
ECE285: Semidefinite and sum-of-squares optimization Winter 2023

Lecture 13: Nonnegative polynomials, SOS, and SDPs (I)
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@ eng. ucsd. edu .

Learning goals:

1. Nonnegative univariate polynomials

2. Sum-of-squares polynomials

3. Nonnegativity on intervals

From this lecture, we begin our study of another main theme of the course, i.e., nonnegative polynomials,
and their relationship with sums of squares and semidefinite programming. In this lecture, we mainly focus
on univariate polynomials p(x) : R → R. We denote the set of univariate polynomials as R[x].

1 Nonnegative polynomials

We say a polynomial p ∈ R[x] is nonnegative if p(x) ≥ 0,∀x ∈ R. Checking the nonnegativity of polynomials
has many applications. For instance, if we have a “good” way to check the nonnegativity of polynomials,
then we can also minimize or maximize polynomials:

min
x∈R

p(x) ⇐⇒
max γ

subject to p(x)− γ ≥ 0,∀x ∈ R.
(1)

Given any nonnegative univariate polynomial p(x), we can verify that

• Its degree p(x) is even and the leading coefficient (i.e., the coefficient of x2d) is nonnegative;

• Any real root of p(x) has even multiplicity.

Indeed, these two conditions are also sufficient. We now introduce a very useful notion of sum-of-squares.

Definition 13.1. A univariate polynomial p(x) =
∑2d

k=0 pkx
k of degree 2d is a sum of squares (SOS) if

there exist polynomials q1(x), . . . , qt(x) such that

p(x) =

t∑
k=1

q2k(x). (2)

It is clear that a sum-of-squares polynomial p(x) is nonnegative globally. For univariate polynomials, the
converse is also true.

Theorem 13.1. A univariate polynomial p(x) =
∑2d

k=0 pkx
k of degree 2d is nonnegative if and only if there

exist q1(x) and q2(x) of degree no greater than d such that

p(x) = q21(x) + q22(x).
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Proof. The “if” part is obvious. We prove the “only if” part. Assume p(x) is nonnegative. Since p(x) has
real coefficients, if p(z) = 0, then we must have p(z̄) = 0. Also, if z is a real root of p(x), it must have even
multiplicity. These two facts, together with the fundamental theorem of algebra, lead to

p(x) = p2d

d∏
i=1

(x− zi)(x− z̄i) =

∣∣∣∣∣√p2d

d∏
i=1

(x− zi)

∣∣∣∣∣
2

.

Upon defining

q(x) =
√
p2d

d∏
i=1

(x− zi), q1(x) = Re[q(x)], q2(x) = Im[q(x)],

we get the desired result: p(x) = q21(x) + q22(x).

2 SOS and semidefinite programming

Consider a univariate polynomial p(x) = p0 + p1x + p2x
2 + . . . + p2dx

2d that is SOS, i.e., it can be written
in the form of (2). Note that the degree of qk(x) is at most d since the highest term of each q2k(x) is positive
and there cannot be any cancellation in the highest power of x. Therefore, we can write

q1(x)
q2(x)
...

qt(x)

 = V


1
x
...
xd

 ,

where V ∈ Rt×(d+1) and its kth row contains the coefficients of the polynomial qk(x). For convenience, we
denote

[x]d :=
[
1, x, . . . , xd

]T
.

We can then rewrite (2) into

p(x) =


q1(x)
q2(x)
...

qt(x)


T 

q1(x)
q2(x)
...

qt(x)

 = (V [x]d)
TV [x]d = [x]TdV

TV [x]d = [x]TdQ[x]d, (3)

where Q = V TV is positive semidefinite. Conversely, assume Q ⪰ 0 satisfying (3). Then we can factorize
Q = V TV , and we arrive at an SOS representation of p(x).

The following theorem gives a direct relationship between positive semidefinite matrices and nonnegative
univariate polynomials.

Theorem 13.2. Let p(x) =
∑2d

k=0 pkx
k be a univariate polynomial. Then, p(x) is nonnegative (or equiva-

lently SOS) if and only if there exists Q ∈ Sd+1
+ that satisfies

p(x) = [x]TdQ[x]d. (4)

If we index the rows and columns of the matrix Q by 0, . . . , d, we have

[x]TdQ[x]d =

d∑
i=0

d∑
j=0

Qijx
i+j =

2d∑
k=0

 ∑
i+j=k

Qij

xk.
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Matching the coefficients of the left- and right- hand sides in (4), we have

pk =
∑

i+j=k

Qij , k = 0, . . . , 2d.

This is a system of 2d+1 linear equations. Therefore, the matrix Q is constrained to be positive semidefinite
and be in a particular affine space. An SOS condition is equivalent to a semidefinite programming problem.

Example 13.1. [1, Example 3.35] Consider the univariate polynomial

p(x) = x4 + 4x3 + 6x2 + 4x+ 5.

We aim to find an SOS decomposition. Consider the expression

p(x) =

 1
x
x2

T q00 q01 q02
q10 q11 q12
q20 q21 q22


︸ ︷︷ ︸

Q

 1
x
x2


= q22x

4 + 2q12x
3 + (q11 + 2q02)x

2 + 2q01x+ q00.

Matching the coefficients, we have the following linear equations

x4 : 1 = q22,

x3 : 4 = 2q12,

x2 : 6 = q11 + 2q02,

x : 4 = 2q01,

1 : 5 = q00.

We need to find a positive semidefinite matrix Q satisfying the equations above (i.e. solving an SDP). In
this case, a feasible solution is given by

Q =

5 2 0
2 6 2
0 2 1

 = V TV, V =

 0 2 1√
2

√
2 0√

3 0 0

 .

This gives the following SOS decomposition: p(x) = (x2 + 2x)2 + 2(x+ 1)2 + 3. □

Theorem 13.2 allows us to check the nonnegativity of univariate polynomials using semidefinite programming.
Indeed, we can minimize any univariate polynomial (even if it is nonconvex) using semidefinite programming.
It is clear that (1) is equivalent to

max
γ,Q

γ

subject to p0 − γ = Q00,

pk =
∑

i+j=k

Qij , k = 1, . . . , 2d,

Q ∈ Sd+1
+ .

(5)

Example 13.2. It is well-known that a second-order polynomial p(x) = ax2 + bx+ c is nonnegative globally
if and only if its discriminant ∆ := b2 − 4ac ≤ 0 and a, c ≥ 0. Theorem 13.2 ensures that this polynomial
p(x) is nonnegative globally if and only if there exists a matrix Q ∈ S2+ such that

Q00 = c, Q01 +Q10 = b, Q11 = a.

This is equivalent to [
c b

2
b
2 a

]
⪰ 0 ⇐⇒ b2 − 4ac ≤ 0, a, c ≥ 0.
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We define the cone of nonnegative univariate polynomials of degree 2d as

P2d =

{
(p0, p1, . . . , p2d) ∈ R2d+1 |

2d∑
k=0

pkx
k ≥ 0,∀x ∈ R

}
.

It is easy to see that

P2d =
⋂
x∈R

{
(p0, p1, . . . , p2d) ∈ R2d+1 |

2d∑
k=0

pkx
k ≥ 0

}
︸ ︷︷ ︸

Hx

,

where each Hx is a closed halfspace in R2d+1. P2d is closed and convex since it is an (infinitely) intersection
of closed convex sets. If p(x) ≥ 0,∀x ∈ R and −p(x) ≥ 0,∀x ∈ R, it must be identically zero, p(x) ≡ 0. Thus,
P2d is pointed. One can check that x2d + 1 is an interior point of P2d. In summary, we have the following
result.

Lemma 13.1. P2d is a proper cone in R2d+1.

Similarly, one can further define a conic program over P2d:

min
p

cTp

subject to Ap = b,

p ∈ P2d.

This conic program can be equivalently reformulated into an SDP. For instance, (1) can be written as

min
γ

γ

subject to (p0 − γ, p1, . . . , p2d) ∈ P2d.

Remark 13.1. Later in this course, we will discuss the dual of P2d, which has an interesting interpretation
as moment problems. □

3 Nonnegativity over intervals

We have characterized the univariate polynomials that are nonnegative globally on the real line. Here, we
focus on polynomials nonnegative on an interval. In particular, we have the following necessary and sufficient
conditions for a univariate polynomial to be nonnegative on [−1, 1].

Theorem 13.3. Consider a univariate polynomial p(x).

• If p(x) is of even degree 2d, then p(x) ≥ 0,∀x ∈ [−1, 1] if and only if there exists SOS polynomial s1(x)
of degree 2d and s2(x) of degree 2d− 2 such that

p(x) = s1(x) + (1− x2)s2(x) (6)

• If p(x) is of odd degree 2d + 1, then p(x) ≥ 0,∀x ∈ [−1, 1] if and only if there exists SOS polynomial
s1(x) of degree 2d and s2(x) of degree 2d such that

p(x) = (1− x)s1(x) + (1 + x)s2(x) (7)

Note that the “if” part is obvious, and the “only if” part is slightly more difficult but it can be proved by
induction. We leave it as an exercise. The condition (6) can be seen as an algebraic proof of the nonnegativity
of p(x) on [−1, 1].
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Remark 13.2. The case with nonnegativity on [a, b] can be reduced to Theorem 13.3 by a change of variables

f(x) := p

(
2x− (a+ b)

b− a

)
.

Indeed, we can establish similar necessary and sufficient conditions: p(x) is nonnegative on [a, b] if and only
if {

p(x) = s1(x) + (x− a)(b− x)s2(x), if deg(p) is even

p(x) = (x− a)s1(x) + (b− x)s2(x), if deg(p) is odd

where s1(x), s2(x) are SOS. If deg(p) = 2d, we have deg(s1) ≤ 2d and deg(s2) ≤ 2d− 2; if deg(p) = 2d+ 1,
we have deg(s1) ≤ 2d and deg(s2) ≤ 2d. □

It is important to note that both (6) and (7) can be searched using semidefinite programming, since p(x) =
s1(x) + (1 − x2)s2(x) defines a set of linear constraints on the coefficients of s1(x) and s2(x) (similarly for
p(x) = (1− x)s1(x) + (1 + x)s2(x)).

Let P2d[−1, 1] be the cone of polynomials of degree 2d nonnegative on [−1, 1]. Then, we can represent this
set as

P2d[−1, 1] = {(p0, . . . , p2d) ∈ R2d+1 | ∃s1 ∈ P2d, s2 ∈ P2d−2, s.t. p(x) = s1(x) + (1− x2)s2(x)}.

Testing p ∈ P2d[−1, 1] is a semidfinite program. Furthermore, the following problem

min
x

p(x)

subject to − 1 ≤ x ≤ 1

can be expressed as a semidefinite program in the following way

max
γ

γ

subject to p(x)− γ ≥ 0,∀x ∈ [−1, 1]
⇐⇒

max
γ

γ

subject to (p0 − γ, p1, . . . , p2d) ∈ P2d[−1, 1].

Theorem 13.4. Consider a univariate polynomial p(x). We have p(x) ≥ 0,∀x ∈ [0,∞) if and only if there
exist SOS polynomials s1(x), s2(x) such that

p(x) = s1(x) + xs2(x),

with degree bounds as

• deg(s1) ≤ 2d and deg(s2) ≤ 2d− 2 if deg(p) = 2d (even);

• deg(s1) ≤ 2d and deg(s2) ≤ 2d if deg(p) = 2d+ 1 (odd);

Example 13.3. Consider the following SOS program

max
γ

γ

subject to p(x)− γ is SOS.

Suppose p(x) = x4 + 2x3 − 3x2 − 4x+ 5. YALMIP code is

1 % SOS example 1
2 x = sdpvar(1,1); % define variable
3 gamma = sdpvar(1,1);
4 p = xˆ4 +2*xˆ3 - 3*xˆ2 - 4*x + 5; % polynomial
5 F = sos(p-gamma); % SOS constraint
6 solvesos(F,-gamma,[],gamma); % solve SOS program
7 value(gamma)
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Suppose p(x) = x4
1 + 2x4

2 − 2x2
1x

2
2 − 2x1x

2
2 + x2

1 + 4. YALMIP code is

1 % SOS example 2
2 x = sdpvar(1,1); % define variable
3 gamma = sdpvar(1,1);
4 p = x(1)ˆ4 +2*x(2)ˆ4 - 2*x(1)ˆ2*x(2)ˆ2 - 2*x(1)*x(2)ˆ2 + x(1)ˆ2 +4; % polynomial
5 F = sos(p-gamma); % SOS constraint
6 solvesos(F,-gamma,[],gamma); % solve SOS program
7 value(gamma)

Notes

The preparation of this lecture was based on [2, Lectures 10 & 12]. Further reading for this lecture can refer
to [1, Chapter 3].
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