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Semidefinite Prgramms

Primal SDP

min
X

⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ Sn
+.

Dual SDP

max
y,Z

bTy

subject to Z +
m∑
i=1

Aiyi = C ,

Z ∈ Sn
+.

• SDPs are powerful tools in broad areas.
• Application: Control theory, combinatorial problem, polynomial

optimization, neural network verification, etc.
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Semidefinite Prgramms

Primal SDP
p⋆ := min

X
⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ Sn
+.

General purpose solver: Interior-point method
• Standard complexity O(n3m + n2m2 +m3) per iteration.
• Cannot efficiently handle large-scale SDPs (n ≈ 1000, and m : a few

thousands).

Active research directions
• Explore problem sparsity and structures1.

1Yang Zheng, Giovanni Fantuzzi, and Antonis Papachristodoulou (2021). “Chordal and
factor-width decompositions for scalable semidefinite and polynomial optimization”. In: Annual
Reviews in Control 52, pp. 243–279.
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Something simpler: inner/outer approximations

Inner approximation
• Restrict the feasible region to a simpler cone K ⊂ Sn

+.

min
X

⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ K.

• Gives us an upper bound on p⋆.

Outer approximation
• Relax the feasible region by a simpler cone K̂ ⊃ Sn

+.

min
X

⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ K̂.

• Gives us a lower bound on p⋆.
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Which cone to choose?

• Diagonally dominant:
A symmetric matrix X ∈ Sn is diagonally dominant if and only if

Xii ≥
∑
j ̸=i

|Xij |, i = 1, 2, . . . , n.

• Let DDn = {X ∈ Sn | X is diagonally dominant} ⊂ Sn
+.

Gershgorin’s circle theorem
Given an n × n matrix X , every eigenvalue of X lies in at least one of
the discs Di in the complex plane, where

Di = |λ− Xii | ≤
∑
j ̸=i

|Xij |

• Diagonally dominant

Xii ≥
∑
j ̸=i

|Xij | =⇒ |λ− Xii | ≤ Xii =⇒ λ ≥ 0.
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Diagonally dominant

• Optimizing over DDn leads to LP.
• For each |Xij |, Introduce variable Tij such that

−Tij ≤ Xij ≤ Tij ,
∑
j ̸=i

Tij ≤ Xii , i = 1, 2, . . . , n.

• Replace Sn
+ by DDn

min
X

⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ DDn.

• This is equivalent to

min
X ,Tij

⟨C ,X ⟩

subject to ⟨Ak ,X ⟩ = bk , k = 1, . . . ,m,

− Tij ≤ Xij ≤ Tij ,
∑
j ̸=i

Tij ≤ Xii , i = 1, 2, . . . , n.
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Which cone to choose?

• Scaled-diagonally dominant:
A symmetric matrix X ∈ Sn is scaled-diagonally dominant if and only if
there exists a diagonal matrix D with nonnegative elements such that

DXD is diagonally dominant.

Another Interpretation of SDDn : A symmetric X belongs to SDDn if
and only if there exist Zij ∈ S2

+such that

X =
∑

1≤i<j≤n

ET
ij ZijEij ,

where Eij =

[
Ei

Ej

]
, and Ei ∈ R1×n is zero everywhere except the i-th

component being 1. Ei =
[
0 . . . 1 . . . 0

]
∈ R1×n.

• Let SDDn = {X ∈ Sn | X is scaled-diagonally dominant} ⊂ Sn
+.

Figure: Illustration of FWn
2 (or SDD) matrices.
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Scaled-diagonally dominant

• A 2 × 2 semidefinite constraint is equivalent to a (rotated) second-order
cone constraint.[

a b
b c

]
⪰ 0 ⇐⇒ a ≥ 0, c ≥ 0, ac ≥ ∥b∥2

2 ⇐⇒
(
b, a,

1
2
c

)
∈ Ln+2

rot ,

where Ln+2
rot = {(x , y , z) ∈ Rn+2|2yz ≥ ∥x∥2

2, y ≥ 0, z ≥ 0}.
• Optimizing over SDDn leads to SOCP.

min
X

⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ SDDn.
• This is equivalent to

min
X ,Zij

⟨C ,X ⟩

subject to ⟨Ak ,X ⟩ = bi , k = 1, . . . ,m,

X =
∑

1≤i<j≤n

ET
ij ZijEij ,

Zij ⪰ 0 ⇐⇒
(
(Zij)12, (Zij)11,

1
2
(Zij)22

)
∈ Ln+2

rot .
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Approximation quality

min
X

⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ SDDn (or DDn).

• The approximation quality might be conservative

Figure: Feasible region of PSD, SDD10, or DD10 over a 10 × 10 LMI
• DDn requires O(n2) linear constraints.
• SDDn requires O(n2) small SOCP constraints.
• DDn and SDDn encounter problems for large n.
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Comparison of computational time

Figure: Time consumption of using LP and SOCP approximation.

• The table is taken from Amir Ali Ahmadi’s paper2

2Amir Ali Ahmadi and Anirudha Majumdar (2019). “DSOS and SDSOS optimization: more
tractable alternatives to sum of squares and semidefinite optimization”. In: SIAM Journal on
Applied Algebra and Geometry 3.2, pp. 193–230.
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Factor-width-two matrices

Another Interpretation of SDDn : A symmetric X belongs to SDDn if
and only if there exist Zij ∈ S2

+such that

X =
∑

1≤i<j≤n

ET
ij ZijEij ,

where Eij =

[
Ei

Ej

]
, and Ei ∈ R1×n is zero everywhere except the i-th

component being 1. Ei =
[
0 . . . 1 . . . 0

]
∈ R1×n.

Figure: Illustration of FWn
2 (or SDD) matrices.

Let SDDn = FWn
2. Optimizing over FWn

2 is equivalent to an SDP over
the cone product

S2
+ × . . .× S2

+.
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Block factor-width-two matrices

Given a set of integers α = {α1, α2, . . . , αp} with
∑p

i=1 αi = n, we say
a matrix A ∈ Rn×n is block-partitioned by α if we can write A as

A11 A12 . . . A1p

A21 A22 . . . A2p
...

...
. . .

...
Ap1 Ap2 . . . App

 ,

where Aij ∈ Rαi×αj , ∀i , j = 1, 2, . . . , p.

(a) α = {1, 1, 1, 1, 1, 1} (b) β = {2, 2, 2} (c) γ = {4, 2}

Figure: Different partitions for a 6 × 6 matrix
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Block factor-width-two matrices

Definition (Zheng et al. 2022)
A symmetric matrix X with partition α = {α1, α2, · · · , αp} belongs to
block-factor-width-two matrices, denoted as FWn

α,2, if there exist Xij

such that

X =

p∑
1≤i<j≤p

(Eα
ij )

TZijE
α
ij , (1)

with Zij ∈ Sαi+αj
+ , Eα

ij =

[
Eα
i

Eα
j

]
∈ R(αi+αj )×n, for i ̸= j and Eα

i =[
0 . . . Iαi . . . 0

]
∈ Rαi×n.

• We denote

FWn
α,2 = {X ∈ Sn | X is α-block-factor-width-two} ⊂ Sn

+.

• SDDn is a special case of FWn
α,2 with partition α = {1, . . . , 1}.
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Block-factor-width-two matrices

Optimizing over FWn
α,2 is equivalent to an SDP over the cone product

Sα1+α2
+ × . . .× Sαp−1+αp

+ .

• FW2
α,2 allows different size of submatrices

X =
∑

1≤i<j≤p

ET
ij ZijEij , with Zij ∈ Sαi+αj

+ .

Figure: Illustration of FWn
α,2 matrices.

• The flexibility of FWn
α,2 improves the approximation quality and

numerical efficiency.
• Number of PSD constraints has been reduced

(
n
2

)
=⇒

(
p
2

)
.
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A hierarchy of inner/outer approximations

• We say a partition α is a finer partition of β, denoted as α ⊑ β, if α can
be formed by breaking down some blocks in β.

Theorem (Zheng et al. 2022)
Given {1, 1, . . . , 1} ⊑ α ⊑ β ⊑ γ = {γ1, γ2} with γ1 + γ2 = n, we have
a converging hierarchy of inner and outer approximations

DDn ⊆ SDDn ⊆ FWn
α,2 ⊆ FWn

β,2 ⊆ FWn
γ,2 = Sn

+

= (FWn
γ,2)

∗⊆(FWn
β,2)

∗⊆(FWn
α,2)

∗ ⊆ (SDDn)
∗ ⊆ (DDn)

∗,
(2)

Figure: Feasible region of FW10
α,2, FW10

β,2, FW10
γ,2, and DD10 over a 10 × 10 LMI,

where α = {1, 1, . . . , 1}, β = {2, 2, 2, 2, 2}, γ = {4, 4, 2}.
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Dual cone of FWn
α,2

FWn
α,2 =

X ∈ Sn
+|X =

p∑
1≤i<j≤p

(Eα
ij )

TZijE
α
ij ,Zij ⪰ 0

(
FWn

α,2
)∗

=
{
Y ∈ Sn|⟨Y ,X ⟩ ≥ 0, ∀X ∈ FWn

α,2
}

=

Y ∈ Sn|

〈
Y ,

p∑
1≤i<j≤p

(Eα
ij )

TZijE
α
ij

〉
≥ 0,∀Zij ⪰ 0


=

Y ∈ Sn|
p∑

1≤i<j≤p

〈
Eα
ij Y (Eα

ij )
T,Zij

〉
≥ 0, ∀Zij ⪰ 0


=
{
Y ∈ Sn|Eα

ij Y (Eα
ij )

T ⪰ 0,∀1 ≤ i < j ≤ p
}

Primal

min
X

⟨C ,X ⟩

subject to ⟨Ak ,X ⟩ = bk , k = 1, . . . ,m,

X =

p∑
1≤i<j≤p

(Eα
ij )

TZijE
α
ij ,

Zij ⪰ 0.

Dual

max
y,Z

bTy

subject to Z +
m∑

k=1

Akyk = C ,

Eα
ij Z(E

α
ij )

T ⪰ 0,

∀1 ≤ i < j ≤ p.
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Iterative inner approximations

min
X

⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ FWn
α,2.

• A coarser partition naturally provides a tighter upper bound on p⋆.
• However, a coarser partition leads to a larger PSD constraint.
• Key idea: we keep an acceptable partition size and iteratively tighten the

upper bound by basis pursuit.
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Iterative inner approximations

Ahmadi and Hall3 introduces an iterative method over DDn and SDDn. It can
be naturally extended to FWn

α,2.
• Basis pursuit:

Ut
α := min

X
⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ FWn
α,2(Vt),

where FWn
α,2(V ) :={M ∈ Sn | M=VTQV , Q∈FWn

α,2}.
• We choose the sequence of matrices {Vt} as

V1 = I

Vt+1 = chol(X ⋆
t ).

3Amir Ali Ahmadi and Georgina Hall (2017). “Sum of squares basis pursuit with linear and
second order cone programming”. In: Algebraic and geometric methods in discrete
mathematics 685, pp. 27–53.
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Iterative inner approximations

V1 = I

Vt+1 = chol(X ⋆
t ).

• Key idea: the optimal solution X ⋆
t at iteration t is contained in the

feasible set FWn
α,2(Vt+1).

X ⋆
t = V ⋆

t+1Vt+1

= V ⋆
t+1 × I × Vt+1

• Note that I ∈ FWn
α,2 =⇒ X ⋆

t ∈ FWn
α,2(Vt+1) =⇒ Ut

α ≥ Ut+1
α .

• Instead of Cholesky factorization, other decompositions such as spectral
decomposition also work.
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Iterative inner approximations

Proposition (Monotonic decreasing upper bounds)
Given any partition α, inner approximations with matrices {Vt} lead to

U1
α ≥ U2

α ≥ . . . ≥ Ut
α ≥ Ut+1

α ≥ p⋆.

min
x,y

− x − y

subject to I + xA+ yB ⪰ 0.

Figure: Feasible regions of inner approximations using DDn, SDDn, and FWn
α,2 with

α = {2, 2, 2, 2, 2}. The red arrows denote the decreasing direction of the cost value.
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Iterative outer approximations

• The dual cone of FWn
α,2 naturally gives us an outer approximation

FWn
α,2 ⊆ Sn

+ ⊆ (FWn
α,2)

∗.

• Similar to inner approximation, we have

Lt
α := min

X
⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ (FWn
α,2(Vt))

∗.

• We choose the sequence of matrices {Vt} as

V1 = I

Vt+1 = chol

(
C −

m∑
i=1

y t,⋆
i Ai

)
.
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Iterative outer approximations

Proposition (Monotonic increasing lower bounds)
Given any partition α, inner approximations with matrices {Vt} lead to

L1
α ≤ L2

α ≤ . . . ≤ Lt
α ≤ Lt+1

α ≤ p⋆.

min
x,y

− x − y

subject to I + xA+ yB ⪰ 0.

Figure: Feasible regions of outer approximations using DDn, SDDn, and FWn
α,2 with

α = {2, 2, 2, 2, 2}. The red arrows denote the decreasing direction of the cost value.
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Numerical experiments

min
x,y

− x − y

subject to I + xA+ yB ⪰ 0.

Figure: The evaluation of the cost value by different inner/outer approximations.
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Numerical experiments

Table: Computational results of 7 different large-scale SDPs using inner approximation
with α = {10, . . . , 10} and β = {20, . . . , 20}. f1 denotes the cost value of the first
iteration. f30 denotes the cost value after 30 minutes. The time consumption (in
seconds) for solving the original SDP is listed in the last column.

FWn
α,2 FWn

β,2 PSD

n f1 f30 Gap f1 f30 Gap Time

1500 5.63e6 4.76e6 0.03 5.20e6 4.76e6 0.03 603
2000 3.33e6 2.86e6 0.10 3.09e6 2.86e6 0.05 1 201
2500 6.11e6 5.29e6 0.07 5.70e6 5.29e6 0.05 2 893
3000 1.81e7 1.32e7 0.79 1.57e7 1.32e7 0.79 5 508
3500 8.96e6 7.08e6 0.10 8.02e6 7.07e6 0.08 7 369
4000 9.52e6 6.89e6 0.15 8.21e6 6.89e6 0.11 10 689
4500 2.05e7 1.70e7 0.08 1.88e7 1.69e7 0.06 16 989
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Summary

• Different cones

DDn ⊂ SDDn ⊂ FWn
α,2 ⊂ Sn

+

LP =⇒ SOCP =⇒ Small SDP =⇒ SDP

• Block-factor-width-two matrices

Figure: Illustration of block-factor-width-two matrices matrices (FWn
α,2).

• A tight approximation quality with iterative inner/outer approximations.

Figure: Iterative inner/outer approximation.
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Thank you for your attention!

Q & A
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Cutting plane method

min
x

f (x)

subject to fi (x) ≤ 0.

• f0, f1, . . . , fm are convex
• Suppose f is differentiable, f is convex if and only if

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩, ∀y ∈ Rn.

• {fi} forms the feasible region X
• X is complex and hard to optimize over
• Consider a bigger but simpler feasible region
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Cutting plane method

• At iteration t, we consider

x⋆
t =: min

x
f (x)

subject to x ∈ Pt .

• If x⋆
t ∈ X ,X ⋆

t is the optimal solution.
• If x⋆

t /∈ X , there exists j such that

fj(x
⋆
t ) > 0.

By first-order condition for convex functions

fj(x) ≥ fj(x
⋆
t ) + ⟨∇fj(x

⋆
t ), x − x⋆

t ⟩,∀x ∈ Rn.

If fj(x⋆
t ) + ⟨∇fj(x

⋆
t ), x − x⋆

t ⟩> 0, then f (x) > 0 violates the constraint.
• Therefore, we need to impose

fj(x
⋆
t ) + ⟨∇fj(x

⋆
t ), x − x⋆

t ⟩≤ 0.
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Cutting plane method

Algorithm of cutting plane method
1 Given a simple set P0 that contains the feasible region X .

2 (Initialization) Initialize x0 ∈ Rn.

3 For t ≤ tmax

4 Solve
x⋆
t =: min

x
f (x)

subject to x ∈ Pt .

5 If xt ∈ X , quit.

6 Pt+1 = Pt ∩ {x ∈ Rn|fj(x⋆
t ) + ⟨∇fj(x

⋆
t ), x − x⋆

t ⟩ ≤ 0.}
7 End For loop
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Cutting plane method

• How to use it in SDP?
• Equivalent SDPs

min
X

⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ Sn
+.

min
X

⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

λmin(X ) ≥ 0.

• λmin(X ) ≥ 0 ⇐⇒ λmax(−X ) ≤ 0

• Consider
min
X

⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

λmax(−X ) ≤ 0.

• g(X ) = λmax(−X ) is not differentiable. Fortunately, a subgradient exists!
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Cutting plane method

Given a convex function f : Rn → R, z ∈ Rn is a subgradient of f at
x ∈ dom(f ) if

f (y) ≥ f (x) + ⟨z , y − x⟩, ∀y ∈ dom(f )

• Subdifferential example
f (x) = |x |

the picture is taken from Prof. L. Vandenberghe’s lecture note.
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Cutting plane method

Let f (X ) = λmax(−X ). A subgradient of f at X can be computed as

−vvT,

where v is the unit eigenvector of λmax(−X ).

• Suppose Xt /∈ Sn
+, λmax(−Xt) > 0.

• From the subgradient inequality,

f (X ) ≥ f (Xt) +
〈
−vvT,X − Xt

〉
• We need to impose

f (Xt) +
〈
−vvT,X − Xt

〉
≤ 0

⇐⇒ λmax(−Xt) +
〈
−vvT,X − Xt

〉
≤ 0

⇐⇒ λmax(−Xt)− ⟨vvT,X ⟩ − λmax(−Xt) ≤ 0

⇐⇒ ⟨vvT,X ⟩ ≥ 0
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Cutting plane method

Algorithm of cutting plane method for SDPs
1 Given a simple set P0 that contains the feasible region X .

2 (Initialization) Initialize X0 ∈ Sn

3 For t ≤ tmax

4 Solve
X ⋆

t =: min
X

⟨C ,X ⟩

subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m,

X ∈ Pt .

5 If Xt ⪰ 0, quit.

6 Compute the eigenvector(v) of λmax(−Xt).

7 Set Pt+1 = Pt ∩ {x ∈ Rn|⟨vvT,X ⟩ ≥ 0}.
8 End For loop
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