ECE285: Semidefinite and sum-of-squares optimization Winter 2023

Homework 1

Date Given: January 12, 2023 Date Due: January 20, 11:59 pm PST

Note: Please write down the number of the hours that you spend on the homework assignment.

Problem 1: Properties of positive semidefinite matrices [30 pts]

Classify the following statements as true or false. A proof or counterexample is required (all matrices below have compatible dimensions) [5pts each].

- (a) The diagonal elements of a positive definite matrix are all positive. The diagonal elements of a positive semidefinite matrix are all nonnegative.
- (b) A symmetric matrix $Q \in \mathbb{S}^n$ of rank r is positive semidefinite if and only if there exists a square matrix $R \in \mathbb{R}^{n \times n}$ of rank r such that $Q = RR^{\mathsf{T}}$. If Q is positive definite, then R is non-singular. (Hint: consider the spectral decomposition of symmetric matrices $Q = U \Lambda U^{\mathsf{T}}$ with $UU^{\mathsf{T}} = I$.)
- (c) If $A \succeq 0, B \succeq 0$ then $\langle A, B \rangle \geq 0$, and further $\langle A, B \rangle = 0$ implies $AB = 0$. If $A \succeq 0, B \succeq 0$ and $\langle A, B \rangle = 0$, then $A = 0$ or $B = 0$.
- (d) Consider a symmetric matrix $A \in \mathbb{S}^n$. If $\langle A, B \rangle \geq 0, \forall B \succeq 0$, then A is positive semidefinite.
- (e) If $A \succeq 0$ and trace(A) = 0, then $A = 0$.
- (f) If $A \succeq 0, B \succeq 0$, and $A + B = 0$, then $A = B = 0$.

Problem 2: Norms, dual norms, and induced norms [25 pts]

Establish the following statements [5pts each]

- (a) Consider $x \in \mathbb{R}^2$. Prove that $f(x) = \sqrt{2x_1^2 2x_1x_2 + x_2^2}$ is a norm in \mathbb{R}^2 .
- (b) Let $Q \in \mathbb{S}_{++}^n$. Prove that $f(x) = \sqrt{x^T Q x}$ is a norm in \mathbb{R}^n .
- (c) Let $Q \in \mathbb{S}_{++}^n$. Prove that Q^{-1} exists and it is positive definite too. Show that the dual norm of $f(x) = \sqrt{x^T Q x}$ is given by

$$
g(x) = \sqrt{x^{\mathsf{T}} Q^{-1} x}.
$$

Hint: you may want to use the factorization $Q = RR^{\mathsf{T}}$. You first need to prove this factorization exists if you do. You may also want to use the fact that (the dual norm of $\|\cdot\|_2$ in \mathbb{R}^n is itself)

$$
\max_{\|u\|_2 \le 1} v^{\mathsf{T}} u = \|v\|_2.
$$

Note that by the generalized Cauchy-Schwartz inequality, we have

$$
|x^{\mathsf{T}}y| \le \sqrt{x^{\mathsf{T}}Qx}\sqrt{y^{\mathsf{T}}Q^{-1}y}, \forall x, y \in \mathbb{R}^n.
$$

(d) Let $A \in \mathbb{R}^{m \times n}$. Prove that its induced 2 norm, also known as, spectral norm, is given by

$$
||A||_2 = \sqrt{\lambda_{\max}(A^{\mathsf{T}}A)}.
$$

(e) Let $A \in \mathbb{R}^{m \times n}$. Prove the following inequality

$$
||A||_2 \le ||A||_F \le ||A||_{2*},
$$

where $||A||_2$ denotes the spectral norm, $||A||_F$ denotes the Frobenius norm, and $||A||_{2*} := \sum_{i=1}^r \sigma_i(A)$ denotes the nuclear norm.

Hint: this can be viewed as a generalization for vector norms

$$
||u||_{\infty} \le ||u||_2 \le ||u||_1, \qquad \forall u \in \mathbb{R}^n.
$$

Problem 3: Singular value decomposition and image compression [45 pts]

Let $A \in \mathbb{R}^{m \times n}$ of rank r. Consider the singular value decomposition (SVD) of matrices $A = U \Sigma V^{\mathsf{T}}$ with $U^{\mathsf{T}}U = I_m$, $V^{\mathsf{T}}V = I_n$ and $\Sigma \in \mathbb{R}^{m \times n}$ including r singular values $\sigma_1, \dots, \sigma_r$ on the diagonal of its upper left $r \times r$ block and zeros everywhere else. These singular values are given by

$$
\sigma_i = \sqrt{i \text{-th eigenvalue of } A^{\mathsf{T}} A},
$$

and in general they appear in descending order:

$$
\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r.
$$

The columns of U and V are respectively called the left and right singular vectors of A and can be obtained by taking an orthonormal set of eigenvectors for the matrices AA^{T} and $A^{\mathsf{T}}A$. In Matlab, the command svd can output the three matrices U, Σ , and V.

For a positive integer $k \leq \min\{m, n\}$, we let A_k denote an $m \times n$ matrix which is an "approximation" of the matrix A obtained from its top k singular values and singular vectors. Formally, we have

$$
A_k := U_k \Sigma_k V_k^{\mathsf{T}},\tag{1}
$$

where U_k has the first k columns of U, V_k has the first k columns of V, and Σ_k is the upper left $k \times k$ block of Σ. Now consider an optimization problem:

$$
\min_{B \in \mathbb{R}^{m \times n}, \text{rank}(B) \le k} \|A - B\|.\tag{2}
$$

where ∥.∥ denotes a suitable matrix norm. Establish the following statements.

- (a) Let $A \in \mathbb{R}^{m \times n}$. Prove that $A^{\mathsf{T}}A$ is positive semidefinite. [5 pts]
- (b) Prove that if A is symmetric, then the singular values of A are the same as the absolute value of the eigenvalues of A. [5 pts]
- (c) Consider this optimization problem [\(2\)](#page-1-0) for the spectral norm ∥.∥2. (Recall that the spectral norm of a matrix is defined as $||C||_2 = \max_{||x||_2=1} ||Cx||_2$.) Prove that the matrix A_k , defined in [\(1\)](#page-1-1), is an optimal solution to (2) . [10 pts]

Hint: SVD allows you to write $A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\mathsf{T}}$ (rank-1 decomposition), where r is the rank of A. If we let $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r$, we have $A_k = \sigma_1 u_1 v_1^{\mathsf{T}} + \ldots + \sigma_k u_k v_k^{\mathsf{T}}$. Then, you may want to prove

- The spectral norm of the approximation error $A A_k$ is $||A A_k|| = \sigma_{k+1}$.
- For any matrix B of rank at most k, we have $||A B|| \ge \sigma_{k+1}$. For this, you may also want to use the fact that for any matrix $E \in \mathbb{R}^{m \times n}$, rank $(E) + dim \ null(E) = n$.
- (d) Download the file Geisel Library.jpg into your Matlab path. You can read this in by typing:

```
A=imread('Geisel Library.jpg');
A=im2double(A);
A=rgb2gray(A);
```
Consider this optimization problem [\(2\)](#page-1-0) for Frobenius norm $\|.\|_F$ (Recall that the Frobenius norm of a matrix is defined as $||C||_F = \sqrt{\sum_{i,j} C_{i,j}^2}$. For $k = 10, 40, 80, 160$, use Matlab to compute A_k as defined in [\(1\)](#page-1-1) and output the value of $||A - A_k||_F$. [10 pts]

(Include your code for this part and the next.)

- (e) Use the commands subplot and imshow to generate the original image (A) and the compressed images $(A_{10}, A_{40}, A_{80}, \text{ and } A_{160})$ on the same figure frame. In addition, generate two plots demonstrating (i) $||A - A_k||_F$ versus k, and (ii) "total savings" versus k. Total savings is to be interpreted as the answer to the question: How many elements will you save if you store A_k instead of A? (Consider only gray-scale images) Explain why this number is equal to $mn - (n + m + 1)k$. How much are you saving for $k = 160$? [10 pts]
- (f) Use the Matlab function imwrite to create two images A and A_{160} and show them using imshow. Can you tell them apart? [5 pts]