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Loop shaping: choose a compensator C(s) that gives a loop transfer function

Loop-shaping: Summary

L(s) = P(s)C(s) with a desired shape.

— Trial and error procedure

» The loop transfer function should have roughly the shape below
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— Good performance requires that the loop transfer function L(s)
> is large for low frequencies — good tracking of reference signals
» has good attenuation of low-frequency load disturbances.
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Lead and Lag Compensation

Simple compensators with transfer function

s+a
s+0b’

C(s)=k a>0,b>0

> Lag compensator (offer phase lag) if a > b; a Pl controller is a special
case with b = 0.

> Lead compensator (offer phase lead) if a < b; a PD controller with

filtering.
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Lag and Lead compenstations
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» General purpose of Lag compenstation
— increases the gain at low frequencies
— improve tracking performance at low frequencies
— improve disturbance attenuation at low frequencies
» General purpose of Lead compenstation
— Add phase lead in the frequency range between the pole and zero pair
— By appropriately choosing the location of this phase lead, we can

provide additional phase margin at the gain crossover frequency.
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Example 2

Example (Example 12.5)

The transfer function for the system dynamics is

P(S):ﬁa

" r =025 J=0.0475

» less than 1 % error in steady state; < 10% tracking error up to 10 rad/s
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Example 2 - Lead compensation

Bode Diagram
Gm = -1.93-15 dB (at 2.20 rad/s), Pm = 0 deg (at 2.29 rad/s)
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Example 2 - time domain simulations
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Robustness to uncertainty

Robustness to uncertainty is one of the most useful properties of feedback

» This makes it possible to design feedback systems based on strongly
simplified models.

Recall from Lecture 3 Fundamental properties of feedback:
» Disturbance attenuation
> Reference signal tracking
> Robustness to uncertainty

» Shaping of dynamical behavior

Modeling uncertainty
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Robustness to uncertainty

Robustness to uncertainty is one of the most useful properties of feedback
» This makes it possible to design feedback systems based on strongly
simplified models.
» We consider a simpler scenario, where some system parameters have
variations (imprecise measurement).

Cruise control. Condition: vo = 10m/s, m = 500kg, § = 0.5;
Pl controller: K, = 250, K; = 50

Case 1: Mass change - o PICownl
m = 200kg 2 om0
Flat road (6 = 0) 7 o)

Piece-wise constant desired
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Robustness to uncertainty

Case 2: Mass change - 1500 Frcontrol
m = 800kg

Flat road (6 = 0)
Piece-wise constant desired

10001

500

Position y
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15m/s t <30 :
Vdes = ¢ 20m/s 30 <t < 60 z
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Robustness: The same Pl controller can make the closed-loop system follow a

reference signal even when some system parameters are not known exactly.
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Uncertainty Modeling

We discuss two types of uncertainties in this lecture.

» Parametric uncertainty in which the parameters describing the system
are not precisely known, e.g.,

— The variation of the mass of a car, which changes with the number
of passengers and the weight of baggage

— When linearizing a nonlinear system, the parameters of the linearized
model also depend on the operating conditions.

» Unmodeled dynamics, in which some dynamics are neglected during the
modeling, e.g.,

— In Cruise Control, we did not include a detailed model of the engine
dynamics
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Parametric Uncertainty

» In principle, it is easy to investigate the effects of parametric uncertainty
by evaluating the performance criteria for a range of parameters.

» Such a calculation reveals the consequences of parameter variations.
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Figure 13.1: Responses of the cruise control system to a slope increase of 4° (a)
and the eigenvalues of the closed loop system (b). Model parameters are swept
over a wide range. The closed loop system is of second order.

> However, this can be intractable (computationally demanding) for large
parameter space. Formal guarantees can be challenging too!.
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Unmodeled dynamics

How to handle unmodeled dynamics?

» Method 1: develop a more complex model that includes additional
details.

— Such models are commonly used for controller development, but
substantial effort is required to generate them.

— These models are themselves likely to be uncertain, since the
parameter values may vary over time.

» Method 2: investigate whether the closed loop system can be made
insensitive to generic forms of unmodeled dynamics.

— The basic idea is to augment the nominal model with a bounded
input/output transfer function that captures the gross features of the
unmodeled dynamics.

— Describing unmodeled dynamics with transfer functions permits us to
handle infinite-dimensional systems like time delays.
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Unmodeled dynamics

T 1 1T

(a) Additive uncertainty b) Multiplicative uncertainty (c) Feedback uncertainty

Figure 13.2: Unmodeled dynamics in linear systems. Uncertainty can be repre-
sented using additive perturbations (a), multiplicative perturbations (b), or feed-
back perturbations (c). The nominal system is P, and A, §, and Ag, represent
unmodeled dynamics.

» Additive uncertainty: the true plant dynamics are in the range of

P(s) = P(s) + A(s), |A(iw)| < e, Yw € R.
» Multiplicative uncertainty:
P(s) = P(s)(1+4(s)), |0(iw)| < €, Yw e R.
P

> Feedback uncertainty: P(s) = | A (iw)] < €,Vw € R

1+ PAg ’
» The specific form that is used depends on what provides the best
representation of the unmodeled dynamics.
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When Are Two Systems Similar?

» A naive approach is to say that two systems are close
— if their open loop responses are close.
— or if their open loop frequency responses are similar.

» Unfortunately, both are inappropriate!

» This seemingly innocent problem is not as simple as it may appear
» Proper measures are relatively recent (1990s) — Vinnicombe metric
(details are beyond the scope of this class)

Example
Systems similar in open loop but
different in closed loop

k
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k

(s+1)(sT+1)*’

Pi(s) =
PQ(S) =

have very similar open-loop step
responses for small values of T'.
» Closed loop step responses are
different.
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When Are Two Systems Similar?
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» Closed loop step responses are

» Two systems can have very close frequency responses (i.e., Bode plots
and Nyquist plots are similar)

» But their closed-loop response are very different! (see Example 13.4)

» Proper measures are relatively recent (in the early 90s) — Vinnicombe
metric (details are not required in this class)
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Robust stability

Robust stability: when can we formally show that the stability of a system is
robust with respect to process variations?

» Nyquist criterion: a powerful and elegant way to study the effects of
uncertainty.

» The stability margin s,, is a good robustness measure.

Im

\Re

(a) Nyquist plot (b) Additive uncertainty
Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows

the stability margin sm = 1/Ms. The plot (b) shows the Nyquist curve and the
circle shows uncertainty due to stable additive process variations A.
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Robust stability - explicit conditions
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(a) Nyquist plot (b) Additive uncertainty

Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows
the stability margin sm = 1/Ms. The plot (b) shows the Nyquist curve and the
circle shows uncertainty due to stable additive process variations A.
» If the process is changed from P(s) to P(s) + A(s), the loop transfer
function changes from P(s)C(s) to
(P(s) + A(s))C(s)-
> Assume that A(s) is stable, the closed-loop system remains stable as long
as the perturbed loop transfer function

(P+A)C
never reaches the critical point —1.
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Robust stability - explicit conditions
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(a) Nyquist plot (b) Additive uncertainty

Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows
the stability margin sm = 1/Ms. The plot (b) shows the Nyquist curve and the
circle shows uncertainty due to stable additive process variations A.

» The distance from —1to L = PC'is |1 + L.
» The perturbed Nyquist curve will not reach —1 provided that

ICA| < |1+ L|
> (1) holds if
1+ L 1+ L 1
A _— —_— == — h = —
| |<’ G ’, 0] ’ 13 ’ Tk where ¢
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Robust stability - explicit conditions

The condition (2) must be valid all all points on the Nyquist curve —
point-wise for all frequencies

16(iw)] < Y > 0. (3)

1+ L(iw) ‘ _ 1
L(iw) |T (iw)|’

» Condition (3) is one of the reasons why feedback systems work so
well in practice.

— The models used to design control systems are often simplified, and
the properties of a process may change during operation.

— Condition (3) implies that the closed loop system will at least be
stable for substantial variations in the process dynamics

The peak value of the complimentary sensitivity:

PC
M, = T(iw)| == || ——==
t m3x| (iw)] 1+PCHOO
» Condition (3) becomes |6 (iw)| < 1/My,Vw > 0.
» Reasonable values of M; are from 1.2 to 2.
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Summary

»> Robustness to uncertainty is one of the most useful properties of
feedback — design feedback systems based on strongly simplified models.
— Parametric uncertainty in which the parameters describing the
system are not precisely known
— Unmodeled dynamics, in which some dynamics are neglected during
the modeling.
» An explicit sufficient robustness condition based on Nyquist criterion
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(a) Nyquist plot (b) Additive uncertainty

Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows
the stability margin sm = 1/M. The plot (b) shows the Nyquist curve and the
circle shows uncertainty due to stable additive process variations A.
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