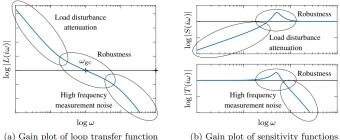
Robust stability

Summary

Loop-shaping: Summary

Loop shaping: choose a compensator C(s) that gives a loop transfer function L(s) = P(s)C(s) with a desired shape. — Trial and error procedure

The loop transfer function should have roughly the shape below



(a) Gain plot of loop transfer function (b) Gain plot of sensitivity functions

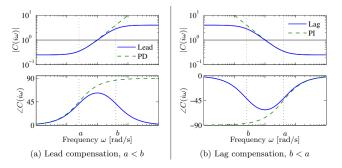
- Good performance requires that the loop transfer function L(s)
 - is large for low frequencies good tracking of reference signals
 - has good attenuation of low-frequency load disturbances.

Lead and Lag Compensation

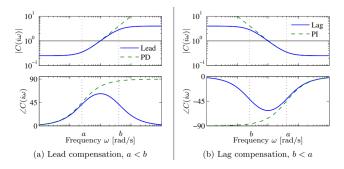
Simple compensators with transfer function

$$C(s) = k \frac{s+a}{s+b}, \qquad a > 0, \ b > 0$$

- Lag compensator (offer phase lag) if a > b; a PI controller is a special case with b = 0.
- Lead compensator (offer phase lead) if a < b; a PD controller with filtering.



Lag and Lead compenstations



General purpose of Lag compensitation

- increases the gain at low frequencies
- improve tracking performance at low frequencies
- improve disturbance attenuation at low frequencies
- General purpose of Lead compensitation
 - Add phase lead in the frequency range between the pole and zero pair
 - By appropriately choosing the location of this phase lead, we can provide additional phase margin at the gain crossover frequency.

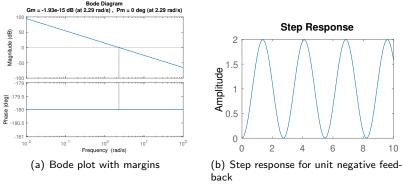
Example 2

Example (Example 12.5)

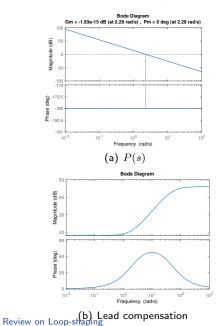
The transfer function for the system dynamics is

$$P(s) = \frac{r}{Js^2}, \qquad r = 0.25, \ J = 0.0475$$

 \blacktriangleright less than 1 % error in steady state; \leq 10% tracking error up to 10 rad/s



Example 2 - Lead compensation



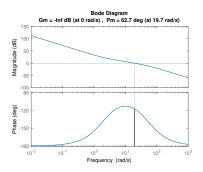
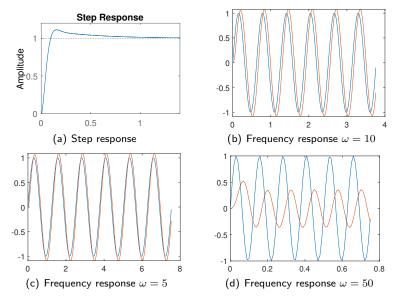


Figure: Margins for L(s) = P(s)C(s)

Consider a lead compensation

$$C(s) = k \frac{s+a}{s+b},$$
$$a = 2, b = 50, k = 200;$$

Example 2 - time domain simulations



Outline

Review on Loop-shaping

Modeling uncertainty

Robust stability

Summary

Modeling uncertainty

Robustness to uncertainty

Robustness to uncertainty is one of the most useful properties of feedback

This makes it possible to design feedback systems based on strongly simplified models.

Recall from Lecture 3 Fundamental properties of feedback:

- Disturbance attenuation
- Reference signal tracking
- Robustness to uncertainty
- Shaping of dynamical behavior

Robustness to uncertainty

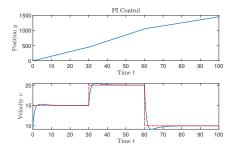
Robustness to uncertainty is one of the most useful properties of feedback

- This makes it possible to design feedback systems based on strongly simplified models.
- We consider a simpler scenario, where some system parameters have variations (imprecise measurement).

Cruise control. Condition: $v_0 = 10m/s$, m = 500kg, $\delta = 0.5$; Pl controller: $K_p = 250$, $K_i = 50$

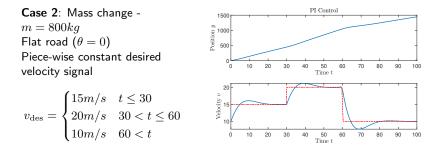
Case 1: Mass change m = 200kgFlat road ($\theta = 0$) Piece-wise constant desired velocity signal

$$v_{\rm des} = \begin{cases} 15m/s & t \le 30\\ 20m/s & 30 < t \le 60\\ 10m/s & 60 < t \end{cases}$$



Modeling uncertainty

Robustness to uncertainty



Robustness: The same PI controller can make the closed-loop system follow a reference signal even when some system parameters are not known exactly.

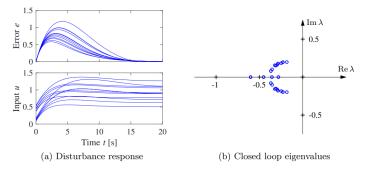
Uncertainty Modeling

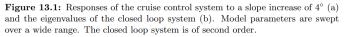
We discuss two types of uncertainties in this lecture.

- Parametric uncertainty in which the parameters describing the system are not precisely known, e.g.,
 - The variation of the mass of a car, which changes with the number of passengers and the weight of baggage
 - When linearizing a nonlinear system, the parameters of the linearized model also depend on the *operating conditions*.
- Unmodeled dynamics, in which some dynamics are neglected during the modeling, e.g.,
 - In Cruise Control, we did not include a detailed model of the engine dynamics

Parametric Uncertainty

- In principle, it is easy to investigate the effects of parametric uncertainty by evaluating the performance criteria for a range of parameters.
- Such a calculation reveals the consequences of parameter variations.





However, this can be intractable (computationally demanding) for large parameter space. Formal guarantees can be challenging too!.

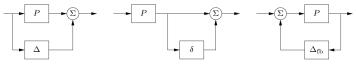
Modeling uncertainty

Unmodeled dynamics

How to handle unmodeled dynamics?

- Method 1: develop a more complex model that includes additional details.
 - Such models are commonly used for controller development, but substantial effort is required to generate them.
 - These models are themselves likely to be uncertain, since the parameter values may vary over time.
- Method 2: investigate whether the closed loop system can be made insensitive to generic forms of unmodeled dynamics.
 - The basic idea is to *augment* the nominal model with a *bounded input/output transfer function* that captures the gross features of the unmodeled dynamics.
 - Describing unmodeled dynamics with transfer functions permits us to handle infinite-dimensional systems like time delays.

Unmodeled dynamics



(a) Additive uncertainty (b) Multiplicative uncertainty (c) Feedback uncertainty

Figure 13.2: Unmodeled dynamics in linear systems. Uncertainty can be represented using additive perturbations (a), multiplicative perturbations (b), or feedback perturbations (c). The nominal system is P, and Δ , δ , and $\Delta_{\rm fb}$ represent unmodeled dynamics.

Additive uncertainty: the true plant dynamics are in the range of

 $\tilde{P}(s) = P(s) + \Delta(s), \qquad |\Delta(i\omega)| < \epsilon, \qquad \forall \omega \in \mathbb{R}.$

Multiplicative uncertainty:

$$\tilde{P}(s) = P(s)(1 + \delta(s)), \qquad |\delta(i\omega)| < \epsilon, \qquad \forall \omega \in \mathbb{R}.$$

- ► Feedback uncertainty: $\tilde{P}(s) = \frac{P}{1 + P\Delta_{\rm fb}}, \qquad |\Delta_{\rm fb}(i\omega)| < \epsilon, \forall \omega \in \mathbb{R}$
- The specific form that is used depends on what provides the best representation of the unmodeled dynamics.

Modeling uncertainty

When Are Two Systems Similar?

A naive approach is to say that two systems are close

- if their open loop responses are close.
- or if their open loop frequency responses are similar.
- Unfortunately, both are inappropriate!
- This seemingly innocent problem is not as simple as it may appear
- Proper measures are relatively recent (1990s) Vinnicombe metric (details are beyond the scope of this class)

Example

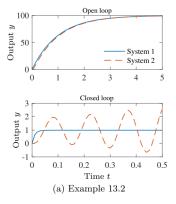
Systems similar in open loop but different in closed loop

$$P_1(s) = \frac{k}{s+1},$$

$$P_2(s) = \frac{k}{(s+1)(sT+1)^2},$$

have very similar open-loop step responses for small values of T.

 Closed loop step responses are different.



When Are Two Systems Similar?

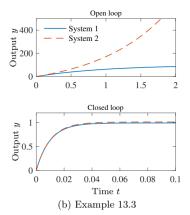
Example

Systems different in open loop but similar in closed loop

$$P_1(s) = \frac{k}{s+1},$$
$$P_2(s) = \frac{k}{s-1},$$

have very different open loop step responses.

 Closed loop step responses are very similar.



- Two systems can have very close frequency responses (i.e., Bode plots and Nyquist plots are similar)
- But their closed-loop response are very different! (see Example 13.4)
- Proper measures are relatively recent (in the early 90s) Vinnicombe metric (details are not required in this class)

Modeling uncertainty

Outline

Review on Loop-shaping

Modeling uncertainty

Robust stability

Summary

Robust stability

Robust stability: when can we formally show that the stability of a system is robust with respect to process variations?

- Nyquist criterion: a powerful and elegant way to study the effects of uncertainty.
- The stability margin s_m is a good robustness measure.

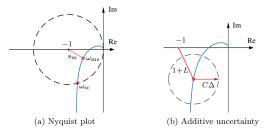


Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows the stability margin $s_m = 1/M_s$. The plot (b) shows the Nyquist curve and the circle shows uncertainty due to stable additive process variations Δ .

Robust stability - explicit conditions

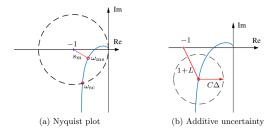


Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows the stability margin $s_m = 1/M_s$. The plot (b) shows the Nyquist curve and the circle shows uncertainty due to stable additive process variations Δ .

• If the process is changed from P(s) to $P(s) + \Delta(s)$, the loop transfer function changes from P(s)C(s) to

$$(P(s) + \Delta(s))C(s).$$

Assume that $\Delta(s)$ is stable, the closed-loop system remains stable as long as the perturbed loop transfer function

$$(P + \Delta)C$$

never reaches the critical point -1.

Robust stability - explicit conditions

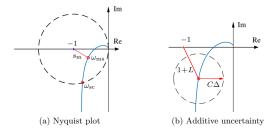


Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows the stability margin $s_m = 1/M_s$. The plot (b) shows the Nyquist curve and the circle shows uncertainty due to stable additive process variations Δ .

- The distance from -1 to L = PC is |1 + L|.
- \blacktriangleright The perturbed Nyquist curve will not reach -1 provided that

$$|C\Delta| < |1+L| \tag{1}$$

Robust stability - explicit conditions

The condition (2) must be valid all all points on the Nyquist curve — point-wise for all frequencies

$$|\delta(i\omega)| < \left|\frac{1+L(i\omega)}{L(i\omega)}\right| = \frac{1}{|T(i\omega)|}, \quad \forall \omega \ge 0.$$
(3)

- Condition (3) is one of the reasons why feedback systems work so well in practice.
 - The models used to design control systems are often simplified, and the properties of a process may change during operation.
 - Condition (3) implies that the closed loop system will at least be stable for substantial variations in the process dynamics

The peak value of the complimentary sensitivity:

$$M_t = \max_{\omega} |T(i\omega)| := \left\| \frac{PC}{1 + PC} \right\|_{\infty}$$

- Condition (3) becomes $|\delta(i\omega)| < 1/M_t, \forall \omega \ge 0.$
- Reasonable values of M_t are from 1.2 to 2.

Outline

Review on Loop-shaping

Modeling uncertainty

Robust stability

Summary

Summary

Summary

- Robustness to uncertainty is one of the most useful properties of feedback — design feedback systems based on *strongly simplified models*.
 - **Parametric uncertainty** in which the parameters describing the system are not precisely known
 - Unmodeled dynamics, in which some dynamics are neglected during the modeling.
- An explicit sufficient robustness condition based on Nyquist criterion

$$|C\Delta| < |1+L|, \quad \text{or} \quad |\delta(i\omega)| < \left|\frac{1+L(i\omega)}{L(i\omega)}\right| = \frac{1}{|T(i\omega)|}, \quad \forall \omega \ge 0.$$

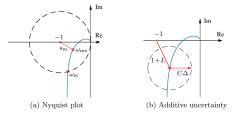


Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows the stability margin $s_m = 1/M_s$. The plot (b) shows the Nyquist curve and the circle shows uncertainty due to stable additive process variations Δ .