
ECE285: Semidefinite and sum-of-squares optimization Winter 2023

Lecture 10: Applications of SDPs in combinatorial problems
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@ eng. ucsd. edu .

Learning goals:

1. Binary quadratic optimization

2. The maximum cut problem

3. The independent set problem

1 Binary quadratic optimization

Binary quadratic optimization is a classical combinatorial optimization problem. We consider a problem
with quadratic cost function and decision variables taking values ±1, i.e., we aim to minimize an indefinite
quadratic function over the vertices of n-dimensional hypercube. This is a problem of the form

min
x

xTQx

subject to xi ∈ {−1, 1}, i = 1, . . . , n,
(1)

where Q ∈ Sn is given. The binary constraints can be modeled using quadratic constraints, i.e.,

xi ∈ {−1, 1} ⇐⇒ x2
i = 1.

These quadratic constraints define a finite set, but with an exponential number of elements. Many well-
known problems are in the form of (1). We will mention the famous maximum cut problem and the stable
set problem in this lecture.

The problem (1) is equivalent to

min
x

xTQx

subject to x2
i = 1, i = 1, . . . , n.

(2)

It is known that this problem is NP-hard. This is true even if the objective function is strictly convex, i.e.,
Q is positive definite, since x2

i = 1 and we can add a large constant d(x2
1 + . . . + x2

n) to make Q positive
definite.

1.1 Semidefinite relaxation

We denote the optimal value of (2) as p∗ and an optimal solution as x∗ such that (x∗)TQx∗ = p∗. Computing
the exact solution for (2) is computationally hard. We are interested in computing accurate bounds on its
optimal value. Upper bounds can be directly obtained from any feasible solutions: if x0 ∈ Rn has binary
values as ±1, it always holds that p∗ ≤ xT

0Qx0 (but this bound may be very loose).

To prove lower bounds, we need to use some sort of relaxation, i.e. we consider a minimization over a larger
region (or you may consider the dual problem formulation in Lecture 7). One naive method is to relax the
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binary variables as −1 ≤ xi ≤ 1, which naturally provides a lower bound. However, this bound is indeed
often very loose.

Here, we introduce the following primal-dual pair of semidefinite programs to provide a lower bound:

min
X

⟨Q,X⟩

subject to Xii = 1, i = 1, . . . , n (3a)

X ∈ Sn+,

max
Λ

trace(Λ)

subject to Q− Λ ⪰ 0 (3b)

Λ diagonal.

Several comments are:

1. It is easy to see that both (3a) and (3b) are strictly feasible. Therefore, strong duality holds and the
optimal values are the same. We denote it as p∗sdp.

2. SDPs (3a) and (3b) have matrix variables in Sn+, while the variable in (2) is a vector x ∈ Rn. So, after
the relaxation, the dimension of the optimization variable has been lifted.

3. For every feasible x in (2), the matrix X = xxT is also feasible to (3a) with the same cost value:

⟨Q,X⟩ = ⟨Q, xxT⟩ = xTQx.

Thus, solving (3a) returns a lower bound on p∗ ≥ p∗sdp. Similarly, for very feasible solution Λ =
diag(λ1, . . . , λn) in (3b), we have

xTQx ≥ xTΛx =

n∑
i=1

λix
2
i = trace(Λ),

where we used the fact that x2
i = 1, thus solving (3b) gives a lower bound as well.

4. In certain cases, the bound p∗sdp from (3a) and (3b) is provably good. Well-known examples include
when −Q is diagonally dominant or positive semidefinite, or has a bipartite structure (see [3, Page 31,
Chapter 2.2.2]). In these cases, it has been shown that there is at most a small constant factor between
p∗ and p∗sdp. In the case of max cut, −Q is diagonally dominant.

5. If the solution to the primal SDP (3a) has rank one, then we have obtained the global solution, i.e.,
p∗sdp = p∗. Indeed, any rank one matrix X ⪰ 0 with Xii = 1 must be of the form X = xxT with
xi ∈ {−1, 1}, i = 1, . . . , n. If we add an additional constraint “rank(X) = 1” to (3a), the resulting
rank-constrained SDP is equivalent to the original binary QP (2).

6. We can consider the matrix X in (3a) as a covariance matrix: suppose x is a random vector on the
hypercube {−1, 1}n with mean E(x) = 0, then its covariance matrix E(xxT) satisfies X ⪰ 0 and
Xii = 1, i = 1, . . . , n. Furthermore, the cost in (3a) is just the expected cost

E(xTQx) = E(⟨Q, xxT⟩) = ⟨Q,X⟩.

Rounding: We know that the optimal value of (3a) and (3b) provides a lower bound. One natural question
is how to generate a feasible solution to (2) that achieves a good cost value. Another question is whether we
can quantify the quality of the bounds by (3a) and (3b).

Here, we describe a randomized rounding procedure introduced by Geomans and Williamson in the seminal
work [5], which produces a binary vector x from the SDP solution X ⪰ 0:
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Figure 1: Computation of E(xixj) for x defined in (4). Let θ = arccos(⟨vi, vj⟩) be the angle between vi and
vj . The probability of having xixj = −1 is 2θ/2π and the probability of having xixj = +1 is (2π − 2θ)/2π.
(Figure taken from [4, Lecture 8])

1. Factorize the solution X = V TV where

V =
[
v1, v2, . . . , vn

]
∈ Rr×n,

where r is the rank of X. Since Xij = vTi vj , and Xii = 1. The vectors vi, i = 1, . . . , n are on the unit
sphere in Rr.

2. Choose a uniformly distributed random hyperplane in Rr, passing through the origin, and assign each
variable xi either +1 or −1, depending which side of hyperplane the point vi lies in.

By a simple geometric argument, we can quantify the expected value of the cost function.

Lemma 10.1. Given an X ⪰ 0, we let

xi = sign(⟨vi, z⟩), i = 1, . . . , n, (4)

where X = V TV and z is a standard random Gaussian vector. Then, we have

E(xixj) = 1− 2

π
arccos(Xij).

Proof. We note the angle between vi and vj is θ, i.e.

cos θ =
⟨vi, vj⟩
∥vi∥∥vj∥

= ⟨vi, vj⟩,

where we applied the fact that ∥vi∥ = ∥vj∥ = 1. From a geometric viewpoint (see Figure 1), it is not difficult
to see that

• the probability of xixj = −1 is θ
π ;

• the probability of xixj = 1 is 1− θ
π .

Therefore, we have

E(xixj) = −1× θ

π
+ 1×

(
1− θ

π

)
= 1− 2θ

π

= 1− 2

π
arccos(Xij).
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Figure 2: Plot of Σij = 1− 2
π arccos(Xij).

Note that E(xixj) and Xij are actually close when −1 < Xij < 1 (see Figure 2). Now, from the solution
X ∈ Sn+ of (3a), we construct a random vector x ∈ {−1, 1}n in (4) that satisfies E(x) = 0 with covariance
Σ = E(xxT) given by

Σij = 1− 2

π
arccos(Xij). (5)

1.2 The maximum cut problem

We consider the famous maximum cut problem: Given an undirected weighted graph G(V, E) with vertex
set V and edge set E ⊆ V × V, and weights W , a cut is a partition of V into two disjoint sets S, S̄ where
S ⊂ V and S̄ = V \ S.

The value of a cut is the total weights of the edges connecting elements in S and elements in S̄:∑
i∈S,j∈S̄

wij .

The maximum cut problem is to find a cut with maximum value. We use a binary vector x ∈ {−1,+1}n
(where n = |V|) to denote a partition S, S̄: xi = +1 if i ∈ S, otherwise xi = −1. Then the value of a cut is

1

2

∑
i,j∈V

wij
(xi − xj)

2

4
=

1

2

∑
i,j∈V

wij

x2
i + x2

j − 2xixj

4
=

1

4

∑
i,j∈V

wij(1− xixj) :=
1

4
xTLx,

where the matrix L = [lij ] ∈ Sn is defined as

lij =

{∑
j ̸=i wij if i = j

−wij otherwise.
(6)

Note that this matrix L is diagonally dominant since the diagonal element lii ≥
∑

j ̸=i |lij |, i = 1, . . . , n.

The maximum cut problem can thus be written as

max
x

1

4
xTLx

subject to x2
i = 1, i = 1, . . . , n,

(7)



Lecture 10: Applications of SDPs in combinatorial problems 5

which is in the form of (2) with Q = −L. The SDP relaxation of (7) is

max
x

1

4
⟨L,X⟩

subject to Xii = 1, i = 1, . . . , n,

X ⪰ 0.

(8)

We have the famous result due to Geomans and Willianmson [5].

Theorem 10.1 (Geomans-Williamson [5]). Let v∗ be the optimal value of the maximum cut problem (7)
and let p∗sdp be the optimal value of its SDP relaxation (8). Then

α · p∗psd ≤ v∗ ≤ p∗sdp,

where α = mint∈[−1,1)
1−f(t)
1−t ≈ 0.878 with f(t) = 1− 2

π arccos(t).

Proof. The part v∗ ≤ p∗sdp is directly from the relaxation. Given an optimal solution X of (8), we construct
a random vector x as in (4). By definition, we have

v∗ ≥ 1

4
xTLx ⇒ v∗ ≥ E(

1

4
xTLx) =

1

4
⟨L,Σ⟩.

Then, we have

⟨L,Σ⟩ =
∑
i,j

wij(1− Σij) =
∑
i,j∈V

wij(1− f(Xij)) ≥ α
∑
i,j∈V

wij(1−Xij) = α⟨L,X⟩.

Therefore, we have proven
α · p∗psd ≤ v∗ ≤ p∗sdp.

Remark 10.1. In the maximum cut problem, the matrix −Q = L is diagonally dominant; see (6). When the
matrix −Q is positive semidefinite or has a bipartite structure, the optimal value of the SDP relaxation (3a)
has provably quality as well; see [3, Page 31, Chapter 2.2.2]. □

2 The independent set problem

We now look at another combinatorial problem: the independent set problem. Given an undirected graph
G(V, E) with |V| = n.

• An independent set (or stable set) of G is a subset S ⊆ V such that no two vertices in S are connected
by an edge, i.e., (i, j) /∈ E ,∀i, j ∈ S.

• The size of the largest stable set of a graph, denoted by α(G), is called the stability number of the
graph.

• The problem of testing if α(G) is larger than a given integer k is NP-hard.

• The maximum stable set problem is to find the largest stable set in a graph.

The stable set problem can be formulated as

max
x∈Rn

n∑
i=1

xi

subject to xi ∈ {0, 1}, i = 1, . . . , n

xixj = 0, ∀(i, j) ∈ E .

(9)

The stable set S corresponds to the set of xi = 1. The constraint xixj = 0 ensures that S is a stable set, and
the objective function counts the cardinality of S. The constraint xi ∈ {0, 1} can be modeled by x2

i = xi.
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2.1 Semidefinite relaxation

We now introduce a semidefinite relaxation for (9), which provides an upper bound

ϑ(G) := max
x∈Rn,X∈Sn

n∑
i=1

xi

subject to Xii = xi, i = 1, . . . , n

Xij = 0, ∀(i, j) ∈ E[
1 xT

x X

]
⪰ 0.

(10)

This relaxation was first proposed by Lovász in [6]. It is easy to see that (10) provides an upper bound
p∗sdp ≥ α(G).

Theorem 10.2. Let α(G) be the optimal value of (9) and ϑ(G) be the optimal value of (10). Then, we have

α(G) ≤ ϑ(G).

Proof. This is observed from the fact that if x is feasible to (9), then the pair x,X = xxT is feasible to (10)
since [

1 xT

x X

]
=

[
1
x

] [
1
x

]T
⪰ 0.

Another question is to ask whether there is a constant c > 0 such that c · ϑ(Gn) ≤ α(G) for all graphs.
Unfortunately, this is not true. The following result holds:

Theorem 10.3. There exists a sequence of graphs Gn such that

ϑ(Gn)

α(Gn)
≥

√
n

3 log n
→ ∞, as n → ∞.

The proof appears in [2], which we will not discuss in this lecture. You can also refer to [4, Lecture 9] for a
proof.

Remark 10.2. There is another similar semidefinite relaxation for the stable set problem (9) as follows

max
X

⟨J,X⟩

subject to trace(X) = 1

Xij = 0, (i, j) ∈ E ,
X ⪰ 0,

(11)

where J is a matrix with all entries equal to one. It is not difficult to verify that (11) is a relaxation of (9).
Indeed, we let η be a zero/one vector of length n where the ith element is 1 if and only if node i in S, and
define

x =
1√
|S|

η, X = xxT,

where |S| denote the cardinality of set S. Then, we can verify that X is a feasible solution to (11), i.e.

X = xxT ⪰ 0,

Xij =
1

|S|
xixj = 0, (i, j) ∈ E ,

trace(X) = trace

(
1

|S|
ηηT

)
=

1

|S|
trace(ηTη) =

|S|
|S|

= 1.
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Also, we have the same cost value

⟨J,X⟩ =
〈
11T,

1

|S|
ηηT

〉
=

1

|S|
trace(ηT11Tη) =

1

|S|
(1Tη)2 = |S|.

Notes

The preparation of this lecture was based on [1, Lecture 11] and [4, Lectures 7-9]. Further reading for this
lecture can refer to [3, Chapter 2].
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