Iterative Inner/outer Approximations for Scalable Semidefinite Programs

Feng-Yi Liao, Yang Zheng

ECE department, UC San Diego Scalable Optimization and Control (SOC) Lab

Feb 16, 2023

Semidefinite Prgramms

Primal SDP min $\langle C, X \rangle$ X subject to $\langle A_i, X \rangle = b_i$, $i = 1, ..., m$, subject to $Z + \sum_{i=1}^{m}$ $X \in \mathbb{S}^n_+.$ Dual SDP $\max_{y,Z}$ b^Ty $i=1$ $A_i y_i = C$, $Z \in \mathbb{S}^n_+.$

- SDPs are powerful tools in broad areas.
- Application: Control theory, combinatorial problem, polynomial optimization, neural network verification, etc.

Semidefinite Prgramms

Primal SDP

$$
p^* := \min_{X} \quad \langle C, X \rangle
$$

subject to $\langle A_i, X \rangle = b_i, \quad i = 1, ..., m,$
 $X \in \mathbb{S}^n_+.$

General purpose solver: Interior-point method

- Standard complexity $\mathcal{O}(n^3m + n^2m^2 + m^3)$ per iteration.
- Cannot efficiently handle large-scale SDPs ($n \approx 1000$, and m : a few thousands).

Active research directions

 \bullet Explore problem sparsity and structures¹.

¹Yang Zheng, Giovanni Fantuzzi, and Antonis Papachristodoulou (2021). "Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization". In: Annual Reviews in Control 52, pp. 243–279.

Something simpler: inner/outer approximations

Inner approximation

• Restrict the feasible region to a simpler cone $\mathcal{K} \subset \mathbb{S}^n_+.$

$$
\min_{X} \langle C, X \rangle
$$
\nsubject to $\langle A_i, X \rangle = b_i, \quad i = 1, ..., m,$ \n
$$
X \in \mathcal{K}.
$$

• Gives us an upper bound on p^* .

Outer approximation

• Relax the feasible region by a simpler cone $\hat{\mathcal{K}}\supset\mathbb{S}^n_+$.

$$
\min_{X} \langle C, X \rangle
$$

subject to $\langle A_i, X \rangle = b_i, \quad i = 1, ..., m,$

$$
X \in \hat{\mathcal{K}}.
$$

• Gives us a lower bound on p^* .

Which cone to choose?

• Diagonally dominant:

A symmetric matrix $X \in \mathbb{S}^n$ is diagonally dominant if and only if

$$
X_{ii} \geq \sum_{j \neq i} |X_{ij}|, i = 1, 2, \ldots, n.
$$

• Let $DD_n = \{ X \in \mathbb{S}^n \mid X \text{ is diagonally dominant} \} \subset \mathbb{S}^n_+.$

Gershgorin's circle theorem

Given an $n \times n$ matrix X, every eigenvalue of X lies in at least one of the discs D_i in the complex plane, where

$$
D_i = |\lambda - X_{ii}| \leq \sum_{j \neq i} |X_{ij}|
$$

• Diagonally dominant

$$
X_{ii} \geq \sum_{j \neq i} |X_{ij}| \Longrightarrow |\lambda - X_{ii}| \leq X_{ii} \Longrightarrow \lambda \geq 0.
$$

Diagonally dominant

- Optimizing over DD_n leads to LP.
- For each $|X_{ij}|$, Introduce variable T_{ij} such that

$$
-T_{ij}\leq X_{ij}\leq T_{ij},\quad \sum_{j\neq i}T_{ij}\leq X_{ii},\ i=1,2,\ldots,n.
$$

• Replace \mathbb{S}^n_+ by \mathcal{DD}_n

$$
\min_{X} \langle C, X \rangle
$$

subject to $\langle A_i, X \rangle = b_i, \quad i = 1, ..., m,$

$$
X \in \mathcal{DD}_n.
$$

• This is equivalent to

$$
\min_{X, T_{ij}} \langle C, X \rangle
$$
\nsubject to $\langle A_k, X \rangle = b_k, \quad k = 1, ..., m,$ \n
$$
-T_{ij} \le X_{ij} \le T_{ij}, \quad \sum_{j \ne i} T_{ij} \le X_{ij}, \quad i = 1, 2, ..., n.
$$

Which cone to choose?

• Scaled-diagonally dominant:

A symmetric matrix $X \in \mathbb{S}^n$ is scaled-diagonally dominant if and only if there exists a diagonal matrix D with nonnegative elements such that

DXD is diagonally dominant.

Another Interpretation of SDD_n : A symmetric X belongs to SDD_n if and only if there exist $Z_{ij} \in \mathbb{S}^2_+$ such that

$$
X=\sum_{1\leq i
$$

where $E_{ij} = \begin{bmatrix} E_i \ E_j \end{bmatrix}$ Ej $\Big],$ and $E_i \in \mathbb{R}^{1 \times n}$ is zero everywhere except the *i*-th component being 1. $E_i = [0 \dots 1 \dots 0] \in \mathbb{R}^{1 \times n}$.

• Let $SDD_n = \{ X \in \mathbb{S}^n \mid X \text{ is scaled-diagonally dominant} \} \subset \mathbb{S}^n_+.$

Figure: Illustration of \mathcal{FW}^n_2 (or $\mathcal{SDD})$ matrices.

Scaled-diagonally dominant

• A 2 \times 2 semidefinite constraint is equivalent to a (rotated) second-order cone constraint.

$$
\begin{bmatrix} a & b \\ b & c \end{bmatrix} \succeq 0 \Longleftrightarrow a \geq 0, c \geq 0, ac \geq ||b||_2^2 \Longleftrightarrow \left(b, a, \frac{1}{2}c\right) \in \mathcal{L}_{\mathrm{rot}}^{n+2},
$$

where $\mathcal{L}_{\text{rot}}^{n+2} = \{ (x, y, z) \in \mathbb{R}^{n+2} | 2yz \ge ||x||_2^2, y \ge 0, z \ge 0 \}.$

• Optimizing over SDD_n leads to SOCP.

$$
\min_{X} \langle C, X \rangle
$$
\nsubject to $\langle A_i, X \rangle = b_i, \quad i = 1, ..., m,$ \n
$$
X \in \mathcal{SDD}_n.
$$

• This is equivalent to

$$
\min_{X,Z_{ij}} \langle C, X \rangle
$$
\n
$$
\text{subject to} \quad \langle A_k, X \rangle = b_i, \quad k = 1, \dots, m,
$$
\n
$$
X = \sum_{1 \le i < j \le n} E_{ij}^{\mathsf{T}} Z_{ij} E_{ij},
$$
\n
$$
Z_{ij} \succeq 0 \Longleftrightarrow \left((Z_{ij})_{12}, (Z_{ij})_{11}, \frac{1}{2} (Z_{ij})_{22} \right) \in \mathcal{L}_{\text{rot}}^{n+2}.
$$

Approximation quality

$$
\min_{X} \langle C, X \rangle
$$

subject to $\langle A_i, X \rangle = b_i, \quad i = 1, ..., m,$

$$
X \in \mathcal{SDD}_n \text{ (or } DD_n).
$$

• The approximation quality might be conservative

Figure: Feasible region of PSD, SDD_{10} , or DD_{10} over a 10×10 LMI

- DD_n requires $O(n^2)$ linear constraints.
- SDD_n requires $\mathcal{O}(n^2)$ small SOCP constraints.
- DD_n and SDD_n encounter problems for large n.

Comparison of computational time

Figure: Time consumption of using LP and SOCP approximation.

• The table is taken from Amir Ali Ahmadi's paper²

² Amir Ali Ahmadi and Anirudha Majumdar (2019). "DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization". In: SIAM Journal on Applied Algebra and Geometry 3.2, pp. 193–230.

Factor-width-two matrices

Another Interpretation of SDD_n : A symmetric X belongs to SDD_n if and only if there exist $Z_{ij} \in \mathbb{S}^2_+$ such that

$$
X=\sum_{1\leq i
$$

where $E_{ij} = \begin{bmatrix} E_i \ E_j \end{bmatrix}$ Ej $\Big]$, and $E_i \in \mathbb{R}^{1 \times n}$ is zero everywhere except the *i*-th component being $1.$ $E_i = \begin{bmatrix} 0 \ldots 1 \ldots 0 \end{bmatrix} \in \mathbb{R}^{1 \times n}.$

Figure: Illustration of \mathcal{FW}^n_2 (or $\mathcal{SDD})$ matrices.

Let $\mathcal{SDD}_n=\mathcal{FW}_2^n$. Optimizing over \mathcal{FW}_2^n is equivalent to an SDP over the cone product

$$
\mathbb{S}^2_+\times\ldots\times\mathbb{S}^2_+.
$$

Block factor-width-two matrices

Given a set of integers $\alpha = \{\alpha_1, \alpha_2, \ldots, \alpha_p\}$ with $\sum_{i=1}^p \alpha_i = n$, we say a matrix $A\in \mathbb{R}^{n\times n}$ is block-partitioned by α if we can write A as

$$
\begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1p} \\ A_{21} & A_{22} & \cdots & A_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p1} & A_{p2} & \cdots & A_{pp} \end{bmatrix},
$$

where $A_{ij} \in \mathbb{R}^{\alpha_i \times \alpha_j}, \forall i,j = 1,2,\ldots,p.$

Figure: Different partitions for a 6×6 matrix

Block factor-width-two matrices

Definition (Zheng et al. 2022) A symmetric matrix X with partition $\alpha = {\alpha_1, \alpha_2, \cdots, \alpha_p}$ belongs to block-factor-width-two matrices, denoted as $\mathcal{FW}_{\alpha, \mathsf{2}}^n$, if there exist X_{ij} such that

$$
X = \sum_{1 \leq i < j \leq p}^{p} (E_{ij}^{\alpha})^{\mathsf{T}} Z_{ij} E_{ij}^{\alpha}, \tag{1}
$$

with
$$
Z_{ij} \in \mathbb{S}_+^{\alpha_i + \alpha_j}
$$
, $E_{ij}^{\alpha} = \begin{bmatrix} E_i^{\alpha} \\ E_j^{\alpha} \end{bmatrix} \in \mathbb{R}^{(\alpha_i + \alpha_j) \times n}$, for $i \neq j$ and $E_i^{\alpha} = [0 \dots l_{\alpha_i} \dots 0] \in \mathbb{R}^{\alpha_i \times n}$.

• We denote

 $\mathcal{FW}_{\alpha,2}^n = \{X \in \mathbb{S}^n \mid X \text{ is } \alpha\text{-block-factor-width-two}\} \subset \mathbb{S}_+^n.$

• SDD_n is a special case of $\mathcal{FW}_{\alpha,2}^n$ with partition $\alpha = \{1,\ldots,1\}.$

Block-factor-width-two matrices

Optimizing over $\mathcal{FW}_{\alpha, \textsf{2}}^n$ is equivalent to an SDP over the cone product

 $\mathbb{S}_+^{\alpha_1+\alpha_2} \times \ldots \times \mathbb{S}_+^{\alpha_{p-1}+\alpha_p}.$

 \bullet $\mathcal{FW}_{\alpha, \textbf{2}}^2$ allows different size of submatrices

$$
X=\sum_{1\leq i
$$

. . . . 8 E $\ddot{+}$ $+$

Figure: Illustration of $\mathcal{FW}_{\alpha,2}^n$ matrices.

- The flexibility of $\mathcal{FW}_{\alpha,2}^n$ improves the approximation quality and numerical efficiency.
- Number of PSD constraints has been reduced $\binom{n}{2} \Longrightarrow \binom{p}{2}$.

A hierarchy of inner/outer approximations

• We say a partition α is a finer partition of β , denoted as $\alpha \sqsubseteq \beta$, if α can be formed by breaking down some blocks in β .

Theorem (Zheng et al. 2022) Given $\{1, 1, \ldots, 1\} \sqsubseteq \alpha \sqsubseteq \beta \sqsubseteq \gamma = \{\gamma_1, \gamma_2\}$ with $\gamma_1 + \gamma_2 = n$, we have a converging hierarchy of inner and outer approximations

$$
\mathcal{DD}_n \subseteq \mathcal{SDD}_n \subseteq \mathcal{FW}_{\alpha,2}^n \subseteq \mathcal{FW}_{\beta,2}^n \subseteq \mathcal{FW}_{\gamma,2}^n = \mathbb{S}_+^n
$$

= $(\mathcal{FW}_{\gamma,2}^n)^* \subseteq (\mathcal{FW}_{\beta,2}^n)^* \subseteq (\mathcal{FW}_{\alpha,2}^n)^* \subseteq (\mathcal{SDD}_n)^* \subseteq (\mathcal{DD}_n)^*,$ (2)

Figure: Feasible region of $\mathcal{FW}_{\alpha,2}^{10}$, $\mathcal{FW}_{\beta,2}^{10}$, $\mathcal{FW}_{\gamma,2}^{10}$, and \mathcal{DD}^{10} over a 10 \times 10 LMI, where $\alpha = \{1, 1, \ldots, 1\}, \ \beta = \{2, 2, 2, 2, 2\}, \ \gamma = \{4, 4, 2\}.$

Dual cone of $\mathcal{FW}_{\alpha,2}^n$

$$
\mathcal{FW}_{\alpha,2}^{n} = \left\{ X \in \mathbb{S}_{+}^{n} | X = \sum_{1 \leq i < j \leq p}^{p} (E_{ij}^{\alpha})^{\mathsf{T}} Z_{ij} E_{ij}^{\alpha}, Z_{ij} \succeq 0 \right\}
$$
\n
$$
\left(\mathcal{FW}_{\alpha,2}^{n}\right)^{*} = \left\{ Y \in \mathbb{S}^{n} | \langle Y, X \rangle \geq 0, \forall X \in \mathcal{FW}_{\alpha,2}^{n} \right\}
$$
\n
$$
= \left\{ Y \in \mathbb{S}^{n} | \left\langle Y, \sum_{1 \leq i < j \leq p}^{p} (E_{ij}^{\alpha})^{\mathsf{T}} Z_{ij} E_{ij}^{\alpha} \right\rangle \geq 0, \forall Z_{ij} \succeq 0 \right\}
$$
\n
$$
= \left\{ Y \in \mathbb{S}^{n} | \sum_{1 \leq i < j \leq p}^{p} \left\langle E_{ij}^{\alpha} Y (E_{ij}^{\alpha})^{\mathsf{T}}, Z_{ij} \right\rangle \geq 0, \forall Z_{ij} \succeq 0 \right\}
$$
\n
$$
= \left\{ Y \in \mathbb{S}^{n} | E_{ij}^{\alpha} Y (E_{ij}^{\alpha})^{\mathsf{T}} \succeq 0, \forall 1 \leq i < j \leq p \right\}
$$

Primal

Dual

min $\langle C, X \rangle$ subject to $\langle A_k, X \rangle = b_k, \quad k = 1, \ldots, m$, $X = \sum_{j}^p (E_{ij}^{\alpha})^{\mathsf{T}} Z_{ij} E_{ij}^{\alpha},$ 1≤i<j≤p $Z_{ii} \succ 0$.

$$
\begin{aligned}\n\max_{y,Z} & b^{\mathsf{T}}y \\
\text{subject to} & Z + \sum_{k=1}^{m} A_k y_k = C, \\
& E_{ij}^{\alpha} Z (E_{ij}^{\alpha})^{\mathsf{T}} \succeq 0, \\
& \forall 1 \leq i < j \leq p.\n\end{aligned}
$$

19 / 38

$$
\min_{X} \langle C, X \rangle
$$

subject to $\langle A_i, X \rangle = b_i, \quad i = 1, ..., m,$

$$
X \in \mathcal{FW}_{\alpha,2}^n.
$$

- A coarser partition naturally provides a tighter upper bound on p^* .
- However, a coarser partition leads to a larger PSD constraint.
- Key idea: we keep an acceptable partition size and iteratively tighten the upper bound by basis pursuit.

Ahmadi and Hall 3 introduces an iterative method over \mathcal{DD}_n and $\mathcal{SDD}_n.$ It can be naturally extended to $\mathcal{FW}_{\alpha,2}^n$.

• Basis pursuit:

$$
U_{\alpha}^{t} := \min_{X} \quad \langle C, X \rangle
$$

subject to $\langle A_{i}, X \rangle = b_{i}, \quad i = 1, ..., m,$

$$
X \in \mathcal{FW}_{\alpha,2}^{n}(V_{t}),
$$

where $\mathcal{FW}^n_{\alpha,2}(V) := \{ M \in \mathbb{S}^n \mid M = V^{\mathsf{T}} Q V, \ Q \in \mathcal{FW}^n_{\alpha,2} \}.$

• We choose the sequence of matrices $\{V_t\}$ as

$$
V_1 = I
$$

$$
V_{t+1} = \text{chol}(X_t^{\star}).
$$

³ Amir Ali Ahmadi and Georgina Hall (2017). "Sum of squares basis pursuit with linear and second order cone programming". In: Algebraic and geometric methods in discrete mathematics 685, pp. 27–53.

$$
V_1 = I
$$

$$
V_{t+1} = \text{chol}(X_t^{\star}).
$$

• Key idea: the optimal solution X_t^* at iteration t is contained in the feasible set $\mathcal{FW}^n_{\alpha,2}(V_{t+1})$.

$$
X_t^* = V_{t+1}^* V_{t+1}
$$

=
$$
V_{t+1}^* \times I \times V_{t+1}
$$

- Note that $I\in \mathcal{FW}^n_{\alpha,2} \Longrightarrow \mathsf{X}^\star_t \in \mathcal{FW}^n_{\alpha,2}(\mathsf{V}_{t+1}) \Longrightarrow \mathsf{U}^t_\alpha \geq \mathsf{U}^{t+1}_\alpha.$
- Instead of Cholesky factorization, other decompositions such as spectral decomposition also work.

Proposition (Monotonic decreasing upper bounds) Given any partition α , inner approximations with matrices $\{V_t\}$ lead to

$$
U_{\alpha}^1 \geq U_{\alpha}^2 \geq \ldots \geq U_{\alpha}^t \geq U_{\alpha}^{t+1} \geq p^{\star}.
$$

Figure: Feasible regions of inner approximations using DD_n , SDD_n , and $\mathcal{FW}^n_{\alpha, \mathbf{2}}$ with $\alpha = \{2, 2, 2, 2, 2\}$. The red arrows denote the decreasing direction of the cost value.

Iterative outer approximations

 $\bullet\,$ The dual cone of $\mathcal{FW}_{\alpha,2}^n$ naturally gives us an outer approximation

 $\mathcal{FW}_{\alpha,2}^n \subseteq \mathbb{S}_+^n \subseteq (\mathcal{FW}_{\alpha,2}^n)^*.$

• Similar to inner approximation, we have

 $\mathsf{L}_{\alpha}^t \coloneqq \min_{\mathsf{X}} \quad \langle \mathsf{C}, \mathsf{X} \rangle$ subject to $\langle A_i, X \rangle = b_i, \quad i = 1, \ldots, m$, $X \in (\mathcal{FW}_{\alpha,2}^n(V_t))^*.$

• We choose the sequence of matrices $\{V_t\}$ as

$$
V_1 = I
$$

$$
V_{t+1} = \text{chol}\left(C - \sum_{i=1}^m y_i^{t,*} A_i\right).
$$

Iterative outer approximations

Proposition (Monotonic increasing lower bounds) Given any partition α , inner approximations with matrices $\{V_t\}$ lead to

$$
\mathsf{L}_{\alpha}^1 \leq \mathsf{L}_{\alpha}^2 \leq \ldots \leq \mathsf{L}_{\alpha}^t \leq \mathsf{L}_{\alpha}^{t+1} \leq p^\star.
$$

Figure: Feasible regions of outer approximations using DD_n , SDD_n , and $\mathcal{FW}^n_{\alpha, \mathbf{2}}$ with $\alpha = \{2, 2, 2, 2, 2\}$. The red arrows denote the decreasing direction of the cost value.

Numerical experiments

Figure: The evaluation of the cost value by different inner/outer approximations.

Numerical experiments

Table: Computational results of 7 different large-scale SDPs using inner approximation with $\alpha = \{10, \ldots, 10\}$ and $\beta = \{20, \ldots, 20\}$. f_1 denotes the cost value of the first iteration. f_{30} denotes the cost value after 30 minutes. The time consumption (in seconds) for solving the original SDP is listed in the last column.

Summary

• Different cones

$$
\mathcal{DD}_n \subset \mathcal{SDD}_n \subset \mathcal{FW}_{\alpha,2}^n \subset \mathbb{S}_+^n
$$

LP \implies SOCP \implies Small SDP \implies SDP

• Block-factor-width-two matrices

 $\overline{}$

Figure: Illustration of block-factor-width-two matrices matrices $(\mathcal{FW}_{\alpha,2}^n).$

• A tight approximation quality with iterative inner/outer approximations.

Figure: Iterative inner/outer approximation.

Thank you for your attention! Q & A

min $f(x)$ x subject to $f_i(x) \leq 0$.

- f_0, f_1, \ldots, f_m are convex
- Suppose f is differentiable, f is convex if and only if

$$
f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle, \forall y \in \mathbb{R}^n.
$$

- $\{f_i\}$ forms the feasible region $\mathcal X$
- X is complex and hard to optimize over
- Consider a bigger but simpler feasible region

 \bullet At iteration t , we consider

$$
x_t^* =: \min_{x} \quad f(x)
$$

subject to
$$
x \in P_t.
$$

- If $x_t^* \in \mathcal{X}, X_t^*$ is the optimal solution.
- If $x_t^* \notin \mathcal{X}$, there exists j such that

 $f_j(x_t^*) > 0.$

By first-order condition for convex functions

$$
f_j(x) \geq f_j(x_t^*) + \langle \nabla f_j(x_t^*), x - x_t^* \rangle, \forall x \in \mathbb{R}^n.
$$

If $f_j(x_t^*) + \langle \nabla f_j(x_t^*), x - x_t^* \rangle > 0$, then $f(x) > 0$ violates the constraint.

• Therefore, we need to impose

$$
f_j(x_t^*) + \langle \nabla f_j(x_t^*), x - x_t^* \rangle \leq 0.
$$

Algorithm of cutting plane method

- **O** Given a simple set P_0 that contains the feasible region X .
- \bullet (Initialization) Initialize $x_0\in\mathbb{R}^n$.
- **3** For $t \leq t_{\text{max}}$
- **A** Solve

$$
x_t^* =: \min_{x} \quad f(x)
$$

subject to
$$
x \in P_t.
$$

6 If
$$
x_t \in \mathcal{X}
$$
, quit.

- **6** $P_{t+1} = P_t \cap \{x \in \mathbb{R}^n | f_j(x_t^*) + \langle \nabla f_j(x_t^*) , x x_t^* \rangle \leq 0.\}$
- **R** End For loop

- How to use it in SDP?
- Equivalent SDPs

$$
\min_{X} \langle C, X \rangle
$$
\n
$$
\min_{X} \langle C, X \rangle
$$
\nsubject to\n
$$
\langle A_i, X \rangle = b_i, \quad i = 1, ..., m, \quad \text{subject to} \quad \langle A_i, X \rangle = b_i, \quad i = 1, ..., m, \quad X \in \mathbb{S}_+^n.
$$
\n
$$
\lambda_{\min}(X) \ge 0.
$$

$$
\bullet\;\; \lambda_{\sf min}(X) \geq 0 \Longleftrightarrow \lambda_{\sf max}(-X) \leq 0
$$

• Consider

$$
\min_{X} \langle C, X \rangle
$$
\nsubject to $\langle A_i, X \rangle = b_i, \quad i = 1, ..., m,$ \n
$$
\lambda_{\max}(-X) \leq 0.
$$

• $g(X) = \lambda_{\text{max}}(-X)$ is not differentiable. Fortunately, a subgradient exists!

Given a convex function $f : \mathbb{R}^n \to \mathbb{R}, z \in \mathbb{R}^n$ is a subgradient of f at $x \in dom(f)$ if

$$
f(y) \geq f(x) + \langle z, y - x \rangle, \forall y \in \text{dom}(f)
$$

• Subdifferential example $f(x) = |x|$

the picture is taken from Prof. L. Vandenberghe's lecture note.

Let $f(X) = \lambda_{\text{max}}(-X)$. A subgradient of f at X can be computed as $-vv^{\mathsf{T}},$

where v is the unit eigenvector of $\lambda_{\text{max}}(-X)$.

- Suppose $X_t \notin \mathbb{S}_+^n$, $\lambda_{max}(-X_t) > 0$.
- From the subgradient inequality,

$$
f(X) \geq f(X_t) + \left\langle -\nu v^{\mathsf{T}}, X - X_t \right\rangle
$$

• We need to impose

$$
f(X_t) + \langle -\nu v^{\mathsf{T}}, X - X_t \rangle \leq 0
$$

$$
\iff \lambda_{\max}(-X_t) + \langle -\nu v^{\mathsf{T}}, X - X_t \rangle \leq 0
$$

$$
\iff \lambda_{\max}(-X_t) - \langle \nu v^{\mathsf{T}}, X \rangle - \lambda_{\max}(-X_t) \leq 0
$$

$$
\iff \langle \nu v^{\mathsf{T}}, X \rangle \geq 0
$$

Algorithm of cutting plane method for SDPs

- **O** Given a simple set P_0 that contains the feasible region X .
- $\mathbf{\Theta}$ (Initialization) Initialize $X_0\in\mathbb{S}^n$
- **3** For $t \leq t_{\text{max}}$
- **A** Solve

$$
X_t^* =: \min_X \quad \langle C, X \rangle
$$

subject to $\langle A_i, X \rangle = b_i, i = 1, ..., m,$

$$
X \in P_t.
$$

6 If
$$
X_t \succeq 0
$$
, quit.

- 6 Compute the eigenvector(v) of $\lambda_{max}(-X_t)$.
- **3** Set $P_{t+1} = P_t \cap \{x \in \mathbb{R}^n | \langle v v^{\mathsf{T}}, X \rangle \geq 0 \}.$
- **8** End For loop