
ECE285: Semidefinite and sum-of-squares optimization Winter 2023

Homework 1
Date Given: January 12, 2023
Date Due: January 20, 11:59 pm PST

Note: Please write down the number of the hours that you spend on the homework assignment.

Problem 1: Properties of positive semidefinite matrices [30 pts]

Classify the following statements as true or false. A proof or counterexample is required (all matrices below
have compatible dimensions) [5pts each].

(a) The diagonal elements of a positive definite matrix are all positive. The diagonal elements of a positive
semidefinite matrix are all nonnegative.

(b) A symmetric matrix Q ∈ Sn of rank r is positive semidefinite if and only if there exists a square matrix
R ∈ Rn×n of rank r such that Q = RRT. If Q is positive definite, then R is non-singular.

(Hint: consider the spectral decomposition of symmetric matrices Q = UΛUT with UUT = I.)

(c) If A ⪰ 0, B ⪰ 0 then ⟨A,B⟩ ≥ 0, and further ⟨A,B⟩ = 0 implies AB = 0. If A ⪰ 0, B ⪰ 0 and
⟨A,B⟩ = 0, then A = 0 or B = 0.

(d) Consider a symmetric matrix A ∈ Sn. If ⟨A,B⟩ ≥ 0,∀B ⪰ 0, then A is positive semidefinite.

(e) If A ⪰ 0 and trace(A) = 0, then A = 0.

(f) If A ⪰ 0, B ⪰ 0, and A+B = 0, then A = B = 0.

Problem 2: Norms, dual norms, and induced norms [25 pts]

Establish the following statements [5pts each]

(a) Consider x ∈ R2. Prove that f(x) =
√
2x2

1 − 2x1x2 + x2
2 is a norm in R2.

(b) Let Q ∈ Sn++. Prove that f(x) =
√
xTQx is a norm in Rn.

(c) Let Q ∈ Sn++. Prove that Q−1 exists and it is positive definite too. Show that the dual norm of

f(x) =
√
xTQx is given by

g(x) =
√
xTQ−1x.

Hint: you may want to use the factorization Q = RRT. You first need to prove this factorization exists
if you do. You may also want to use the fact that (the dual norm of ∥ · ∥2 in Rn is itself)

max
∥u∥2≤1

vTu = ∥v∥2.

Note that by the generalized Cauchy-Schwartz inequality, we have

|xTy| ≤
√

xTQx
√
yTQ−1y,∀x, y ∈ Rn.

(d) Let A ∈ Rm×n. Prove that its induced 2 norm, also known as, spectral norm, is given by

∥A∥2 =
√
λmax(ATA).
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(e) Let A ∈ Rm×n. Prove the following inequality

∥A∥2 ≤ ∥A∥F ≤ ∥A∥2∗,

where ∥A∥2 denotes the spectral norm, ∥A∥F denotes the Frobenius norm, and ∥A∥2∗ :=
∑r

i=1 σi(A)
denotes the nuclear norm.

Hint: this can be viewed as a generalization for vector norms

∥u∥∞ ≤ ∥u∥2 ≤ ∥u∥1, ∀u ∈ Rn.

Problem 3: Singular value decomposition and image compression [45 pts]

Let A ∈ Rm×n of rank r. Consider the singular value decomposition (SVD) of matrices A = UΣV T with
UTU = Im, V TV = In and Σ ∈ Rm×n including r singular values σ1, · · · , σr on the diagonal of its upper
left r × r block and zeros everywhere else. These singular values are given by

σi =
√
i-th eigenvalue of ATA,

and in general they appear in descending order:

σ1 ≥ σ2 ≥ · · · ≥ σr.

The columns of U and V are respectively called the left and right singular vectors of A and can be obtained
by taking an orthonormal set of eigenvectors for the matrices AAT and ATA. In Matlab, the command svd

can output the three matrices U,Σ, and V .

For a positive integer k ≤ min{m,n}, we let Ak denote an m×n matrix which is an “approximation” of the
matrix A obtained from its top k singular values and singular vectors. Formally, we have

Ak := UkΣkV
T
k , (1)

where Uk has the first k columns of U , Vk has the first k columns of V , and Σk is the upper left k× k block
of Σ. Now consider an optimization problem:

min
B∈Rm×n,rank(B)≤k

∥A−B∥. (2)

where ∥.∥ denotes a suitable matrix norm. Establish the following statements.

(a) Let A ∈ Rm×n. Prove that ATA is positive semidefinite. [5 pts]

(b) Prove that if A is symmetric, then the singular values of A are the same as the absolute value of the
eigenvalues of A. [5 pts]

(c) Consider this optimization problem (2) for the spectral norm ∥.∥2. (Recall that the spectral norm of a
matrix is defined as ∥C∥2 = max∥x∥2=1 ∥Cx∥2.) Prove that the matrix Ak, defined in (1), is an optimal
solution to (2). [10 pts]

Hint: SVD allows you to write A =
∑r

i=1 σiuiv
T
i (rank-1 decomposition), where r is the rank of A. If

we let σ1 ≥ σ2 ≥ . . . ≥ σr, we have Ak = σ1u1v
T
1 + . . .+ σkukv

T
k . Then, you may want to prove

• The spectral norm of the approximation error A−Ak is ∥A−Ak∥ = σk+1.

• For any matrix B of rank at most k, we have ∥A − B∥ ≥ σk+1. For this, you may also want to
use the fact that for any matrix E ∈ Rm×n, rank(E)+dim null(E) = n.

(d) Download the file Geisel Library.jpg into your Matlab path. You can read this in by typing:
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A=imread(’Geisel Library.jpg’);

A=im2double(A);

A=rgb2gray(A);

Consider this optimization problem (2) for Frobenius norm ∥.∥F (Recall that the Frobenius norm of a

matrix is defined as ∥C∥F =
√∑

i,j C
2
i,j). For k = 10, 40, 80, 160, use Matlab to compute Ak as defined

in (1) and output the value of ∥A−Ak∥F . [10 pts]

(Include your code for this part and the next.)

(e) Use the commands subplot and imshow to generate the original image (A) and the compressed images
(A10, A40, A80, and A160) on the same figure frame. In addition, generate two plots demonstrating
(i) ∥A−Ak∥F versus k, and (ii) ”total savings” versus k. Total savings is to be interpreted as the
answer to the question: How many elements will you save if you store Ak instead of A? (Consider only
gray-scale images) Explain why this number is equal to mn− (n+m+ 1)k. How much are you saving
for k = 160? [10 pts]

(f) Use the Matlab function imwrite to create two images A and A160 and show them using imshow. Can
you tell them apart? [5 pts]


