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Learning goals:

1. Nonconvex QCQP

2. S-lemma

3. Shor’s semidefinite relaxation

1 Nonconvex QCQP

In this lecture, we consider semidefinite relaxation for general nonconvex quadratically constrained quadratic
programming (QCQP). The problem of (nonconvex) QCQP is an optimization problem of the from

min
x

xTQ0x+ qT0 x+ c0

subject to xTQix+ qTi x+ ci ≤ 0, i = 1, . . . ,m
(1)

where Q0, Qi ∈ Sn, q0, qi ∈ Rn, c0, ci ∈ R. Here, we do not assume Q,Qi to be positive semidefinite (if so,
there exists an exact reformulation into a second-order cone program; see Lecture 6). It is not difficult to
see that problem (1) is non-convex and contains the max-cut and independent set problems (see Lecture 10)
as special cases. Thus, (1) is numerically hard to solve exactly.

Remark 11.1. A equality constraint on a quadratic function h(x) = 0 can be modelled as two quadratic
inequality constraints h(x) ≤ 0 and −h(x) ≤ 0. Thus, (1) can also include equality constraints. □

The goal of this lecture is to introduce a powerful semidefinite relaxation for (1) that provides non-trivial
lower bounds. A well-known special case that contains only one inequality constraint has an exact SDP
formulation – this is known as the S-lemma. We first discuss this famous S-lemma in Section Section 2.

2 S-lemma

Here, we consider a special case of (1) with m = 1. For simplicity, we write

min
x

f(x)

subject to g(x) ≤ 0,
(2)

where f(x) = xTQ0x+ qT0 x+ c0 and g(x) = xTQ1x+ qT1 x+ c1. This problem appears in many applications,
such as the trust region problem in nonlinear programming, and robust second-order cone programming.

We will show that (2) can be solved exactly via an SDP. The key is the following celebrated S-lemma.
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Theorem 11.1. Given two quadratic functions f(x), g(x). Suppose ∃x0 ∈ Rn such that g(x0) > 0, then

{x ∈ Rn | g(x) ≥ 0} ⊆ {x ∈ Rn | f(x) ≥ 0}

if and only if there exist λ ≥ 0, such that f(x) ≥ λg(x),∀x ∈ Rn.

The “If” part is obvious, and it is a certificate for the first implication. We will prove the “only if” part
by strong duality of SDPs. For those who are interested in the history and applications of S-lemma, please
refer to the excellent survey [4].

2.1 SDP reformulation

We now apply the S-lemma to formulate (2) into an equivalent SDP. We assume that (2) is strictly feasible,
i.e., ∃x0 such that g(x0) < 0. We note that

min
x

f(x)

subject to − g(x) ≥ 0,
⇔

max
γ

γ

subject to f(x) ≥ γ, ∀x ∈ {x ∈ Rn | −g(x) ≥ 0}.

Applying the S-lemma leads to an equivalent formulation

max
γ,λ

γ

subject to f(x)− γ ≥ −λg(x),∀x ∈ Rn,

λ ≥ 0

(3)

Considering the expression of f(x), g(x), it is easy to see that

f(x) + λg(x)− γ = xT(Q0 + λQ1)x+ (q0 + λq1)
Tx+ c0 + λc1 − γ

We have the following simple lemma.

Lemma 11.1. A quadratic inequality with a symmetric n× n matrix A satisfies

h(x) = xTAx+ 2bTx+ c ≥ 0,∀x ∈ Rn

if and only if [
c bT

b A

]
⪰ 0.

Applying Lemma 11.1, we derive the equivalent SDP formulation of (3)

max
γ,λ

γ

subject to

[
c0 + λc1 − γ 1

2 (q0 + λq1)
T

1
2 (q0 + λq1) Q0 + λQ1

]
⪰ 0,

λ ≥ 0.

(4)

Proof of Lemma 11.1: The inhomogeneous quadratic function h(x) is nonnegative globally if and only if
the homogeneous quadratic function

l(x, t) = xTAx+ 2tbTx+ ct2 ≥ 0, ∀(x, t) ∈ Rn+1. (5)

Indeed, we have

• If l(x, t) is nonnegative globally, then h(x) = l(x, 1) must be so.
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• If t ̸= 0, then l(x, t) = t2h(xt ) ≥ 0,∀x ∈ Rn. Thus, l(x, t) is nonnegative for t ̸= 0. By continuity, l(x, t)
is nonnegative everywhere, ∀(x, t) ∈ Rn+1.

Now, we have

l(x, t) =

[
t
x

]T [
c bT

b A

] [
t
x

]
≥ 0,∀

[
t
x

]
∈ Rn+1 ⇔

[
c bT

b A

]
⪰ 0.

This completes the proof.

Remark 11.2. The homogenization argument (5) is very useful. We will use it later in this lecture, as well
as in later lectures on sum-of-squares optimization. □

2.2 Regularity assumption

The regularity assumption: ∃x0 ∈ Rn, g(x0) > 0 cannot be removed in general. It is like the Slater’s condition
for strong duality of convex optimization problems. The following is a counterexample for S-lemma when
the regularity assumption fails.

Example 11.1. Consider g(x) = −x2 and f(x) = −x2 + x. Then we have

{0} = {x ∈ Rn | g(x) ≥ 0} ⊆ {x ∈ Rn | f(x) ≥ 0}.

However, there exists no λ ≥ 0 such that f(x) ≥ λg(x),∀x ∈ R. Indeed, the following inequality

−x2 + x ≥ −λx2

cannot hold globally since the linear term will dominate the quadratic term when x is close to zero, and the
inequality fails. □

In fact, it is not difficult to check the regularity condition. It is equivalent to say that the following symmetric
matrix [

c1
1
2q

T
1

1
2q1 Q1

]
has at least one strictly positive eigenvalue.

Theorem of strong alternatives: The S-lemma tells us exactly one of the following statements is true
(assume the regularity condition holds)

1. g(x) ≥ 0, f(x) < 0 is feasible.

2. ∃λ ≥ 0 such that f(x) ≥ λg(x),∀x ∈ Rn.

Recall that the Farkas lemma has a similar flavor of strong alternatives (no regularity condition is needed)

Ax = b, x ≥ 0 is infeasible ⇔ ∃y ∈ Rm, such that ATy ≤ 0, bTy > 0.

There is another version of Farkas lemma that is more analogous to the S-lemma

aT0x < 0, aTi x ≥ 0, i = 1, . . . ,m is infeasible ⇔ ∃λi ≥ 0, such that a0 =

m∑
i=1

λiai.

These are all theorems of strong alternatives that give “certificates” of infeasibility for a set of inequalities.

In later lectures, we will study the concept of sum-of-squares optimization, which can generalize the same
idea to a system of polynomial equations and inequalities.
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2.3 Homogeneous S-lemma

Our proof follows from [2]. We first prove the homogeneous S-lemma.

Theorem 11.2. Suppose ∃x0, such that xT
0Ax0 > 0. Then

{x ∈ Rn | xTAx ≥ 0} ⊆ {x ∈ Rn | xTBx ≥ 0}

if and only if there exists λ ≥ 0 such that B ⪰ λA.

The proof relies on the following lemma that is of interest in its own right (another key piece of the proof is
the strong duality of conic programming; slater’s condition holds in this case).

Lemma 11.2. Given two symmetric matrices P ∈ Sn, Q ∈ Sn, if trace(P ) ≥ 0 and trace(Q) < 0, then there
exists a vector e ∈ Rn such that eTPe ≥ 0 and eTQe < 0.

Proof: For any symmetric matrix Q, we can write Q = UTΛU with an orthonormal U and a diagonal Λ.
Then

trace(Q) = trace(UTΛU) = trace(UUTΛ) = trace(Λ) < 0.

Now let ξ be a random vector with entries taking values ±1 with probabilities 0.5 independently. We have

(UTξ)TQ(UTξ) = (UTξ)TUTΛU(UTξ) = ξTΛξ = trace(Λ), ∀ξ.

On the other hand, we have
(UTξ)TP (UTξ) = ξTUPUTξ.

For any matrix H, we have E(ξTHξ) = E(
∑

i,j Hijξiξj) =
∑n

i=1 Hii. Therefore,

E(ξTUPUTξ) = trace(UPUT) = trace(P ) ≥ 0.

Then, it must have ξ ∈ {−1, 1}n such that (UTξ)TP (UTξ) ≥ 0, otherwise, the expectation would be negative.
We complete the proof by taking e = UTξ.

Proof of Theorem 11.2: We consider the following optimization problem

min
x

xTBx

subject to xTAx ≥ 0

xTx = 1.

(6)

The regularity condition implies that (6) is strictly feasible. Indeed, given x0 ∈ Rn, xT
0Ax0 > 0. We can

re-scale x = x0

∥x0∥ which is strictly feasible to (6).

We now define X = xxT, then (6) is equivalent to

min
X

⟨B,X⟩

subject to ⟨A,X⟩ ≥ 0

trace(X) = 1, X ⪰ 0

rank(X) = 1.

(7)

We obtain an SDP relaxation by simply dropping the rank condition, which is

min
X

⟨B,X⟩

subject to ⟨A,X⟩ ≥ 0

trace(X) = 1, X ⪰ 0.

(8)
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It dual SDP is
max
ν,λ

ν

subject to λA+ νI ⪯ B

λ ≥ 0.

(9)

It is clear that the dual SDP (9) is strictly feasible. We now argue the primal SDP (8) is also strictly feasible,
by taking

X =
x0x

T
0 + αI

trace(x0xT
0 + αI)

,

and α > 0 sufficiently small.

By strong duality of conic programs, we know that the optimal value of the dual SDP (9) is the same as the
primal SDP (8). If we can show that the optimal value of (8) is nonnegative, we would have proven that
∃λ ≥ 0, ν ≥ 0 such that B − λA ⪰ νI ⪰ 0.

We now prove the optimal value of (8) is nonnegative using Lemma 11.2. By strong duality, we know the
optimal solution X∗ is attained since both primal and dual SDPs are strictly feasible. Since X∗ ⪰ 0, we
write its Cholesky factorization X∗ = DDT. We have

trace(AX∗) = trace(DTAD) ≥ 0

trace(BX∗) = trace(DTBD) := θ∗.

We need to prove θ∗ ≥ 0. Suppose that θ∗ < 0. We take

P = DTBD, Q = DTAD ⇒ trace(P ) ≥ 0, trace(Q) < 0

By Lemma 11.2, there exists a vector e such that

eTPe ≥ 0 ⇒ (De)TA(De) ≥ 0

eTQe < 0 ⇒ (De)TB(De) < 0,

which contradicts the hypothesis that xTAx ≥ 0 ⇒ xTBx ≥ 0. Therefore, we must have θ∗ ≥ 0. This
completes the proof of the homogeneous S-lemma.

2.4 Proof of the S-lemma

We now use the homogenization agreement to prove the inhomogeneous S-lemma (Theorem 11.1) based on
the homogeneous S-lemma (Theorem 11.2). We define the homogeneous quadratic functions

f̄(x, t) = xTQ0x+ qT0 xt+ c0t
2

ḡ(x, t) = xTQ1x+ qT1 xt+ c1t
2

We argue that the condition

{x ∈ Rn | g(x) ≥ 0} ⊆ {x ∈ Rn | f(x) ≥ 0}

leads to
{(x, t) ∈ Rn+1 | ḡ(x, t) ≥ 0} ⊆ {(x, t) ∈ Rn+1 | f̄(x, t) ≥ 0}.

Suppose there exist (x, t) such that ḡ(x, t) ≥ 0 but f̄(x, t) < 0.

1. If t ̸= 0, then evaluating (x/t, 1) gives a contradiction, as g(x) = ḡ(x, 1) and f(x) = f̄(x, 1).

2. If t = 0 and ḡ(x, t) > 0, by continuity, there exists t0 ̸= 0 such that ḡ(x, t0) > 0 and f̄(x, t0) < 0.
Repeat Step 1.
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3. If t = 0 and ḡ(x, t) = 0. In this case, we have xTQ1x = 0 and xTQ0x < 0. Now, we slightly change
t0 ̸= 0 such that f̄(x, t0) < 0. We then rescale x to γx, such that

• In ḡ(γx, t0), the quadratic term γ2xTQ1x = 0 and the linear term qT1 (γx)t0 becomes positive and
dominates the constant term.

• In f̄(γx, t0), the quadratic term γ2xTQ0x is negative and dominate the other terms.

Thus, we find (γx, t0), such tat ḡ(γx, t0) ≥ 0 but f̄(γx, t0) < 0 with t0 ̸= 0. Repeat Step 1.

Also, it is clear the regularity condition for the homogeneous version still holds. We can now apply the
homogeneous S-lemma, which tells that

∃λ ≥ 0, such that f̄(x, t) ≥ λḡ(x, t), ∀x, t.

Setting t = 1, we get the desired result:

∃λ ≥ 0, such that f(x) ≥ λg(x), ∀x.

3 Shor’s semidefinite relaxation and the Lagrange relaxation

Consider the non-convex QCQP

min
x

xTQ0x+ qT0 x+ c0

subject to xTQix+ qTi x+ ci ≤ 0, i = 1, . . . ,m
(10)

where Q0, Qi ∈ Sn, q0, qi ∈ Rn, c0, ci ∈ R. We introduce a matrix variable X = xxT. The problem (10)
becomes

min
x

⟨Q0, X⟩+ qT0 x+ c0

subject to ⟨Qi, X⟩+ qTi x+ ci ≤ 0, i = 1, . . . ,m

X = xxT.

(11)

We now relax the constraint X = xxT to a convex constraint X ⪰ xxT, which is equivalent to (by Schur
complement) [

1 xT

x X

]
⪰ 0.

We then obtain a semidefinite relaxation of (10)

min
x

⟨Q0, X⟩+ qT0 x+ c0

subject to ⟨Qi, X⟩+ qTi x+ ci ≤ 0, i = 1, . . . ,m[
1 xT

x X

]
⪰ 0.

(12)

Another way to derive a convex relaxation is based on the Lagrange dual formulation. The Lagrangian
of (10) is

L(x, λ) = xTQ0x+ qT0 x+ c0 +

m∑
i=1

λi(x
TQix+ qTi x+ ci)

= xT

(
Q0 +

m∑
i=1

λiQi

)
x+

(
q0 +

m∑
i=1

λiqi

)T

x+ c0 +

m∑
i=1

λici.
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The dual function is
g(λ) = min

x
L(x, λ).

If
L(x, λ)− ξ ≥ 0,∀x ∈ Rn, (13)

then g(λ) ≥ ξ. The condition (13) is equivalent to[
c0 +

∑m
i=1 λici − ξ 1

2 (q0 +
∑m

i=1 λiqi)
T

1
2 (q0 +

∑m
i=1 λiqi) Q0 +

∑m
i=1 λiQi

]
⪰ 0.

Therefore, we get a dual problem for (10) as follows

max
ξ,λ

ξ

subject to

[
c0 +

∑m
i=1 λici − ξ 1

2 (q0 +
∑m

i=1 λiqi)
T

1
2 (q0 +

∑m
i=1 λiqi) Q0 +

∑m
i=1 λiQi

]
⪰ 0,

λ ≥ 0.

(14)

One can verify that (14) is just the semidefinite dual of (12). We call both (12) and (14) semidefinite
relaxations of the non-convex QCQP (10).

Notes

The preparation of this lecture is based on [1, Lecture 12]. Further reading for this lecture can refer to [2,
Chapter 4.3] and [3, Appendix B].
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