Iterative Inner/outer Approximations for Scalable Semidefinite Programs

Feng-Yi Liao, Yang Zheng

ECE department, UC San Diego Scalable Optimization and Control (SOC) Lab

Feb 16, 2023

Semidefinite Prgramms

Primal SDPDual SDP $\underset{X}{\min}$ $\langle C, X \rangle$ $\underset{y,Z}{\max}$ $b^{\mathsf{T}}y$ subject to $\langle A_i, X \rangle = b_i, \quad i = 1, \dots, m,$ subject to $Z + \sum_{i=1}^m A_i y_i = C,$ $X \in \mathbb{S}_+^n.$ $Z \in \mathbb{S}_+^n.$ $Z \in \mathbb{S}_+^n.$

• SDPs are powerful tools in broad areas.

• Application: Control theory, combinatorial problem, polynomial optimization, neural network verification, etc.

Semidefinite Prgramms

Primal SDP

$$\begin{array}{ll} p^{\star}:=\min_{X} & \langle C,X\rangle\\ \text{subject to} & \langle A_{i},X\rangle=b_{i}, \quad i=1,\ldots,m,\\ & X\in\mathbb{S}_{+}^{n}. \end{array}$$

General purpose solver: Interior-point method

- Standard complexity $O(n^3m + n^2m^2 + m^3)$ per iteration.
- Cannot efficiently handle large-scale SDPs ($n \approx 1000$, and m: a few thousands).

Active research directions

• Explore problem sparsity and structures¹.

¹Yang Zheng, Giovanni Fantuzzi, and Antonis Papachristodoulou (2021). "Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization". In: *Annual Reviews in Control* 52, pp. 243–279.

Something simpler: inner/outer approximations

Inner approximation

• Restrict the feasible region to a simpler cone $\mathcal{K} \subset \mathbb{S}_+^n$.

$$\begin{array}{ll} \min_{X} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i, \quad i = 1, \dots, m, \\ & X \in \mathcal{K}. \end{array}$$

• Gives us an upper bound on p*.

Outer approximation

$$\begin{array}{ll} \min_{X} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i, \quad i = 1, \dots, m, \\ & X \in \hat{\mathcal{K}}. \end{array}$$

• Gives us a lower bound on p^* .

Which cone to choose?

• Diagonally dominant:

A symmetric matrix $X \in \mathbb{S}^n$ is diagonally dominant if and only if

$$X_{ii} \geq \sum_{j \neq i} |X_{ij}|, i = 1, 2, \dots, n.$$

• Let $\mathcal{DD}_n = \{X \in \mathbb{S}^n \mid X \text{ is diagonally dominant}\} \subset \mathbb{S}_+^n$.

Gershgorin's circle theorem

Given an $n \times n$ matrix X, every eigenvalue of X lies in at least one of the discs D_i in the complex plane, where

$$D_i = |\lambda - X_{ii}| \leq \sum_{j
eq i} |X_{ij}|$$

Diagonally dominant

$$X_{ii} \geq \sum_{j
eq i} |X_{ij}| \Longrightarrow |\lambda - X_{ii}| \leq X_{ii} \Longrightarrow \lambda \geq 0.$$

Diagonally dominant

- Optimizing over \mathcal{DD}_n leads to LP.
- For each $|X_{ij}|$, Introduce variable T_{ij} such that

$$-T_{ij} \leq X_{ij} \leq T_{ij}, \quad \sum_{j \neq i} T_{ij} \leq X_{ii}, \ i = 1, 2, \dots, n.$$

• Replace \mathbb{S}^n_+ by \mathcal{DD}_n

$$\min_{X} \quad \langle C, X \rangle$$
subject to $\langle A_i, X \rangle = b_i, \quad i = 1, \dots, m,$
 $X \in \mathcal{DD}_n.$

• This is equivalent to

$$\begin{array}{ll} \min_{X, T_{ij}} & \langle C, X \rangle \\ \text{subject to} & \langle A_k, X \rangle = b_k, \quad k = 1, \dots, m, \\ & - T_{ij} \leq X_{ij} \leq T_{ij}, \quad \sum_{j \neq i} T_{ij} \leq X_{ii}, \ i = 1, 2, \dots, n \end{array}$$

Which cone to choose?

• Scaled-diagonally dominant:

A symmetric matrix $X \in S^n$ is scaled-diagonally dominant if and only if there exists a diagonal matrix D with nonnegative elements such that

DXD is diagonally dominant.

Another Interpretation of SDD_n : A symmetric X belongs to SDD_n if and only if there exist $Z_{ij} \in S^2_+$ such that

$$X = \sum_{1 \le i < j \le n} E_{ij}^{\mathsf{T}} Z_{ij} E_{ij},$$

where $E_{ij} = \begin{bmatrix} E_i \\ E_j \end{bmatrix}$, and $E_i \in \mathbb{R}^{1 \times n}$ is zero everywhere except the *i*-th component being 1. $E_i = \begin{bmatrix} 0 \dots 1 \dots 0 \end{bmatrix} \in \mathbb{R}^{1 \times n}$.

• Let $SDD_n = \{X \in \mathbb{S}^n \mid X \text{ is scaled-diagonally dominant}\} \subset \mathbb{S}_+^n$.

Figure: Illustration of \mathcal{FW}_2^n (or \mathcal{SDD}) matrices.

Scaled-diagonally dominant

 A 2 × 2 semidefinite constraint is equivalent to a (rotated) second-order cone constraint.

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix} \succeq 0 \Longleftrightarrow a \ge 0, c \ge 0, ac \ge \|b\|_2^2 \Longleftrightarrow \left(b, a, \frac{1}{2}c\right) \in \mathcal{L}_{\mathrm{rot}}^{n+2},$$

where $\mathcal{L}_{rot}^{n+2} = \{(x, y, z) \in \mathbb{R}^{n+2} | 2yz \ge \|x\|_2^2, y \ge 0, z \ge 0\}.$

• Optimizing over SDD_n leads to SOCP.

$$\min_{X} \quad \langle C, X \rangle$$
subject to $\langle A_i, X \rangle = b_i, \quad i = 1, \dots, m_i$
 $X \in \mathcal{SDD}_n.$

This is equivalent to

$$\begin{split} \min_{X, Z_{ij}} & \langle C, X \rangle \\ \text{subject to} & \langle A_k, X \rangle = b_i, \quad k = 1, \dots, m, \\ & X = \sum_{1 \le i < j \le n} E_{ij}^{\mathsf{T}} Z_{ij} E_{ij}, \\ & Z_{ij} \succeq 0 \Longleftrightarrow \left((Z_{ij})_{12}, (Z_{ij})_{11}, \frac{1}{2} (Z_{ij})_{22} \right) \in \mathcal{L}_{\mathrm{rot}}^{n+2}. \end{split}$$

Approximation quality

$$\min_{X} \quad \langle C, X \rangle$$
subject to $\langle A_i, X \rangle = b_i, \quad i = 1, \dots, m,$
 $X \in SDD_n \text{ (or } DD_n \text{)}.$

• The approximation quality might be conservative

Figure: Feasible region of $\mathrm{PSD},\,\mathrm{SDD}_{10},\,\text{or}\,\,\mathrm{DD}_{10}$ over a 10×10 LMI

- \mathcal{DD}_n requires $\mathcal{O}(n^2)$ linear constraints.
- SDD_n requires $O(n^2)$ small SOCP constraints.
- \mathcal{DD}_n and \mathcal{SDD}_n encounter problems for large *n*.

Comparison of computational time

$2N \ (\# \text{ states})$	4	6	8	10	12	14	16	18	20	22
DSOS	< 1	0.44	2.04	3.08	9.67	25.1	74.2	200.5	492.0	823.2
SDSOS	< 1	0.72	6.72	7.78	25.9	92.4	189.0	424.74	846.9	1275.6
SOS (SeDuMi)	< 1	3.97	156.9	1697.5	23676.5	∞	∞	∞	∞	∞
SOS (MOSEK)	< 1	0.84	16.2	149.1	1526.5	∞	∞	∞	∞	∞

Figure: Time consumption of using LP and SOCP approximation.

• The table is taken from Amir Ali Ahmadi's paper²

²Amir Ali Ahmadi and Anirudha Majumdar (2019). "DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization". In: *SIAM Journal on Applied Algebra and Geometry* 3.2, pp. 193–230.

Factor-width-two matrices

Another Interpretation of SDD_n : A symmetric X belongs to SDD_n if and only if there exist $Z_{ij} \in \mathbb{S}^2_+$ such that

$$X = \sum_{1 \le i < j \le n} E_{ij}^{\mathsf{T}} Z_{ij} E_{ij},$$

where $E_{ij} = \begin{bmatrix} E_i \\ E_j \end{bmatrix}$, and $E_i \in \mathbb{R}^{1 \times n}$ is zero everywhere except the *i*-th component being 1. $E_i = \begin{bmatrix} 0 \dots 1 \dots 0 \end{bmatrix} \in \mathbb{R}^{1 \times n}$.

Figure: Illustration of \mathcal{FW}_2^n (or \mathcal{SDD}) matrices.

Let $SDD_n = FW_2^n$. Optimizing over FW_2^n is equivalent to an SDP over the cone product

$$\mathbb{S}^2_+ imes \ldots imes \mathbb{S}^2_+$$

Block factor-width-two matrices

Given a set of integers $\alpha = \{\alpha_1, \alpha_2, \dots, \alpha_p\}$ with $\sum_{i=1}^p \alpha_i = n$, we say a matrix $A \in \mathbb{R}^{n \times n}$ is block-partitioned by α if we can write A as

$$\begin{bmatrix} A_{11} & A_{12} & \dots & A_{1p} \\ A_{21} & A_{22} & \dots & A_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p1} & A_{p2} & \dots & A_{pp} \end{bmatrix}$$

where $A_{ij} \in \mathbb{R}^{\alpha_i \times \alpha_j}, \forall i, j = 1, 2, \dots, p$.

Figure: Different partitions for a 6×6 matrix

Block factor-width-two matrices

Definition (Zheng et al. 2022) A symmetric matrix X with partition $\alpha = \{\alpha_1, \alpha_2, \cdots, \alpha_p\}$ belongs to block-factor-width-two matrices, denoted as $\mathcal{FW}^n_{\alpha,2}$, if there exist X_{ij} such that

$$X = \sum_{1 \le i < j \le \rho}^{\rho} (E_{ij}^{\alpha})^{\mathsf{T}} Z_{ij} E_{ij}^{\alpha}, \qquad (1)$$

with
$$Z_{ij} \in \mathbb{S}_{+}^{\alpha_i + \alpha_j}$$
, $E_{ij}^{\alpha} = \begin{bmatrix} E_i^{\alpha} \\ E_j^{\alpha} \end{bmatrix} \in \mathbb{R}^{(\alpha_i + \alpha_j) \times n}$, for $i \neq j$ and $E_i^{\alpha} = \begin{bmatrix} 0 & \dots & I_{\alpha_i} & \dots & 0 \end{bmatrix} \in \mathbb{R}^{\alpha_i \times n}$.

We denote

 $\mathcal{FW}_{\alpha,2}^n = \{X \in \mathbb{S}^n \mid X \text{ is } \alpha \text{-block-factor-width-two}\} \subset \mathbb{S}_+^n.$

• SDD_n is a special case of $FW_{\alpha,2}^n$ with partition $\alpha = \{1, \ldots, 1\}$.

Block-factor-width-two matrices

Optimizing over $\mathcal{FW}_{\alpha,2}^n$ is equivalent to an SDP over the cone product

 $\mathbb{S}^{\alpha_1+\alpha_2}_+ \times \ldots \times \mathbb{S}^{\alpha_{p-1}+\alpha_p}_+.$

• $\mathcal{FW}^2_{\alpha,2}$ allows different size of submatrices

$$X = \sum_{1 \leq i < j \leq p} E_{ij}^{\mathsf{T}} Z_{ij} E_{ij}, \text{ with } Z_{ij} \in \mathbb{S}_{+}^{\alpha_i + \alpha_j}.$$

Figure: Illustration of $\mathcal{FW}_{\alpha,2}^n$ matrices.

- The flexibility of $\mathcal{FW}^n_{\alpha,2}$ improves the approximation quality and numerical efficiency.
- Number of PSD constraints has been reduced $\binom{n}{2} \Longrightarrow \binom{p}{2}$.

A hierarchy of inner/outer approximations

 We say a partition α is a *finer* partition of β, denoted as α ⊑ β, if α can be formed by breaking down some blocks in β.

Theorem (Zheng et al. 2022) Given $\{1, 1, ..., 1\} \sqsubseteq \alpha \sqsubseteq \beta \sqsubseteq \gamma = \{\gamma_1, \gamma_2\}$ with $\gamma_1 + \gamma_2 = n$, we have a converging hierarchy of inner and outer approximations

$$\mathcal{DD}_{n} \subseteq \mathcal{SDD}_{n} \subseteq \mathcal{FW}_{\alpha,2}^{n} \subseteq \mathcal{FW}_{\beta,2}^{n} \subseteq \mathcal{FW}_{\gamma,2}^{n} = \mathbb{S}_{+}^{n}$$

= $(\mathcal{FW}_{\gamma,2}^{n})^{*} \subseteq (\mathcal{FW}_{\beta,2}^{n})^{*} \subseteq (\mathcal{FW}_{\alpha,2}^{n})^{*} \subseteq (\mathcal{SDD}_{n})^{*} \subseteq (\mathcal{DD}_{n})^{*},$ (2)

Figure: Feasible region of $\mathcal{FW}_{\alpha,2}^{10}$, $\mathcal{FW}_{\beta,2}^{10}$, $\mathcal{FW}_{\gamma,2}^{10}$, and \mathcal{DD}^{10} over a 10 × 10 LMI, where $\alpha = \{1, 1, \dots, 1\}$, $\beta = \{2, 2, 2, 2, 2\}$, $\gamma = \{4, 4, 2\}$.

Dual cone of $\mathcal{FW}_{\alpha,2}^n$

$$\begin{split} \mathcal{FW}_{\alpha,2}^{n} &= \left\{ X \in \mathbb{S}_{+}^{n} | X = \sum_{1 \leq i < j \leq p}^{p} \left(E_{ij}^{\alpha} \right)^{\mathsf{T}} Z_{ij} E_{ij}^{\alpha}, Z_{ij} \succeq 0 \right\} \\ \left(\mathcal{FW}_{\alpha,2}^{n} \right)^{*} &= \left\{ Y \in \mathbb{S}^{n} | \langle Y, X \rangle \geq 0, \forall X \in \mathcal{FW}_{\alpha,2}^{n} \right\} \\ &= \left\{ Y \in \mathbb{S}^{n} | \left\langle Y, \sum_{1 \leq i < j \leq p}^{p} \left(E_{ij}^{\alpha} \right)^{\mathsf{T}} Z_{ij} E_{ij}^{\alpha} \right\rangle \geq 0, \forall Z_{ij} \succeq 0 \right\} \\ &= \left\{ Y \in \mathbb{S}^{n} | \sum_{1 \leq i < j \leq p}^{p} \left\langle E_{ij}^{\alpha} Y \left(E_{ij}^{\alpha} \right)^{\mathsf{T}}, Z_{ij} \right\rangle \geq 0, \forall Z_{ij} \succeq 0 \right\} \\ &= \left\{ Y \in \mathbb{S}^{n} | E_{ij}^{\alpha} Y \left(E_{ij}^{\alpha} \right)^{\mathsf{T}} \succeq 0, \forall 1 \leq i < j \leq p \right\} \end{split}$$

Primal

Dual

$$\begin{split} \min_{X} & \langle C, X \rangle \\ \text{subject to} & \langle A_k, X \rangle = b_k, \quad k = 1, \dots, m, \\ & X = \sum_{1 \leq i < j \leq p}^{p} (E_{ij}^{\alpha})^{\mathsf{T}} Z_{ij} E_{ij}^{\alpha}, \\ & Z_{ij} \succeq 0. \end{split}$$

$$\max_{y,Z} \quad b^{\mathsf{T}}y$$

subject to $Z + \sum_{k=1}^{m} A_k y_k = C,$
 $E_{ij}^{\alpha} Z (E_{ij}^{\alpha})^{\mathsf{T}} \succeq 0,$
 $\forall 1 \le i < j \le p.$

19/38

$$\begin{array}{ll} \min_{X} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i, \quad i = 1, \dots, m, \\ & X \in \mathcal{FW}_{\alpha,2}^n. \end{array}$$

- A coarser partition naturally provides a tighter upper bound on p^{*}.
- However, a coarser partition leads to a larger PSD constraint.
- Key idea: we keep an acceptable partition size and iteratively tighten the upper bound by **basis pursuit**.

Ahmadi and Hall³ introduces an iterative method over \mathcal{DD}_n and \mathcal{SDD}_n . It can be naturally extended to $\mathcal{FW}_{\alpha,2}^n$.

• Basis pursuit:

$$\begin{aligned} \mathsf{U}_{\alpha}^{t} &:= \min_{X} \quad \langle C, X \rangle \\ \text{subject to} \quad \langle A_{i}, X \rangle &= b_{i}, \quad i = 1, \dots, m, \\ \quad X \in \mathcal{FW}_{\alpha,2}^{n}(V_{t}), \end{aligned}$$

where $\mathcal{FW}_{\alpha,2}^{n}(V) := \{ M \in \mathbb{S}^{n} \mid M = V^{\mathsf{T}} QV, \ Q \in \mathcal{FW}_{\alpha,2}^{n} \}.$

• We choose the sequence of matrices $\{V_t\}$ as

$$V_1 = I$$

 $V_{t+1} = \operatorname{chol}(X_t^{\star})$

³Amir Ali Ahmadi and Georgina Hall (2017). "Sum of squares basis pursuit with linear and second order cone programming". In: *Algebraic and geometric methods in discrete mathematics* 685, pp. 27–53.

$$V_1 = I$$
$$V_{t+1} = \operatorname{chol}(X_t^{\star}).$$

• Key idea: the optimal solution X_t^* at iteration t is contained in the feasible set $\mathcal{FW}_{\alpha,2}^n(V_{t+1})$.

$$\begin{aligned} X_t^{\star} &= V_{t+1}^{\star} V_{t+1} \\ &= V_{t+1}^{\star} \times I \times V_{t+1} \end{aligned}$$

- Note that *I* ∈ *FW*ⁿ_{α,2} ⇒ X^{*}_t ∈ *FW*ⁿ_{α,2}(V_{t+1}) ⇒ U^t_α ≥ U^{t+1}_α.
- Instead of Cholesky factorization, other decompositions such as spectral decomposition also work.

Proposition (Monotonic decreasing upper bounds) Given any partition α , inner approximations with matrices { V_t } lead to

$$\mathsf{U}^{\mathbf{1}}_{\alpha} \geq \mathsf{U}^{\mathbf{2}}_{\alpha} \geq \ldots \geq \mathsf{U}^{t}_{\alpha} \geq \mathsf{U}^{t+1}_{\alpha} \geq \boldsymbol{p}^{\star}.$$

Figure: Feasible regions of inner approximations using DD_n , SDD_n , and $FW_{\alpha,2}^n$ with $\alpha = \{2, 2, 2, 2, 2\}$. The red arrows denote the decreasing direction of the cost value.

Iterative outer approximations

• The dual cone of $\mathcal{FW}_{\alpha,2}^n$ naturally gives us an outer approximation

 $\mathcal{FW}_{\alpha,2}^n \subseteq \mathbb{S}_+^n \subseteq (\mathcal{FW}_{\alpha,2}^n)^*.$

• Similar to inner approximation, we have

 $\begin{aligned} \mathsf{L}_{\alpha}^{t} &\coloneqq \min_{X} \quad \langle C, X \rangle \\ \text{subject to} \quad \langle A_{i}, X \rangle &= b_{i}, \qquad i = 1, \dots, m, \\ \quad X \in (\mathcal{FW}_{\alpha,2}^{n}(V_{t}))^{*}. \end{aligned}$

• We choose the sequence of matrices $\{V_t\}$ as

$$V_{1} = I$$
$$V_{t+1} = \operatorname{chol}\left(C - \sum_{i=1}^{m} y_{i}^{t,*} A_{i}\right)$$

Iterative outer approximations

Proposition (Monotonic increasing lower bounds) Given any partition α , inner approximations with matrices { V_t } lead to

$$\mathsf{L}^{1}_{\alpha} \leq \mathsf{L}^{2}_{\alpha} \leq \ldots \leq \mathsf{L}^{t}_{\alpha} \leq \mathsf{L}^{t+1}_{\alpha} \leq p^{\star}.$$

Figure: Feasible regions of outer approximations using DD_n , SDD_n , and $FW_{\alpha,2}^n$ with $\alpha = \{2, 2, 2, 2, 2\}$. The red arrows denote the decreasing direction of the cost value.

Numerical experiments

Figure: The evaluation of the cost value by different inner/outer approximations.

Numerical experiments

Table: Computational results of 7 different large-scale SDPs using inner approximation with $\alpha = \{10, \ldots, 10\}$ and $\beta = \{20, \ldots, 20\}$. f_1 denotes the cost value of the first iteration. f_{30} denotes the cost value after 30 minutes. The time consumption (in seconds) for solving the original SDP is listed in the last column.

	$\mathcal{FW}^n_{lpha,2}$				$\mathcal{FW}^n_{eta,2}$				PSD
n	f_1	f ₃₀	Gap		f_1	f ₃₀	Gap		Time
1500	5.63 <i>e</i> 6	4.76 <i>e</i> 6	0.03		5.20 <i>e</i> 6	4.76 <i>e</i> 6	0.03		603
2000	3.33 <i>e</i> 6	2.86 <i>e</i> 6	0.10		3.09 <i>e</i> 6	2.86 <i>e</i> 6	0.05		1 201
2500	6.11 <i>e</i> 6	5.29 <i>e</i> 6	0.07		5.70 <i>e</i> 6	5.29 <i>e</i> 6	0.05		2 893
3000	1.81 <i>e</i> 7	1.32e7	0.79		1.57e7	1.32e7	0.79		5 508
3500	8.96 <i>e</i> 6	7.08 <i>e</i> 6	0.10		8.02 <i>e</i> 6	7.07 <i>e</i> 6	0.08		7 369
4000	9.52 <i>e</i> 6	6.89 <i>e</i> 6	0.15		8.21 <i>e</i> 6	6.89 <i>e</i> 6	0.11		10 689
4500	2.05 <i>e</i> 7	1.70 <i>e</i> 7	0.08		1.88 <i>e</i> 7	1.69 <i>e</i> 7	0.06		16 989

Summary

Different cones

$$\mathcal{DD}_n \subset \mathcal{SDD}_n \subset \mathcal{FW}_{\alpha,2}^n \subset \mathbb{S}_+^n$$

LP \implies SOCP \implies Small SDP \implies SDP

Block-factor-width-two matrices

Figure: Illustration of block-factor-width-two matrices matrices $(\mathcal{FW}_{\alpha,2}^n)$.

• A tight approximation quality with iterative inner/outer approximations.

Figure: Iterative inner/outer approximation.

Thank you for your attention! Q & A

 $\begin{array}{ll} \min_{x} & f(x) \\ \text{subject to} & f_{i}(x) \leq 0. \end{array}$

- *f*₀, *f*₁, . . . , *f_m* are convex
- Suppose f is differentiable, f is convex if and only if

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \forall y \in \mathbb{R}^n.$$

- $\{f_i\}$ forms the feasible region \mathcal{X}
- \mathcal{X} is complex and hard to optimize over
- Consider a bigger but simpler feasible region

• At iteration t, we consider

$$x_t^{\star} =: \min_{x} f(x)$$

subject to $x \in P_t$.

- If $x_t^* \in \mathcal{X}, X_t^*$ is the optimal solution.
- If $x_t^* \notin \mathcal{X}$, there exists j such that

 $f_j(x_t^{\star}) > 0.$

By first-order condition for convex functions

$$f_j(x) \geq f_j(x_t^\star) + \langle
abla f_j(x_t^\star), x - x_t^\star
angle, orall x \in \mathbb{R}^n.$$

If $f_j(x_t^*) + \langle \nabla f_j(x_t^*), x - x_t^* \rangle > 0$, then f(x) > 0 violates the constraint.

• Therefore, we need to impose

$$f_j(x_t^{\star}) + \langle \nabla f_j(x_t^{\star}), x - x_t^{\star} \rangle \leq \mathbf{0}.$$

Algorithm of cutting plane method

- **()** Given a simple set P_0 that contains the feasible region \mathcal{X} .
- **2** (Initialization) Initialize $x_0 \in \mathbb{R}^n$.
- 3 For $t \leq t_{max}$
- 4 Solve

$$x_t^{\star} =: \min_x f(x)$$

subject to $x \in P_t$

$$5 If x_t \in \mathcal{X}, quit.$$

- End For loop

- How to use it in SDP?
- Equivalent SDPs

$$\begin{array}{ll} \min_{X} & \langle C, X \rangle & \min_{X} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i, \quad i = 1, \dots, m, \quad \text{subject to} \quad \langle A_i, X \rangle = b_i, \quad i = 1, \dots, m, \\ & X \in \mathbb{S}^n_+. & \lambda_{\min}(X) \ge 0. \end{array}$$

•
$$\lambda_{\min}(X) \ge 0 \Longleftrightarrow \lambda_{\max}(-X) \le 0$$

• Consider

$$\begin{array}{ll} \min_{X} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i, \quad i = 1, \dots, m, \\ & \lambda_{\max}(-X) \leq 0. \end{array}$$

• $g(X) = \lambda_{max}(-X)$ is not differentiable. Fortunately, a subgradient exists!

Given a convex function $f : \mathbb{R}^n \to \mathbb{R}$, $z \in \mathbb{R}^n$ is a subgradient of f at $x \in dom(f)$ if

$$f(y) \ge f(x) + \langle z, y - x \rangle, \forall y \in dom(f)$$

• Subdifferential example f(x) = |x|

the picture is taken from Prof. L. Vandenberghe's lecture note.

Let $f(X) = \lambda_{\max}(-X)$. A subgradient of f at X can be computed as $-vv^{\mathsf{T}}$,

where v is the unit eigenvector of $\lambda_{\max}(-X)$.

- Suppose $X_t \notin \mathbb{S}^n_+$, $\lambda_{max}(-X_t) > 0$.
- From the subgradient inequality,

$$f(X) \geq f(X_t) + \left\langle -vv^{\mathsf{T}}, X - X_t \right\rangle$$

We need to impose

$$\begin{split} f(X_t) + \left\langle -vv^{\mathsf{T}}, X - X_t \right\rangle &\leq 0 \\ \Longleftrightarrow \quad \lambda_{\max}(-X_t) + \left\langle -vv^{\mathsf{T}}, X - X_t \right\rangle &\leq 0 \\ \Leftrightarrow \quad \lambda_{\max}(-X_t) - \left\langle vv^{\mathsf{T}}, X \right\rangle - \lambda_{\max}(-X_t) &\leq 0 \\ \Leftrightarrow \quad \left\langle vv^{\mathsf{T}}, X \right\rangle &\geq 0 \end{split}$$

Algorithm of cutting plane method for SDPs

- **1** Given a simple set P_0 that contains the feasible region \mathcal{X} .
- **2** (Initialization) Initialize $X_0 \in \mathbb{S}^n$
- 3 For $t \leq t_{\max}$
- 4 Solve

$$\begin{array}{ll} X_t^{\star} =: \min_X & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i, i = 1, \dots, m, \\ & X \in P_t. \end{array}$$

$$\mathbf{5} \quad \text{If } X_t \succeq \mathbf{0}, \text{ quit.}$$

- **6** Compute the eigenvector(v) of $\lambda_{max}(-X_t)$.
- $\circ \quad \text{Set } P_{t+1} = P_t \cap \{ x \in \mathbb{R}^n | \langle vv^{\mathsf{T}}, X \rangle \geq 0 \}.$
- 8 End For loop