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Final Exam

Final Exam — 8:00 am - 10:30 am, June 12

▶ Scope: Lectures 1 - 27, HW1 - HW8, DI 1-10; (Reading materials in the
textbook)

▶ This final exam is closed book but you can bring one sheet of notes

– page maximum size: Letter; can be double-sided;
– should be hand-written (you can also write on your iPad and print it);
– it is not acceptable to directly copy-paste lecture

notes/HW/textbook.

▶ The exams must be done in a blue book. Bring a blue book with you.

▶ No MATLAB is required. No graphing calculators are permitted. You
need a basic arithmetic calculator for simple calculations.

▶ No collaboration and discussions are allowed. It is dishonest to cheat
on exams. Instances of academic dishonesty will be referred to the Office
of Student Conduct for adjudication. You don’t want to take a risk for
such a small thing.
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Student Evaluations of Teaching (SET)

▶ You should have got the following link from UCSD Online Evaluations to
evaluate ECE 171A

https://academicaffairs.ucsd.edu/Modules/Evals/?e11360527

▶ Deadline: Saturday, June 08 at 8:00 am

▶ Your responses are completely anonymous.

▶ It’s your opportunity to let your voices be heard (by our team, the
department, and the university).

▶ Please give some thoughtful and constructive feedback.

▶ If you like the course, please say it explicitly and we’d love to hear it

▶ If you think some aspects can be further improved, we are more than
happy to know them (we have implemented some suggestions from
previous surveys)

Many thanks for your efforts and your time in this course!
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Unmodeled dynamics

▶ Additive uncertainty: the true plant dynamics are in the range of

P̃ (s) = P (s) + ∆(s), |∆(iω)| < ϵ, ∀ω ∈ R.
▶ Multiplicative uncertainty:

P̃ (s) = P (s)(1 + δ(s)), |δ(iω)| < ϵ, ∀ω ∈ R.

▶ Feedback uncertainty: P̃ (s) =
P

1− P∆fb
, |∆fb(iω)| < ϵ, ∀ω ∈ R

▶ The specific form that is used depends on what provides the best
representation of the unmodeled dynamics.
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Robust stability

Robust stability: when can we formally show that the stability of a system is
robust with respect to process variations?

▶ Nyquist criterion: a powerful and elegant way to study the effects of
uncertainty.

▶ The stability margin sm is a good robustness measure.
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Robust stability - explicit conditions

▶ If the process is changed from P (s) to P (s) + ∆(s), the loop transfer
function changes from P (s)C(s) to

(P (s) + ∆(s))C(s).

▶ Assume that ∆(s) is stable, the closed-loop system remains stable as long
as the perturbed loop transfer function

(P +∆)C

never reaches the critical point −1.
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Robust stability - explicit conditions

▶ The distance from −1 to L = PC is |1 + L|.
▶ The perturbed Nyquist curve will not reach −1 provided that

|C∆| < |1 + L| (1)

▶ (1) holds if

|∆| <
∣∣∣∣1 + L

C

∣∣∣∣ , or |δ| <
∣∣∣∣1 + L

L

∣∣∣∣ = 1

|T | , where δ =
∆

P
(2)
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Robust stability - explicit conditions

The condition (2) must be valid all all points on the Nyquist curve —
point-wise for all frequencies

|δ(iω)| <
∣∣∣∣1 + L(iω)

L(iω)

∣∣∣∣ = 1

|T (iω)| , ∀ω ≥ 0. (3)

▶ Condition (3) is one of the reasons why feedback systems work so
well in practice.

– The models used to design control systems are often simplified, and
the properties of a process may change during operation.

– Condition (3) implies that the closed loop system will at least be
stable for substantial variations in the process dynamics

The peak value of the complimentary sensitivity transfer function:

Mt = max
ω

|T (iω)| :=
∥∥∥∥ PC

1 + PC

∥∥∥∥
∞

▶ Condition (3) becomes |δ(iω)| < 1/Mt,∀ω ≥ 0.

▶ Reasonable values of Mt are from 1.2 to 2.
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Example

Example (Example 13.7: Cruise Control)
The model of the car in the fourth gear at speed 20m/s is

P (s) =
1.32

s+ 0.01

▶ Consider a PI controller with gains kp = 0.5 and ki = 0.1.

Figure: Robustness of a cruise controller
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Example

Some observations:

▶ Moderately small uncertainties are required only around the gain
crossover frequencies,

▶ but large uncertainties can be permitted at higher and lower frequencies.

▶ A simple model that describes the process dynamics well around the
crossover frequency is often sufficient for design
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Other robustness conditions

Figure: Illustration of robustness to process perturbations1

1The details of these sufficient conditions are not required in this class.
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System design

The initial design of a system can have a significant impact on the ability to
use feedback to provide robustness and performance improvements.

▶ It is particularly important to recognize fundamental limits in the
performance of feedback systems early in the design process.

▶ Awareness of the limits and co-design of the process and the controller are
good to avoid potential difficulties both for system and control designers.

Examples:

▶ We may expect that a system with time delays cannot admit fast control
because control actions are delayed.

▶ It seems reasonable that unstable systems will require fast controllers,
which will depend on the bandwidth of sensors and actuators.

▶ These limits are caused by properties of the system dynamics and can
often be captured by conditions on the poles and zeros of the process
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System design

The freedom for the control designer depends very much on the situation

▶ Extreme 1 (limited freedom): a process with given sensors and actuators
and his or her task is to design a suitable controller

– Even further, you may be given with an existing control loop, and
your task is to retrofit the system.

▶ Extreme 2 (significant freedom): You can choose sensors/actuators

– Co-design the location and characteristics of sensors, actuators, and
controller simultaneously.

– However, you may have budget limits.

Performance limits due to dynamics and limits on actuation power/rate.

▶ Dynamics limitations: captured by time delays and poles and zeros in the
right half-plane.

– Time delays are easy to understand.
– A less obvious case is that a process with a right half-plane pole/zero

pair cannot be controlled robustly if the pole is close to the zero
(details are not required in this class).

▶ Restriction in actuation: captured by actuation power and rates.
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Example: Vehicle steering

Figure: Vehicle steering dynamics. The left figure shows an overhead view of a
vehicle with four wheels. The wheelbase is b.

▶ The center of mass at a distance a forward of the rear wheels.

▶ Approximation with a single front wheel and a single rear wheel — an
abstraction called the bicycle model.

▶ The steering angle is δ and the velocity at the center of mass has the
angle α relative the length axis of the vehicle.

▶ The position is given by (x, y) and the orientation (heading) by θ; For
ODE modeling, see Example 3.11
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Example: Vehicle steering

Example (Frequency modeling for vehicle steering)
The transfer function from steering angle δ to lateral position y is

P (s) =
av0s+ v20

bs2

▶ v0 is the velocity of the vehicle and a, b > 0

▶ The transfer function has a zero

s = −v0
a
.

– In normal (forward) driving this zero is in the left half-plane,
– but it is in the right half-plane when driving in reverse (v0 < 0).

▶ The unit step response is y(t) =
av0
b

t+
v20
2b

t2

– The lateral position thus begins to respond immediately to a steering
command as an integrator.

– If v0 < 0 (reverse steering), the initial y(t) is in the wrong direction!!
– This behavior is representative for non-minimum phase systems

(called an inverse response).
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Example: Vehicle steering

Figure: Vehicle steering for driving in reverse. (a) Step responses; (b) frequency
responses

▶ The step response for forward and reverse driving is shown above.

▶ The parameters are a a = 1.5m, b = 3m, v0 = 2m/s for forward driving,
and v0 = −2m/s for reverse driving.

▶ When driving in reverse, there is an initial motion of the center of mass in
the opposite direction

▶ there is A DELAY before the car begins to move in the desired manner.
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Example: Vehicle steering

The existence of the right half-plane zero can be removed

▶ if we choose to measure the location of the vehicle by the position of the
center of the rear wheels instead of the center of mass

a = 0, P (s) =
v20
bs

▶ This is easily implemented by calibrating the position sensor for the vehicle

▶ This choice of “sensor” is subject to calibration errors ϵ and this can lead
to a zero of the process transfer function at v0/ϵ

▶ This is called a “fast” zero and its impact is relatively minor.
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Poles and Zeros

▶ The poles of a system depend on the intrinsic dynamics of the system.

▶ They represent the modes of the system and they are given by the
eigenvalues of the dynamics matrix A of the linearized model.

– For example, we have the initial response to ẋ = Ax

xi(t) = eλitxi(0).

Sensors and actuators have no effect on the poles: the only way to
change poles is by feedback or by redesign of the process.

▶ However, the zeros of a system depend on how the sensors and actuators
are connected to the process.

▶ Zeros can thus be changed by moving or adding sensors and actuators,
which is often simpler than redesigning the process dynamics
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Summary

▶ An explicit sufficient robustness condition based on Nyquist criterion

|C∆| < |1 + L|, or |δ(iω)| <
∣∣∣∣1 + L(iω)

L(iω)

∣∣∣∣ = 1

|T (iω)| , ∀ω ≥ 0.

▶ Performance limits due to process dynamics and limits on actuation
power/rate.

– Dynamics limitations: captured by time delays and poles and zeros
in the right half-plane.

▶ Sensors and actuators have no effect on the poles: the only way to
change poles is by feedback or by redesign of the process.

▶ However, the zeros of a system depend on how the sensors and
actuators are connected to the process.

– Restriction in actuation: captured by actuation power and rates.
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