
ECE285: Semidefinite and sum-of-squares optimization Winter 2023

Lecture 14: Nonnegative polynomials, SOS, and SDPs (II)
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@ eng. ucsd. edu .

Learning goals:

1. Nonnegative multivariate polynomials

2. Sum-of-squares hierarchies

3. Nonnegativity on Sets: Positivstellensatz

1 Nonnegative multivariate polynomials

In this lecture, we start to look at polynomials in more than one variable. We denote by R[x] the space of
polynomials in n variables x1, . . . , xn. A monomial is expressed as xα := xα1

1 · · ·xαn
n with x = (x1, . . . , xn) and

α = (α1, . . . , αn), where αi, i = 1, . . . , n are integers. The degree of a monomial xα is |α| := α1+α2+. . .+αn.
The degree of a polynomial is the largest degree of its monomials. For example,

p(x) = x3
1 + 2x1x

2
2 + x1x2 + 2 (1)

has degree 3. We denote by R[x]n,d the space of polynomials in n variables of degree no bigger than d. The
canonical monomial basis for R[x]n,d is

[x]d =
[
1, x1, x2, . . . , xn, x

2
1, x1x2, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n

]T
,

which has size
(
n+d
d

)
. Each element p(x) =

∑
|α|≤d pαx

α ∈ R[x]n,d can be identified by its coefficients

pα, |α| ≤ d. For example, when n = 2, d = 3, we have

[x]d =
[
1, x1, x2, x

2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2

]T
,

and the polynomial in (1) reads as

p(x) =
[
2, 0, 0, 0, 1, 0, 1, 0, 2, 0

]
[x]d.

We are interested in polynomials p(x) that are nonnegative globally on Rn, i.e., p(x) ≥ 0,∀x ∈ Rn. An
obvious sufficient condition for nonnegative polynomials is a sum-of-squares (SOS) representation.

Definition 14.1. A polynomial p(x) ∈ R[x] is a sum of squares if there exists polynomials q1(x), . . . , qt(x) ∈
R[x] such that

p(x) = q1(x)
2 + . . .+ qt(x)

2.

It is not difficult to see that if p(x) ∈ R[x] is nonnegative globally, it must has even degree. If p(x) is of even
degree 2d and p(x) =

∑t
k=1 qk(x)

2, then we always have deg(qk) ≤ d, k = 1, . . . , t.

In Lecture 11, we have seen that for univariate polynomials (n = 1), nonnegativity is equivalent to an SOS
condition. It turns out that in general this is not true. In fact, for polynomials of degree no less than four,
deciding whether a polynomial is nonnegative globally is NP-hard (as a function of the number of variables).
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Let Pn,2d be the cone of nonnegative polynomials in n variables of degree at most 2d. Let Σn,2d be the cone
of SOS polynomials in n variables of degree at most 2d. More than a century ago, David Hilbert showed the
equivalence between nonnegative polynomials and SOS polynomials (i.e., Σn,2d = Pn,2d) holds only in the
following three cases.

Theorem 14.1 (Hilbert). Σn,2d = Pn,2d holds only in the following three cases:

• n = 1 (univariate polynomials);

• 2d = 2 (quadratic polynomials);

• n = 2, 2d = 4 (bivariate quartics).

We have already seen that Σn,2d = Pn,2d in the case of n = 1. The case 2d = 2 can be proved easily using
the eigenvalue decomposition of positive semidefinite matrices. The last case n = 2, 2d = 4 is more difficult.

Checking p(x) ∈ Pn,2d is computationally hard. On the other hand, checking p(x) ∈ Σn,2d can be performed
using semidefinite programs.The following result is a multivariate generalization of the result in the previous
lecture. For convenience, we write s(n, d) =

(
n+d
d

)
.

Theorem 14.2. Consider a polynomial of degree 2d in the form of

p(x) =
∑

|α|≤2d

pαx
α.

Then p(x) ∈ Σn,2d if and only if there exists a positive semidefinite matrix Q ∈ Ss(n,d)+ such that

pα =
∑

β+γ=α

Qβγ , ∀|α| ≤ 2d. (2)

Proof. We first prove “Only if” part. Suppose p(x) ∈ Σn,2d. There exist q1(x), . . . , qt(x) ∈ R[x]n,d such that

p(x) =

q1(x)...
qt(x)


T q1(x)...

qt(x)

 . (3)

Upon choosing the monomial basis [x]d and collecting all the coefficients of q1(x), . . . , qt(x), we haveq1(x)...
qt(x)

 = V [x]d.

Then, (3) becomes

p(x) = (V [x]d)
T
V [x]d = [x]d

(
V TV

)
[x]d.

Therefore, we obtain a positive semidefinite matrix Q = V TV ∈ Ss(n,d)+ . The linear equations are obtained
by matching coefficients

p(x) = [x]dQ[x]d =
∑

|α|≤2d

 ∑
β+γ=α

Qβγ

xα.

“If” part is clear by reversing the arguments above based on a Cholesky factorization of Q = V TV .

Remark 14.1. Similar to the univariate case, deciding the membership p(x) ∈ Σn,2d or performing linear
optimization over Σn,2d is equivalent to solving an SDP. □
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Example 14.1 ( [1, Example 3.38]). Consider a multivariate polynomial

p(x, y) = 2x4 + 5y4 − x2y2 + 2x3y + 2x+ 2.

We want to find an SOS representation for this polynomial. In this case, n = 2 and 2d = 4, the monomial
basis is

[x]d =
[
1 x y x2 xy y2

]T
,

and the matrix Q, indexed by this monomial basis, is

Q =


q00,00 q00,10 q00,01 q00,20 q00,11 q00,02

q10,10 q10,01 q10,20 q10,11 q10,02
q01,01 q01,20 q01,11 q01,02

q20,20 q20,11 q20,02
q11,11 q11,02

q02,02

 (4)

(The rest of entries are symmetrical.) Checking whether p(x, y) is SOS is equivalent to deciding whether
there is a matrix Q in (4) that is positive semidefinite and satisfies the linear constraints (2). In this case,
there is a total of s(n, 2d) =

(
6
4

)
= 15 linear constraints, one for each monomial xα of degree at most 2d.

For instance, the equations corresponding to monomials x4, x2y2, and y2 are

x4 : 2 = q20,20

x2y2 : −1 = 2q20,02 + q11,11

y2 : 0 = 2q00,02 + q01,01.

This amounts to solving a feasibility of an SDP. One feasible solution is given as

Q =
1

3


6 3 0 −2 0 −2

4 0 0 0 0
4 0 0 0

6 3 −4
5 0

15

 .

Any factorization of matrix Q will lead to an SOS decomposition. For instance, one SOS decomposition is

p(x, y) =
4

3
y2 +

1349

705
y4 +

1

12
(4x+3)2 +

1

15
(3x2 +5xy)2 +

1

315
(−21x2 +20y2 +10)2 +

1

59220
(328y2 − 235)2.

□

Theorem 14.1 has identified all the cases where nonnegativity is equivalent to an SOS condition. For all
other cases, there always exist nonnegative polynomials that are not sum-of-squares. Consider the Motzkin
polynomial (n = 2, 2d = 6)

M(x, y) = x4y2 + x2y4 + 1− 3x2y2.

One can show that M(x, y) is nonnegative globally via the arithmetic-geometric mean inequality:

1

3
(x4y2 + x2y4 + 1) ≥ (x6y6)1/3 = x2y2, ∀x, y ∈ R.

On the other hand, one can show that M(x, y) is not a sum of squares. In fact, one can prove that M(x, y)−γ
is not a sum of squares for any γ ∈ R.

Proposition 14.1. M(x, y)− γ is not a sum of squares for any γ ∈ R.
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2 Sum-of-squares hierarchies

Consider a global polynomial optimization problem

p⋆ = min
x∈Rn

p(x) (5)

where p(x) ∈ R[x]n,2d. As we have seen last time, this is equivalent to

γ⋆ = max
γ

γ

subject to p(x)− γ ≥ 0, ∀x ∈ Rn.

We can establish a lower bound by solving an SDP as

γ0 = max
γ

γ

subject to p(x)− γ ∈ Σn,2d.

We have γ0 ≤ γ⋆ = p⋆. In the case of univariate polynomials (n = 1), we have γ0 = γ⋆ since nonnegative
univariate polynomials are SOS. However, we have a strict inequality in general. Recall the Motzkin poly-
nomial M(x, y) − γ is not SOS for any γ. In this case, γ0 = −∞. This lower bound from the semidefinite
relaxation is not useful. On the other hand, we can verify that

(1 + x2 + y2)M(x, y) =y2(1− x2)2 + x2(1− y2)2 + (x2y2 − 1)2

+ x2y2
(
3

4
(x2 + y2 − 2)2 +

1

4
(x2 − y2)2

)
.

This also clearly shows that M(x, y) ≥ 0,∀(x, y) ∈ R2.

The fact above actually suggests a hierarchy of sum-of-squares relaxations for (5)

γr = max
γ

γ

subject to (1 + x2
1 + . . .+ x2

n)
r(p(x)− γ) ∈ Σn,2d+2r.

(6)

It is not hard to show that γ0 ≤ γ1 ≤ γ2 ≤ . . . ≤ p⋆. Note that one can define another hierarchy of semidefinite
relaxations where the multiplier (1 + x2

1 + . . . + x2
n)

r is replaced by another nonnegative polynomial. This
will lead to a different hierarchy.

One natural question is to ask whether the sequence γr defined in (6) converges to p⋆. Under some assump-
tions on p(x), one can actually establish the convergence result. For example, we have the following result,
established by Reznick [4] (a homogeneous polynomial of degree 2d is a polynomial with only monomials of
degree exactly 2d, e.g., p(x1, x2) = x4

1 + x4
2 + x2

1x
2
2).

Theorem 14.3 (Reznick’s theorem). Let p(x) ∈ R[x]n,2d be a homogeneous polynomial. If p(x) > 0,∀x ∈
Rn \ {0}, then there exists r ∈ N such that

(x2
1 + . . . x2

n)
rp(x)

is a sum of squares.

Note that (x2
1 + . . . x2

n)
rp(x) being SOS means that p(x) can be written as a sum of squares of rational

functions. Hilbert’s 17th problem asks whether any nonnegative polynomial can be written a sum of squares
of rational functions. This question was answered positively by Artin in 1927.

Theorem 14.4 (Hilbert–Artin’s theorem). Let p(x) ∈ R[x]n,2d. If p(x) ≥ 0,∀x ∈ Rn, then there exist
nonzero SOS polynomials h(x) and q(x) such that

h(x)p(x) = q(x).
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3 Nonnegativity on Sets

An SOS representation is an obvious certificate of the global nonnegativity of a polynomial p(x) over the
entire space Rn. In this section, we look into the nonnegativity of a polynomial p(x) on a given subset
S ∈ Rn, i.e., we aim to provide certificates for

p(x) ≥ 0, ∀x ∈ S. (7)

The set S could be defined in different forms, and the certificates we discuss below will depend on how S is
presented.

3.1 Equations

Consider the set S is defined by a set of polynomial equations

S = {x ∈ Rn | f1(x) = 0, . . . , fm(x) = 0}.

Recalling the form of Lagrange multipliers, we can write the following condition

p(x) +

m∑
i=1

λi(x)gi(x) is SOS, (8)

where λi(x) are arbitrary polynomials. If we can find λi(x) such that (8) holds, then it is obviously a
certificate to establish (7). Indeed, if (8), by evaluating this expression at any point x0 ∈ S, we conclude
that p(x0) ≥ 0. Note that (8) is affine in the unknown polynomials λi(x). Once we fix the degree of λi(x), (8)
is amount to solving an SDP.

3.2 Inequalities

Consider the set S is defined by a set of polynomial inequalities

S = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

We have very similar arguments. Inspired by Lagrange multipliers, we consider

p(x) = s0(x) +

m∑
i=1

si(x)gi(x), (9)

where s0(x) and si(x) are SOS polynomials. This condition (9) serves a obvious certificate for (7). Indeed,
evaluating the expression (9) at any point x0 ∈ S directly proves p(x0) ≥ 0. Again, (9) is affine in the
unknown polynomials s0(x), si(x). Once we fix the degree of s0(x), si(x), (9) is amount to solving an SDP.

Remark 14.2. We can also consider more powerful expressions by allowing finite products in the following
form

p(x) = s0(x) +

m∑
i=1

si(x)gi(x) +

m∑
i,j

sij(x)gi(x)gj(x) + . . .

where s0(x), si(x), sij(x) are SOS polynomials. This representation is also an obvious certificate for (7).
Upon fixing the degree of the SOS multipliers, this is amount to solve an SDP. □
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3.3 Putinar’s Positivstellensatz

The conditions in (8) and (9) are clearly sufficient conditions for the local nonnegativity of p(x) in (7). Do
such representations always exist? The answer is in general no. However, under some mild conditions on p
and S, we can guarantee the existence of such a representation. This is so-called Positivstellensatz results.
We here only describe one of them.

Theorem 14.5 (Putinar’s Positivstellensatz). Let S = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}. Assume there
exists i ∈ {1, . . . ,m} such that {x ∈ Rn | gi(x) ≥ 0} is compact. Suppose p(x) is a polynomial such that
p(x) > 0,∀x ∈ S. Then, there exist SOS polynomials s0(x), s1(x), . . . , xm(x) such that

p(x) = s0(x) +

m∑
i=1

si(x)gi(x).

There are some other Positivstellensatz that require different assumptions on S; see [3, Chpater 3].

Notes

The preparation of this lecture was based on [2, Lectures 13 & 14] and [1, Chapter 3]. Further reading for
this lecture can refer to [1, Chapter 3] and [3, Chapter 3].
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