ECE 171A: Linear Control System Theory Lecture 3: Feedback Principles

Yang Zheng

Assistant Professor, ECE, UCSD

April 05, 2024

Power of feedback

Fundamental properties of feedback:

- Disturbance attenuation
- Reference signal tracking
- Robustness to uncertainty
- Shaping of dynamical behavior

We provide two simple examples to illustrate the properties above:

- A simple static model
- ► A simple dynamical model Cruise control

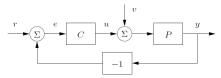
A Nonlinear Static Model

A dynamical model: Cruise control

Using Feedback to attenuate disturbances Using Feedback to Track Reference Signals Using Feedback to Provide Robustness

Summary

A nonlinear static model



 Here, we consider static plant dynamics (which has no dynamical behavior; no ODE is needed)

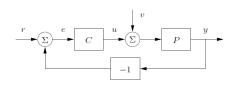
$$y = \operatorname{sat}(x) = \begin{cases} -1 & \text{if } x \le -1 \\ x & \text{if } |x| < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

- ▶ The controller C is a constant gain, i.e., u = ke with k > 0.
- ▶ Linear range: the plant process is linear if |x| < 1, where we have y = x and the process gain is 1.
- ▶ Open-loop system: a combination of the controller and the process with no feedback (assuming v=0) leads to

$$y = \operatorname{sat}(kr).$$

Its linear range becomes |r| < 1/k.

Response to Reference Signals



With the feedback loop, we have the closed-loop system (assuming v=0)

$$\begin{cases} y = \operatorname{sat}(u), \\ u = k(r - y). \end{cases}$$

$$\Rightarrow y = \operatorname{sat}(k(r - y))$$

► The overall input/output relationship becomes

$$y = \operatorname{sat}\left(\frac{k}{k+1}r\right) = \begin{cases} -1 & \text{if } r \le -\frac{k+1}{k} \\ \frac{k}{k+1}r & \text{if } |r| < \frac{k+1}{k} \\ 1 & \text{if } r \ge \frac{k+1}{k} \end{cases}$$

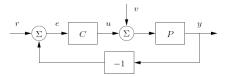
Linear region

Linear range of the closed-loop system is

$$|r| < \frac{k+1}{k}$$

Observation 1: Negative feedback widens the linear range of the system by a factor of k+1 compared to the open loop system (that is 1/k).

Robustness to Parameter Uncertainty



The **sensitivity** of a system describes how changes in the system parameters affect the performance of the system.

Case 1: Open-loop system: in the linear range, we have y = kr

▶ It follows that

$$\frac{dy}{dk} = r = \frac{y}{k} \quad \Rightarrow \quad \frac{dy}{y} = \frac{dk}{k}$$

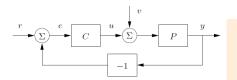
Sensitivity: 10% change in k will lead to a 10% change in the output.

Case 2: Closed-loop system: in the linear range, we have $y = \frac{k}{k+1}r$

▶ Sensitivity: If k=100, then 10% change in k will lead to less than a 0.1% change in y.

Observation 2: Negative feedback **reduces the sensitivity** to gain variations by a factor of k+1; the closed-loop system is much less sensitive.

Load Disturbance Attenuation



Another use of feedback is to ${\bf reduce}$ the effects of external disturbances, represented by the signal v in our case.

Case 1: Open-loop system: we have y = sat(kr + v)

▶ Effect of v: in the linear range, disturbances are passed through with no attenuation!

Case 2: Closed-loop system:

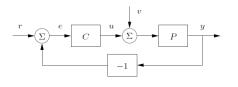
- For simplicity, we set the reference signal r = 0;
- ► Then, we have

$$y = \operatorname{sat}(v - ky) \quad \Rightarrow \quad y = \operatorname{sat}\left(\frac{v}{k+1}\right)$$

Observation 3: In the linear range, negative feedback *reduces the effect of load disturbances* by a factor of k+1.

A Nonlinear Static Model 7/22

Summary



Static plant dynamics

Static plant dynamics
$$y = \operatorname{sat}(x) = \begin{cases} -1 & \text{if } x \leq -1 \\ x & \text{if } |x| < 1 \\ 1 & \text{if } x \geq 1 \end{cases}$$

Constant gain, i.e., u = ke with k > 0.

Negative feedback

- 1) increases the range of linearity of the system,
- 2) decreases the sensitivity of the system to parameter variation,
- 3) attenuates load disturbances.

The trade-off is that the closed-loop gain is decreased

$$y = \operatorname{sat}\left(\frac{k}{k+1}r\right) = \begin{cases} -1 & \text{if } r \le -\frac{k+1}{k} \\ \frac{k}{k+1}r & \text{if } |r| < \frac{k+1}{k} \\ 1 & \text{if } r \ge \frac{k+1}{k} \end{cases}$$

A Nonlinear Static Model

A dynamical model: Cruise control

Using Feedback to attenuate disturbances

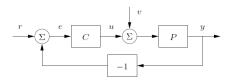
Using Feedback to Track Reference Signals Using Feedback to Provide Robustness

Summary

Cruise control

Parameters, input/output variables (simplified)

- Desired speed: v_{des}
- ► System variable (output): speed *v*
- ightharpoonup System parameter: mass m (which may change)
- ▶ Disturbance: road slop $F_{\rm hill} = -mg\sin(\theta)$, air drag $F = -\delta \times v$
- \blacktriangleright Actuator (input): Engine/Braking Force $F_{\rm engine}$



System model

$$m\dot{v} = F_{\text{engine}} - \delta \times v - mq\sin(\theta)$$

PI control

$$F_{\mathrm{engine}} = K_{\mathrm{p}} e(t) + K_{\mathrm{i}} \int_{0}^{t} e(t) dt, \quad \text{where } e(t) = v_{\mathrm{des}}(t) - v(t)$$

Reducing the effects of disturbances

Reducing the effects of disturbances is a primary use of feedback.

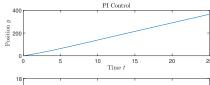
- It was used by James Watt to make steam engines run at constant speed in spite of varying load (Industrial revolution)
- It was used by electrical engineers to make generators driven by water turbines deliver electricity with constant frequency and voltage.
- Feedback is commonly used to alleviate effects of disturbances in the process industry, for machine tools, and for engine and cruise control in cars.
- ▶ The human body exploits feedback to keep body temperature, blood pressure, and other important variables constant.

Regulation problem: Keeping variables close to a desired, constant reference value in spite of disturbances.

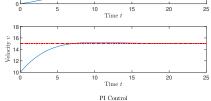
No steady-state error

Condition: $v_0 = 10m/s$, m = 500 kg, $\delta = 0.5$, $\theta = 0$

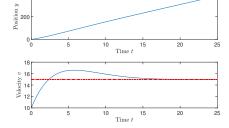
PI controller: $K_{\rm p}=250,\;K_{\rm i}=50$



Case 1: Uphill $\theta = 5^{\circ}$



Case 2: Downhill $\theta = -5^{\circ}$

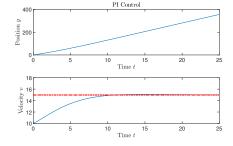


No steady-state error

Condition: $v_0 = 10m/s$, m = 500 kg, $\delta = 0.5$, $\theta = 0$

PI controller: $K_{\rm p}=250,~K_{\rm i}=50$

Case 3: Larger uphill $\theta=10^\circ$



Disturbance attenuation: The same PI controller gives no steady-state error

$$e(t) = v_{\text{des}} - v \to 0,$$

given a constant disturbance (the value can be unknown to the controller).

A Nonlinear Static Model

A dynamical model: Cruise control

Using Feedback to attenuate disturbances

Using Feedback to Track Reference Signals

Using Feedback to Provide Robustness

Summary

Track Reference Signals

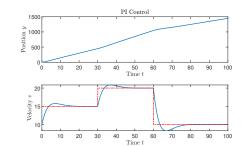
Another major application of feedback is to make a system output follow a reference value, which is called the **servo problem**.

- Examples: Cruise control, steering of a car, and tracking a satellite with an antenna or a star with a telescope
- Other examples: high performance audio amplifiers, machine tools, and industrial robots.

Cruise control. Condition: $v_0=10m/s,\ m=500{\rm kg}, \delta=0.5;$ PI controller: $K_{\rm p}=250,\ K_{\rm i}=50$

Case 1: Flat road ($\theta = 0$) Piece-wise constant desired velocity signal

$$v_{\rm des} = \begin{cases} 15m/s & t \le 30 \\ 20m/s & 30 < t \le 60 \\ 10m/s & 60 < t \end{cases}$$



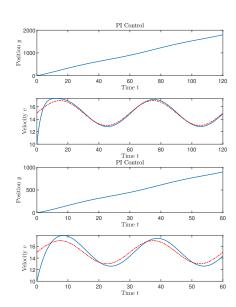
Track Reference Signals

Case 2: Flat road ($\theta = 0$) Time-varying sinusoidal signal

$$v_{\rm des} = 15 + 2 \times \sin\left(\frac{2\pi}{60}t\right)$$

Case 3: Flat road ($\theta = 0$) Time-varying sinusoidal signal

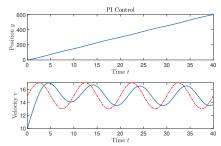
$$v_{\rm des} = 15 + 2 \times \sin\left(\frac{2\pi}{30}t\right)$$



Track Reference Signals

Case 3: Flat road ($\theta = 0$) Time-varying sinusoidal signal

$$v_{\rm des} = 15 + 2 \times \sin\left(\frac{2\pi}{10}t\right)$$



- ► To analyze and quantify the tracking behavior with respect to the frequency of the reference signal, we need to study **transfer function** representations *bandwidth* of the closed-loop system
 - Bandwidth: The upper bound of the frequency of reference signals that can be tracked with small error.

Reference tracking: The same PI controller can make the closed-loop system follow a reference signal with a small tracking error.

A Nonlinear Static Model

A dynamical model: Cruise control

Using Feedback to attenuate disturbances Using Feedback to Track Reference Signals

Using Feedback to Provide Robustness

Summary

Reduce effects of parameter variations

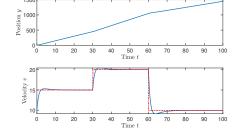
Feedback can also be used to make good systems from imprecise components (with some limitations)!

We consider a simpler scenario, where some system parameters have variations (imprecise measurement).

Cruise control. Condition:
$$v_0=10m/s,\ m=500{\rm kg}, \delta=0.5;$$
 PI controller: $K_{\rm p}=250,\ K_{\rm i}=50$

Case 1: Mass change - m=200kg Flat road $(\theta=0)$ Piece-wise constant desired velocity signal

$$v_{\text{des}} = \begin{cases} 15m/s & t \le 30\\ 20m/s & 30 < t \le 60\\ 10m/s & 60 < t \end{cases}$$

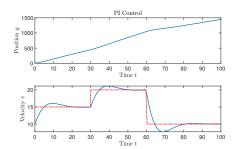


PI Control

Reduce effects of parameter variations

Case 2: Mass change - m=800kg Flat road $(\theta=0)$ Piece-wise constant desired velocity signal

$$v_{\rm des} = \begin{cases} 15m/s & t \le 30 \\ 20m/s & 30 < t \le 60 \\ 10m/s & 60 < t \end{cases}$$



Robustness: The same PI controller can make the closed-loop system follow a reference signal even when some system parameters are not known exactly.

A Nonlinear Static Model

A dynamical model: Cruise control

Using Feedback to attenuate disturbances Using Feedback to Track Reference Signals Using Feedback to Provide Robustness

Summary

Summary 21/22

Summary

We have used two simple examples

- ► A simple static model
- ► A simple dynamical model Cruise control

to illustrate several fundamental properties of feedback

- Disturbance attenuation
- ► Reference signal tracking
- Robustness to uncertainty
- Shaping of dynamical behavior

More quantitative analysis and design techniques will be discussed later and throughout this class!

Summary 22/22