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Stability and solutions of linear systems

Theorem (Stability of a linear system)
The system ẋ = Ax is

▶ asymptotically stable if and only if all eigenvalues of A have a strictly
negative real part, i.e.,

Re(λi) < 0, i = 1, . . . , n.

▶ unstable if any eigenvalues A has a strictly positive real part, i.e, there
exist i such that

Re(λi) > 0.

The case with Re(λi) ≤ 0 is more difficult, which is beyond the scope of this
class; see the example in Lecture 7.

The general solution of ẋ = Ax with initial state x(0) ∈ Rn is

x(t) = eAtx(0).
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Approximation of nonlinear systems

In practice, almost all physical systems are not linear (i.e., nonlinear)

▶ No control input
ẋ = F (x)

▶ With control input
ẋ = f(x, u)

Common practice:

▶ Approximate a nonlinear system by a linear one;

▶ Design controllers based on an approximate linear model;

▶ Verify the results by simulating the closed-loop system using a nonlinear
model.
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Taylor series

The Taylor series of a real function f(x) that is infinitely differentiable at a
real number a is the power series

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n + . . .

(if the sum/series converges)

Example

▶ Exponential function ex

ex = 1 + x+
x2

2!
+

x3

3!
+ . . .+

xn

n!
+ . . .

▶ Trigonometric functions: sinx and cosx

sinx = x− x3

3!
+

x5

5!
− . . .

cosx = 1− x2

2!
+

x4

4!
− . . .
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Nonlinear systems

Suppose that we have a nonlinear system

ẋ = F (x),

that has an equilibrium point at xe.

▶ Compute the Taylor series expansion of the vector field

F (x) = F (xe) +
∂F

∂x

∣∣∣∣
xe

(x− xe) + higher-order terms in (x− xe).

▶ Since we have F (xe) = 0, we have

ẋ =
∂F

∂x

∣∣∣∣
xe

(x− xe) + higher-order terms in (x− xe).

▶ Choose a new state variable z = x− xe, and we can approximate the
system as

ż = Az, with A =
∂F

∂x

∣∣∣∣
xe

.
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Example: Inverted pendulum

Example
Consider a damped inverted pendulum with open-loop dynamics as

ẋ =

[
x2

sinx1 − cx2

]
, where x =

[
θ

θ̇

]
.

▶ Step 1: find equilibrium points[
x1

x2

]
=

[
0
0

]
,

[
x1

x2

]
=

[
π
0

]
,

▶ Step 2: Linearize the system around (0, 0)

f1(x1, x2) = x2

f2(x1, x2) = sinx1 − cx2 ≈ f2(0, 0) +
∂f2
∂x1

∣∣∣∣
(0,0)

(x1 − 0) +
∂f2
∂x2

∣∣∣∣
(0,0)

(x2 − 0)

= 0 + x1 − cx2

▶ Step 3: get a linear model ẋ =

[
0 1
1 −c

] [
x1

x2

]
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Example: Inverted pendulum

Example
Consider an inverted pendulum with open-loop dynamics as

ẋ =

[
x2

sinx1 − cx2

]
, where x =

[
θ, θ̇

]⊤
.

▶ Step 2: Linearize the system around (π, 0)

f1(x1, x2) = x2

f2(x1, x2) = sinx1 − cx2 ≈ f2(π, 0) +
∂f2
∂x1

∣∣∣∣
(π,0)

(x1 − π) +
∂f2
∂x2

∣∣∣∣
(π,0)

(x2 − 0)

= 0− 1× (x1 − π)− cx2

▶ Step 3: Define a new state variable z1 = x1 − π and z2 = x2

ż =

[
0 1
−1 −c

] [
z1
z2

]
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Lyapunov’s first (Indirect) method

Theorem
Consider a nonlinear system ẋ = F (x), with the origin xe = 0 as an equilibrium
point. Let

A =
∂F

∂x

∣∣∣∣
xe=0

▶ xe = 0 is locally asymptotically stable if A is asymptotically stable or all
eigenvalues of A have negative real parts.

▶ xe = 0 is unstable if one or more of the eigenvalues of A has positive real
part.

▶ June 6, 1857 - November 3, 1918

▶ Russian mathematician, mechanician and physicist.

▶ Many important contributions in the stability theory
of a dynamical system, mathematical physics and
probability theory.
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Example: Inverted pendulum

Consider an inverted pendulum with open-loop dynamics as

ẋ =

[
x2

sinx1 − cx2

]
, where x =

[
θ

θ̇

]
.

▶ Equilibrium one (0, 0): Unstable[
x1

x2

]
=

[
0
0

]
⇒ ẋ =

[
0 1
1 −c

] [
x1

x2

]
▶ Compute its eigenvalues∣∣∣∣λI −

[
0 1
1 −c

]∣∣∣∣ = ∣∣∣∣[ λ −1
−1 λ+ c

]∣∣∣∣ = λ2 + cλ− 1 = 0

▶ Equilibrium two (π, 0): Stable[
x1

x2

]
=

[
π
0

]
⇒ ż =

[
0 1
−1 −c

] [
z1
z2

]
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Example: Inverted pendulum

Figure: Comparison between the phase portraits for the full nonlinear system (a) and
its linear approximation around the origin (b). Notice that near the equilibrium point
at the center of the plots, the phase portraits are almost identical.
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Nonlinear system - Linearization

▶ Given a nonlinear dynamical system

ẋ = f(x, u), y = h(x, u).

▶ Suppose f(xe, ue) = 0 for a fixed point (xe, ue). Let ye = h(xe, ue).

▶ Define a new set of states, inputs, and outputs

x̃ = x− xe, ũ = u− ue, ỹ = y − ye.

▶ Then, apply a Taylor series expansion

dx̃

dt
=

dx

dt
= f(xe + x̃, ue + ũ)

= f(xe, ue) +
∂f

∂x

∣∣∣∣
(xe,ue)

x̃+
∂f

∂u

∣∣∣∣
(xe,ue)

ũ+O(∥x̃, ũ∥2)

≈ Ax̃+Bũ

where we have applied the fact f(xe, ue) = 0, and

A =
∂f

∂x

∣∣∣∣
(xe,ue)

, B =
∂f

∂u

∣∣∣∣
(xe,ue)

.
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Nonlinear system - Linearization

▶ Similarly, we have

ỹ = y − ye = h(xe + x̃, ue + ũ)− h(xe, ue)

≈ ∂h

∂x

∣∣∣∣
(xe,ue)

x̃+
∂h

∂u

∣∣∣∣
(xe,ue)

ũ

= Cx̃+Dũ

The Jacobian linearization of the nonlinear system

ẋ = f(x, u), y = h(x, u), (1)

at an equilibrium point (xe, ue) (such that f(xe, ue) = 0) is

dx̃

dt
= Ax̃+Bũ, ỹ = Cx̃+Dũ, (2)

where x̃ = x− xe, ũ = u− ue, ỹ = y − ye, and

A =
∂f

∂x

∣∣∣∣
(xe,ue)

, B =
∂f

∂u

∣∣∣∣
(xe,ue)

, C =
∂h

∂x

∣∣∣∣
(xe,ue)

, D =
∂h

∂u

∣∣∣∣
(xe,ue)

.
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Summary

The linear system (2) approximates the original nonlinear system (1).

Figure: General framework (taken from Prof Na Li’s ES 155)

Figure: Model Linearization Procedure (taken from Prof Na Li’s ES 155)
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Example: SpaceX rocket controller design

A rocket of mass m in vertical flight can be modeled by

ḣ = v

Mv̇ = F − km

h2
− cv,

▶ h > 0 is the vertical distance away from the earth,

▶ v is the vertical velocity,

▶ F is the rocket engine thrust force (control input),

▶ km

h2
represents the universal gravitation, and cv captures the friction.

Suppose m = 1, k = 1, c = 1; we let x1 = h and x2 = v, and the output
y = h, input u = F .

Question 1 - equilibrium point: Let F ∗ = 1. What is the equilibrium point of
this system?

ẋ1 = x2

ẋ2 = − 1

x2
1

− x2 + u
=⇒

{
u∗ = 1, x∗

1 = 1, x∗
2 = 0,

y∗ = x∗
1 = 1
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Example: SpaceX rocket controller design

Question 2 - Linearization: Linearize the system around the equilibrium point.

▶ Step 1: Write down the (possibly nonlinear) dynamics (step 0: obtain the
equilibrium) ẋ1 = f1(x1, x2, u) = x2

ẋ2 = f2(x1, x2, u) = − 1

x2
1

− x2 + u

▶ Step 2: compute their partial derivatives

∂f1
∂x1

= 0,
∂f1
∂x2

= 1,
∂f1
∂u

= 0,

∂f2
∂x1

=
2

x3
1

,
∂f2
∂x2

= −1,
∂f2
∂u

= 1,

▶ Step 3: define new variables x̃ = x− x∗, ũ = u− u∗, and ỹ = y − y∗.

▶ Step 4: Finalize the linearized model[
˙̃x1

˙̃x2

]
=

[
0 1
2 −1

] [
x̃1

x̃2

]
+

[
0
1

]
ũ, ỹ =

[
1 0

] [x̃1

x̃2

]
.
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Summary

Consider a nonlinear system ẋ = F (x), with xe = 0 as an equilibrium point. Let

A =
∂F

∂x

∣∣∣∣
xe=0

▶ xe = 0 is locally asymptotically stable if A is asymptotically stable or all
eigenvalues of A have negative real parts.

▶ xe = 0 is unstable if one or more of the eigenvalues of A has positive real
part.

Figure: Model Linearization Procedure (Taken from Prof Na Li’s ES 155)
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