
ECE285: Semidefinite and sum-of-squares optimization Winter 2023

Lecture 15: SOS applications in control and machine learning
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@ eng. ucsd. edu .

Learning goals:

1. SOS hierarchies for constrained optimization

2. Lyapunov functions for nonlinear control

3. Neural network verification in machine learning

In this lecture, we continue with the previous lecture on SOS hierarchies for general constrained polynomial
optimization. Then, we will introduce two SOS applications in nonlinear control and machine learning. For
many other applications, you can refer to books [4, 7] and surveys [2, 9, 12].

1 SOS hierarchies for constrained optimization

Consider a general constrained polynomial optimization problem

p⋆ = min
x

p(x)

subject to gi(x) ≥ 0, i = 1, . . . ,m,
(1)

where p(x), g1(x), . . . , gm(x) are given polynomials. Similar to the previous lectures, (1) is equivalent to

γ⋆ = max
γ

γ

subject to p(x)− γ ≥ 0, ∀x ∈ K,
(2)

where K := {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . ,m}. Then, we can replace the nonnegativity on set K by an SOS
condition. In particular, for any integer r, we consider the following SOS hierarchy (known as Lasserre’s
hierarchy [7])

γ2r = max
γ

γ

subject to p(x)− γ = s0(x) + s1(x)g1(x) + . . .+ sm(x)gm(x)

s0, s1, . . . , sm are SOS

deg(s0) ≤ 2r, deg(sigi) ≤ 2r, i = 1, . . . ,m.

(3)

It is not difficult to see that (3) can be formulated as a semidefinite program. Furthermore, the sequence γr
is monotonically non-decreasing, and

γr ≤ γ⋆ = p⋆, ∀r ∈ N.
Indeed, if the set K is compact and satisfies an extra algebraic condition — Archimedean, e.g., there is i
such that {x ∈ Rn | gi(x) ≥ 0} is compact, then Putinar’s Positivstellensatz ensures that limr→∞ γr = p⋆.
In fact, the convergence is almost finite (generically), and this is proved in [8].

Remark 15.1. We can use other Positivstellensatz to derive converging SOS hierarchies, in addition to (3),
which may require less assumption on K. For instance, we can use Schmudgen Positivstellensatz, which was
first used by Pablo [10]. There are also other Positivstellensatz that do not rely on SOS conditions. One
such result is Polya’s theorem. See a recent nice paper [1] for more constructions. □
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Example 15.1 (Example 5.3 in [7]). Consider the following optimization problem

min
x1,x2

x2
1x

2
2(x

2
1 + x2

2 − 1)

subject to x2
1 + x2

2 ≤ 4.
(4)

It is clear that the constraint x2
1 + x2

2 ≤ 4 satisfies the Archimedean condition. Then, the sequence γr from
the Lasserre’s SOS hierarchy in (3) will converge to the true optimal cost value of (4). In particular, the
SOS hierarchy reads as

γr = max
γ

γ

subject to p(x)− γ = s0(x) + s1(x)(4− x2
1 − x2

2)

s0 ∈ Σ2,2r, s1 ∈ Σ2,2r−2.

(5)

The following YALMIP code implements the first four levels of (5).

1 x = sdpvar(1,1);
2 y = sdpvar(1,1);
3 gamma = sdpvar(1,1);
4 p = xˆ2*yˆ2*(xˆ2+yˆ2-1); % cost function
5 g = 4 - xˆ2 - yˆ2; % constraint
6 degree = [4,6,8,10]; % degree
7 bound = zeros(length(degree),1);
8 for i = 1:length(degree)
9 [s,c,v] = polynomial([x;y],degree(i)); % sos multiplier

10 F = sos(s); % SOS constraint
11 F = [F, sos(p - gamma - s*g)];
12 solvesos(F,-gamma,[],[gamma;c]); % solve SOS program
13 bound(i) = value(gamma);
14 end

The optimal γ from these SOS programs are

γ3 = −0.0417, γ4 = −0.0370, γ5 = −0.0370, γ6 = −0.0370.

In this case, the optimal value stabilizes at the second level. We can expect that the optimal cost to (4) should
be p∗ = −0.0417. Indeed, there are sufficient conditions (mainly based on the flat extension theory from the
moment side [5]) to certify when the hierarchy stabilizes at the optimal solutions and further extract global
minimizers (see [7, Section 5.3.1]). □

2 Lyapunov functions

We have seen that quadratic Lyapunov functions are very useful for analysis and control of linear time-
invariant systems, which leads to various SDP formulations. SOS optimization allows us to deal with many
analysis and synthesis problems of nonlinear systems. In this section, we consider the basic problem of
establishing stability of nonlinear systems.

Consider a dynamical system
ẋ(t) = f(x),

where f(x) is a vector of polynomials. Assume that the origin x = 0 ∈ Rn is an equilibrium of the system,
i.e., f(0) = 0. We aim to check whether all the trajectories x(t) converges to 0 at t → ∞. One method is to
find a Lyapunov function that can be viewed as a positive energy function decreasing along any trajectories.
The nonlinear system is globally asymptotically stable, if we can find a Lyapunov function V (x) : Rn → R
that satisfies

V (x) > 0, x ∈ Rn \ {0},
V̇ (x) = ⟨∇V (x), f(x)⟩ < 0, x ∈ Rn \ {0}.
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Figure 1: Trajectories of nonlinear dynamical system (7) and the level sets of a Lyapunov function found
via SOS techniques.

We will consider candidate Lyapunov functions to be polynomials (quadratics and beyond). Since nonnega-
tivity over polynomials is computationally hard, we will impose that the candidate Lyapunov function V (x)
and its derivative V̇ (x) satisfy stronger SOS conditions1

V (x) is SOS,

−⟨∇V (x), f(x)⟩ is SOS.
(6)

Upon fixing the degree of V (x), searching for a polynomial Lyapunov function satisfying (6) is amount to
solving an SDP.

Example 15.2 ( [4, Chapter 3.6.2]). Consider the following nonlinear system

ẋ = −y − 3

2
x2 − 1

2
x3,

ẏ = 3x− y,
(7)

which corresponds to the Moore-Greitzer model of a jet engine with stabilizing feedback operating in the
no-stall model. Using following YALMIP code:

1 % define variables
2 x = sdpvar(1); y = sdpvar(1);
3

4 % Constructing the vector field dx/dt = f
5 f = [-y - 1.5*xˆ2 - 0.5*xˆ3;
6 3*x-y];
7

8 % Step 1: Construct a Lyapunov candidate
9 degree = 4;

10 [V,Vc,mbasis] = polynomial([x;y],degree,1);
11

12 % Step 2: SOS constraint
13 Constraint = [sos(V - (xˆ2+yˆ2))];
14 epsilon =1e-6;
15 Vdot = -(jacobian(V,x)*f(1)+jacobian(V,y)*f(2)) - epsilon*(xˆ2+yˆ2);
16 Constraint = [Constraint, sos(Vdot)];
17

18 % Step 3: solve the sos program
19 solvesos(Constraint,[],[],[Vc]);
20

21 Vcoef = value(Vc); % the coefficient of the Lyapunov function

we can easily find a Lyapunov function that is a polynomial of degree 4. The trajectories of the nonlinear
system, and the level sets of the Lyapunov function is shown in Figure 1. □

1The strict positivity requirement can be handled by including a strictly positive term, e.g., ϵ∥x∥22.
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Remark 15.2. The SOS conditions (6) are sufficient for global asymptotic stability. Similar SOS conditions
can be derived for many other analysis tasks, e.g, local asymptotic stability, and region of attraction etc. See
e.g., [2, 9] □

3 Neural network verification

Neural networks are one of the fundamental building blocks of modern machine-learning methods. For
safety-critical applications, it is essential to ensure that they are provably robust to input perturbations.

Given a neural network f(x0) : Rd → Rm, a nominal input x̄ ∈ Rd, a linear function ϕ : Rm → R on the
network’s output, and a perturbation radius ϵ ∈ R, the network verification problem asks to either verify
that

ϕ(f(x0)) > 0 ∀x0 : ∥x0 − x̄∥∞ ≤ ϵ, (8)

or to identify at least one counterexample to this relation.

Consider an L-layer feedforward neural network where

f(x0) = WLxL + bL,

xi+1 = ReLU(Wixi + bi), i = 0, . . . , L− 1,

where Wi ∈ Rni+1×ni and bi ∈ Rni+1 are the network weights and biases, respectively, and the so-called
Rectified Linear Unit (ReLU) activation function ReLU : Rk → Rk is the element-wise positive part of its
argument, ReLU(z) = [max(zi, 0)]

k
i=1. Condition (8) can be decided by solving the optimization problem

γ⋆ := min
x0,...,xL

cTxL + c0

subject to xi+1 = ReLU(Wixi + bi), i ∈ [L], (9a)

∥x0 − x̄∥∞ ≤ ϵ, (9b)

where [L] := {0, 1, . . . , L − 1} and c, c0 are problem data related to the linear function ϕ(·). If γ⋆ > 0,
then (8) holds, otherwise counterexamples can be found.

Since the action of the ReLU function can be described by quadratic constraints,

y = ReLU(z) ⇐⇒ y ≥ z, y ≥ 0, y(y − z) = 0,

problem (9) can be reformulated into a polynomial optimization problem with variable x =
[
xT
0 , x

T
1 , . . . , x

T
L

]T
(which is indeed a QCQP [11]), and subsequently relaxed into an SDP in previous lectures or solved using
the SOS hierarchy (3) above.

The interested reader can refer to [3, 6, 11] for more detailas and numerical experiments.

Notes

Further reading for this lecture can refer to [4, Chapter 3] and [7, Chapter 3].
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[5] Raúl E Curto and Lawrence A Fialkow. Solution of the truncated complex moment problem for flat
data, volume 568. American Mathematical Soc., 1996.

[6] Mahyar Fazlyab, Manfred Morari, and George J Pappas. Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. IEEE Transactions on
Automatic Control, 2020.

[7] Jean Bernard Lasserre. Moments, positive polynomials and their applications, volume 1. World Scientific,
2009.

[8] Jiawang Nie. Optimality conditions and finite convergence of lasserre’s hierarchy. Mathematical pro-
gramming, 146(1):97–121, 2014.

[9] Antonis Papachristodoulou and Stephen Prajna. A tutorial on sum of squares techniques for systems
analysis. In Proceedings of the 2005, American Control Conference, 2005., pages 2686–2700. IEEE,
2005.

[10] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness
and optimization. California Institute of Technology, 2000.

[11] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying robust-
ness to adversarial examples. InAdvances in Neural Information Processing Systems, pages 10877–10887,
2018.

[12] Yang Zheng, Giovanni Fantuzzi, and Antonis Papachristodoulou. Chordal and factor-width decompo-
sitions for scalable semidefinite and polynomial optimization. Annual Reviews in Control, 2021.


	SOS hierarchies for constrained optimization
	Lyapunov functions
	Neural network verification

