ECE 171A: Linear Control System Theory Lecture 5: System Modeling (II)

Yang Zheng
Assistant Professor, ECE, UCSD

April 10, 2024

System modeling

General nonlinear system

$$
\begin{aligned}
\dot{x} & =f(x, u) \\
y & =h(x, u)
\end{aligned}
$$

Linear time-invariant (LTI) system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u .
\end{aligned}
$$

$x \in \mathbb{R}^{n}$: state; $y \in \mathbb{R}^{p}$: output; $u \in \mathbb{R}^{m}$: input

- State captures effects of the past
- Physical quantities that determines future evolution;
- Inputs describe external excitation
- Inputs are extrinsic to the system dynamics (externally specified);
- Dynamics describe state evolution
- Update rule for system state; Function of current state and any external inputs;
- Outputs describe measured quantities
- Outputs are function of state and inputs; not independent variables;

All models are wrong, but some are useful

Outline

Inverted pendulum and RL-circuit

Difference equations

Population dynamics

Summary

Outline

Inverted pendulum and RL-circuit

Difference equations

Population dynamics

Summary

Inverted pendulum

$$
\begin{aligned}
m & =\text { mass } \\
l & =\text { length } \\
u & =\text { external force } \\
\theta & =\text { angle }
\end{aligned}
$$

- Torque: $T=m g l \sin \theta-u l \cos \theta$.
- Moment of inertia: $J=m l^{2}$.
- Newton's law:

$$
m l^{2} \ddot{\theta}=m g l \sin \theta-u l \cos \theta
$$

- State-space model (nonlinear)

$$
\begin{aligned}
& x_{1}(t)=\theta(t), \\
& x_{2}(t)=\dot{\theta}(t),
\end{aligned} \quad \Rightarrow \quad\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
\frac{m g \sin x_{1}-u \cos x_{1}}{m l}
\end{array}\right]
$$

and $y=\theta(t)$.

RL Circuit

$$
\begin{aligned}
R: & \text { Resistance } \\
L: & \text { Inductance } \\
V_{R}=R \cdot I: & \text { Resistor } \\
V_{L}=L \cdot \dot{I}: & \text { Inductor }
\end{aligned}
$$

- Kirchhoff's voltage law:

$$
V_{S}-V_{R}-V_{L}=0
$$

- Combining:

$$
L \cdot \dot{I}=V_{S}-V_{R}=V_{S}-R I
$$

- State-space model: Let $x=I, u=V_{S}, y=V_{R}$, we have

$$
\begin{aligned}
& \dot{x}=-\frac{R}{L} x+\frac{1}{L} u \quad \leftarrow \quad \text { first-order ODE } \\
& y=R x
\end{aligned}
$$

Outline

Inverted pendulum and RL-circuit

Difference equations

Population dynamics

Summary

Difference equations

In some situations, it is more natural to describe the evolution of a system at discrete instants of time rather than continuously in time
\rightarrow discrete-time systems

- General dynamics

$$
\begin{aligned}
x[k+1] & =f(x[k], u[k]), \\
y[k] & =h(x[k], u[k]) .
\end{aligned}
$$

$-x \in \mathbb{R}^{n}$: state vector;
$-u \in \mathbb{R}^{n}$: input vector;

- $y \in \mathbb{R}^{n}$: output vector;
- Linear difference equation

$$
\begin{aligned}
x[k+1] & =A x[k]+B u[k], \\
y[k] & =C x[k]+D u[k] .
\end{aligned}
$$

Note that the matrices A, B, C, D determine the response of this system:

Time evolution

Linear difference equation

$$
\begin{aligned}
x[k+1] & =A x[k]+B u[k], \\
y[k] & =C x[k]+D u[k] .
\end{aligned}
$$

- At time $k=1$

$$
x[1]=A x[0]+B u[0], \quad \begin{aligned}
y[1] & =C x[1]+D u[1] \\
& =C A x[0]+C B u[0]+D u[1]
\end{aligned}
$$

- At time $k=2$

$$
\begin{aligned}
x[2] & =A x[1]+B u[1]=A^{2} x[0]+A B u[0]+B u[1], \\
y[2] & =C x[2]+D u[2] \\
& =C A^{2} x[0]+C A B u[0]+C B u[1]+D u[2] .
\end{aligned}
$$

- At time k (via repeated substitution)

$$
\begin{aligned}
& x[k]=A^{k} x[0]+\sum_{t=0}^{k-1} A^{k-t-1} B u[t] \\
& y[k]=C A^{k} x[0]+\sum_{t=0}^{k-1} C A^{k-t-1} B u[t]+D u[k],
\end{aligned}
$$

Consensus protocol

Goal: compute the average value of a set of numbers that are locally available to individual agents; Applications

- monitoring environment conditions in a region using multiple sensors
- monitoring movement of animals or vehicles
- monitoring the resource loading across a group of computers.

Adjacency matrix

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

- $x_{i} \in \mathbb{R}$ denotes the state of the i th sensor
- update rule (dynamics)

$$
x_{i}[k+1]=x_{i}[k]+\gamma \sum_{j \in \mathcal{N}_{i}}\left(x_{j}[k]-x_{i}[k]\right),
$$

where \mathcal{N}_{i} represents the set of neighbors of a node i.

Consensus protocol

Adjacency matrix

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

- Collective dynamics

$$
x[k+1]=x[k]-\gamma(D-A) x[k],
$$

where D is a diagonal matrix with entries being the number of neighbors of each node.

Figure: Consensus convergence

Predator-prey dynamics

Predator-prey problem: an ecological system in which we have two species, one of which feeds on the other.

- This type of system has been studied for decades and is known to exhibit interesting dynamics, e.g., oscillation.

Figure 3.7: Predator versus prey. The photograph on the left shows a Canadian lynx and a snowshoe hare, the lynx's primary prey. The graph on the right shows the populations of hares and lynxes between 1845 and 1935 in a section of the Canadian Rockies [Mac37]. The data were collected on an annual basis over a period of 90 years. (Photograph copyright Tom and Pat Leeson.)

Predator-prey dynamics

A simple discrete-time model

- Predator - lynxes; Prey - hares
H : represent the population of hares;
L : represent the population of lynxes;
k : be the discrete-time index (e.g., the month number).
- A simple model can be formulated as

$$
\begin{aligned}
H[k+1] & =H[k]+b_{\mathrm{h}}(u) H[k]-a L[k] H[k], \\
L[k+1] & =L[k]-d_{1} L[k] \quad+c L[k] H[k],
\end{aligned}
$$

- b_{h} is the hare birth rate per unite period and is a function of the food supply u;
- d_{1} is the lynx mortality rate;
- a and c are the interaction coefficients;
- $a L[k] H[k]$ is the rate of predation;
- $c L[k] H[k]$ is the growth rate of the lynxes;

Predator-prey dynamics

Numerical simulation

Figure 3.8: Discrete-time simulation of the predator-prey model (3.13). Using the parameters $a=c=0.014, b_{\mathrm{h}}(u)=0.6$, and $d_{1}=0.7$ in equation (3.13), the period and magnitude of the lynx and hare population cycles approximately match the data in Figure 3.7.

- The simulation details are different from the experimental data (expected)
- We see qualitatively similar trends
- Hence we can use the model to help explore the dynamics of the system

Outline

Inverted pendulum and RL-circuit

Difference equations

Population dynamics

Summary

Population dynamics

Population growth is a complex dynamic process that involves the interaction of one or more species with their environment and the larger ecosystem.

- Predator-prey model
- Logistic Growth model
- Let x be the population of a species at time t

$$
\frac{d x}{d t}=b x-d x=(b-d) x=r x, \quad x \geq 0
$$

where birth rate b and mortality rate d are parameters.

- Exponential increase if $b>d$; or exponential decrease if $b<d$
- A more realistic model: the birth rate decreases when x is large

$$
\frac{d x}{d t}=r x\left(1-\frac{x}{k}\right), \quad x \geq 0
$$

where k is the carrying capacity of the environment - Logistic Growth model

Population dynamics

A more realistic model: the birth rate decreases when x is large

$$
\frac{d x}{d t}=r x\left(1-\frac{x}{k}\right), \quad x \geq 0
$$

where k is the carrying capacity of the environment - Logistic Growth model

(a) Exponential growth - $r=1.2$

(b) Logistic Growth model with parameters $r=1.2, k=10$

Outline

Inverted pendulum and RL-circuit

Difference equations

Population dynamics

Summary

Summary

- $x \in \mathbb{R}^{n}$: state; $y \in \mathbb{R}^{p}$: output; $u \in \mathbb{R}^{m}$: input
- Continuous-time

$$
\begin{aligned}
\dot{x} & =f(x, u) \\
y & =h(x, u)
\end{aligned} \quad \Longleftrightarrow \quad \begin{aligned}
& \dot{x}=A x+B u \\
& y
\end{aligned}=C x+D u .
$$

- Discrete-time (e.g., consensus protocol, predator-prey dynamics)

$$
\left.\begin{array}{rlrl}
x[k+1] & =f(x[k], u[k]), & & x[k+1]
\end{array}\right)=A x[k]+B u[k], \text {, } \begin{aligned}
& y[k]
\end{aligned}=C x[k]+D u[k] .
$$

- Block diagrams: Emphasize the information flow and to hide details of the system.

