
ECE285: Semidefinite and sum-of-squares optimization Winter 2023

Lecture 16: Dual side: moment problems
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@ eng. ucsd. edu .

Learning goals:

1. Moment interpretation

2. Nonnegative measures on intervals

The sets of nonnegative polynomials and SOS polynomials are convex cones, and they have rich duality
structures. In this lecture, we introduce their duals in the univariate case and explain their interpretation
in terms of moment problems.

1 Duality and sum-of-squares

Recall that the cone of nonnegative univariate polynomials of degree 2d is defined as

P2d =

{
(p0, p1, . . . , p2d) ∈ R2d+1 |

2d∑
k=0

p0x
k ≥ 0,∀x ∈ R

}
. (1)

This is equivalent to the cone of SOS univariate polynomials of degree 2d. We have seen that P2d is a proper
cone in R2d+1, and it has a semidefinite representation:

p ∈ P2d ⇔ ∃Q ∈ S2d+1
+ , s.t.

∑
i+j=k

Qij = pk, k = 0, . . . , 2d. (2)

Note that any conic program over P2d is a semidefinite program.

We now discuss the dual of P2d. For any x ∈ R, we consider the following vector

yx := (1, x, x2, . . . , x2d) ∈ R2d+1. (3)

Let M2d be the curve drawn by these vectors in R2d+1, known as moment curve of degree 2d:

M2d = {yx ∈ R2d+1 | x ∈ R}. (4)

Recall the definition of the dual of a set S ⊂ Rn: S∗ = {y ∈ Rn | yTx ≥ 0,∀x ∈ S}. Observe that the
definition of P2d in (1) simply states that P2d is the dual cone of M2d, i.e.,

M∗
2d = P2d.

Then, we automatically get that the dual of P2d is the closure of the cone of M2d, i.e.,

P ∗
2d = cl cone(M2d). (5)

Remark 16.1 (Closure in (5)). Note that the cone generated by the moment curve M2d is generally not
closed, so we need to keep the closure operation in (5). For instance, we can verify that

(0, 0, 1) ∈ cl cone(M2), but (0, 0, 1) /∈ cone(M2).
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Indeed, we cannot write (0, 0, 1) as a conic combination of the elements in {yx ∈ R3 | x ∈ R} since the first
element of

m∑
k=1

λkyxk
=

m∑
k=1

λk(1, xk, x
2
k), λk ≥ 0

is strictly positive unless all λk = 0. On the other hand, we have

lim
x→∞

1

x2
yx = lim

x→∞

1

x2
(1, x, x2)

= (0, 0, 1).

The main reason why cone(M2d) is not closed is that the value of x can be arbitrarily large on the real line
in (4). If we restrict the definition x in (4) to be in a compact interval [a, b], then the set cone(M2d) is
closed. □

Remark 16.2 (Point evaluation). The vector yx, defined in (3), can be interpreted as linear functional on
the space of polynomials. A linear functional on polynomials is of the form R[x] → R that takes a polynomial
and returns a real number. Then, given a polynomial p(x) of degree 2d with coefficients (p0, p1, . . . , p2d), the
inner product between yx and p is just nothing but

p(x) = ⟨p, yx⟩,

i.e., the point evaluation of p(x) at x ∈ R. It is clear that point evaluation yx ∈ P ∗
2d (since the point evaluation

of any nonnegative polynomials at x is nonnegative). The relation in (5) suggests that any element in P ∗
2d

is a conic combination of point evaluations (up to closure). □

1.1 Moment interpretation of P ∗
2d

A particular and important interpretation of the dual cone P ∗
2d is in terms of the truncated moment sequence

of probability measures. Consider the following question

Definition 16.1 (Truncated moment problem). Given a vector y = (y0, y1, y2, . . . , y2d) ∈ R2d+1, does there
exist a nonnegative measure µ on R such that

yk =

∫
R
xkdµ, k = 0, . . . , 2d?

If the answer is positive, then we say the vector y is a valid moment vector. It is clear that not any vector
y = (y0, y1, y2, . . . , y2d) ∈ R2d+1 is a valid moment vector. For example, we must have yk ≥ 0 for any k even.
Also, we must have

y2 + (y0 − 2)y21 =

∫
R
(x− y1)

2dµ ≥ 0.

Furthermore, given any nonnegative polynomial p(x) on R, we must have∫
R
p(x)dµ ≥ 0.

In this case, upon denoting p(x) =
∑2d

k=0 pkx
k, we must have

0 ≤
∫
R
p(x)dµ =

∫
R

2d∑
k=0

pkx
kdµ =

2d∑
k=0

pk

∫
R
xkdµ =

2d∑
k=0

pkyk.

In other words, if y is a valid moment vector, then we must have

⟨p, y⟩ ≥ 0,∀p ∈ P2d.

By the definition of dual cones, we have y ∈ P ∗
2d. Note that P ∗

2d is the closure of all valid moment vectors,
so not every point on the boundary of P ∗

2d is a valid moment vector (an explicit counterexample is given in
Example 16.1.)
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Remark 16.3. Note that the vector yx defined in (3) is actually a valid moment vector for any x ∈ R: yx is
simply the moment vector for the Dirac probability measure δx that takes the value of 1 at a single point x.
Any conic combination of these vectors is a valid moment vector as well. If y =

∑N
i=1 λiyxi

, λ1, . . . , λN ≥ 0,

then y is the moment vector of the atomic measure µ =
∑N

i=1 λiδxi . Therefore, any element of cone(M2d)
is a valid moment vector.

From this perspective, the dual of SOS univariate polynomials is the set of valid moment vectors (up to
closure). □

Primal and dual formulation of polynomial optimization.

We have seen that
min
x∈R

p(x) = max γ subject to p− γ ∈ P2d. (6)

where p(x) is a polynomial of degree 2d. Note that (6) is a particular conic program over P2d. We can derive
its dual. Let y ∈ P ∗

2d be the dual variable for the constraint p− γ ∈ P2d. Then we have

⟨p− γ, y⟩ ≥ 0 ⇒ γy0 ≤ ⟨p, y⟩.

Since we are interested in deriving an upper bound on γ, we let y0 = 1. Then, the dual problem becomes

min
y

⟨p, y⟩

subject to y ∈ P ∗
2d, y0 = 1.

(7)

Again, this is a conic program over the dual cone P ∗
2d. We know that P ∗

2d corresponds to moments of
nonnegative measures (up to closure). The constraint y0 = 1 means that we restrict ourselves to probability
measures. Thus, the dual problem (7) is equivalent to

min
µ

∫
R
p(x)dµ

subject to µ is a probability measure on R.
(8)

It is interesting to compare (8) with (6). It is not difficult to see that these two problems have the same cost
value. Indeed, let p∗ = minx∈R p(x) and x∗ is be a minimizer of p(x). Then, for any probability measure µ,
we have ∫

R
p(x)dµ ≥

∫
R
p∗dµ = p∗.

On the other hand, if we choose µ = δx∗ , we have∫
R
p(x)dµ = p∗.

Even though p(x) can be a nonconvex polynomial, (8) is a linear optimization problem in µ. However, (8)
is an infinite-dimensional problem since the underlying space is the space of probability measures on R.
Finally, note that the objective function in (8) only depends on the moments up to degree 2d of the measure
µ; indeed, it is equivalent to

min
y

2d∑
k=0

ykpk

subject to yk =

∫
R
xkdµ, k = 0, . . . , 2d

µ is a probability measure on R,

(9)
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which is the same as (7).

1.2 SDP representation of P ∗
2d

The cone P2d has an SDP representation in (2). Here, we derive an SDP representation for P ∗
2d. By definition,

given y ∈ P ∗
2d, we have

⟨y, p⟩ ≥ 0,∀p ∈ P2d. (10)

Since P2d is the set of nonnegative univariate polynomials, each element in P2d can be written as an SOS
polynomial of degree d, i.e.,

p(x) = q(x)2 =

2d∑
k=0

 ∑
i+j=k

qiqj

xk.

Therefore, we have
⟨y, p⟩ = ⟨y, q2⟩

=
∑

0≤i,j≤d

qiqjyi+j

= qTH(y)q ≥ 0, ∀q ∈ Rd+1

where H(y) is the Hankel matrix associated with y:

H(y) =


y0 y1 . . . yd
y1 y2 . . . yd+1

...
...

. . .
...

yd yd+1 . . . y2d

 . (11)

The reasoning above indicates that y ∈ P ∗
2d if and only if H(y) ⪰ 0.

Theorem 16.1. P ∗
2d = {(y0, y1, . . . , y2d) ∈ R2d+1 | H(y) ⪰ 0} where H(y) is the Hankel matrix associated

with y, defined in (11).

Now it is clear that the dual problem (7) is an SDP of the form

min
y

⟨p, y⟩

subject to


y0 y1 . . . yd
y1 y2 . . . yd+1

...
...

. . .
...

yd yd+1 . . . y2d

 ⪰ 0, y0 = 1.
(12)

We have seen previously the original polynomial optimization problem (6) is also an SDP of the form

max
γ

γ

subject to p0 − γ = Q00,

pk =
∑

i+j=k

Qij , k = 1, . . . , 2d,

Q ⪰ 0.

(13)

One can verify that (13) and (12) are also dual to each other.

Remark 16.4. Theorem 16.1 characterizes the set P ∗
2d that is the closure of all valid moment vectors on

the real line. Therefore, if H(y) is strictly positive definite, (i.e., y is in the interior of P ∗
2d), then y is
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valid moment vector, and we can find a representing nonnegative measure. However, if H(y) is only positive
semidefinite, (i.e., y is on the boundary of P ∗

2d), then y may not be a valid moment vector, and there may
exist no representing nonnegative measure for y. An explicit counterexample is given in [1, Remark 3.147].
□

Example 16.1 ([1, Remark 3.147]). As mentioned above, H(y) ⪰ 0 characterizes the closure of the set of
valid moment vectors, but not necessarily the whole set. Consider y = (1, 0, 0, 0, 1), and its Hankel matrix is

H(y) =

1 0 0
0 0 0
0 0 1

 ⪰ 0.

Although this matrix is positive semidefinite, there is no nonneagtive measure corresponding to those moments
(note that it requires y2 =

∫
x2dµ = 0). However, the parameterized atomic measure by

µϵ =
ϵ4

2
δ 1

ϵ
+ (1− ϵ4)δ0 +

ϵ4

2
δ− 1

ϵ
,

has first five moments as
(1, 0, ϵ2, 0, 1),

and thus as ϵ → 0 they converge to y = (1, 0, 0, 0, 1). □

2 Nonnegative measures on intervals

Recall from Lecture 13. We have characterized the nonnegative univariate polynomial on intervals [−1, 1].
For convenience, we state the theorem below.

Theorem 16.2. Consider a univariate polynomial p(x).

• If p(x) is of even degree 2d, then p(x) ≥ 0,∀x ∈ [−1, 1] if and only if there exists SOS polynomial s1(x)
of degree 2d and s2(x) of degree 2d− 2 such that

p(x) = s1(x) + (1− x2)s2(x). (14)

• If p(x) is of odd degree 2d + 1, then p(x) ≥ 0,∀x ∈ [−1, 1] if and only if there exists SOS polynomial
s1(x) of degree 2d and s2(x) of degree 2d such that

p(x) = (1− x)s1(x) + (1 + x)s2(x). (15)

We can also characterize their duals. Let P2d[−1, 1] be the cone of polynomials of degree 2d nonnegative on
[−1, 1]. Then, we can represent this set as

P2d[−1, 1] = {(p0, . . . , p2d) ∈ R2d+1 | ∃s1 ∈ P2d, s2 ∈ P2d−2, s.t. p(x) = s1(x) + (1− x2)s2(x)}.

The dual P ∗
2d[−1, 1] has a moment interpretation of nonnegative measures on interval [−1, 1].

Definition 16.2 (Truncated moment problem over an interval). Given a vector y = (y0, y1, y2, . . . , y2d) ∈
R2d+1, does there exist a nonnegative measure µ on [−1, 1] such that

yk =

∫ 1

−1

xkdµ, k = 0, . . . , 2d ?

The answer is fully characterized by P ∗
2d[−1, 1]. If there exists a nonnegative measure µ on [−1, 1] with

moments y = (y0, y1, y2, . . . , y2d) ∈ R2d+1, then we have

0 ≤
∫ 1

−1

p(x)dµ, ∀p ∈ P2d[−1, 1].
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Sine p(x) = q21(x) + (1− x2)q22(x), we have

0 ≤
∫ 1

−1

q21(x) + (1− x2)q22(x)dµ

= qT1


y0 y1 . . . yd
y1 y2 . . . yd+1

...
...

. . .
...

yd yd+1 . . . y2d

 q1 + qT2




y0 y1 . . . yd−1

y1 y2 . . . yd
...

...
. . .

...
yd−1 yd . . . y2d−2

−


y2 y3 . . . yd+1

y3 y4 . . . yd+2

...
...

. . .
...

yd+1 yd+2 . . . y2d


 q2,

for any ∀q1 ∈ Rd+1, q2 ∈ Rd. We have the following theorem.

Theorem 16.3. y ∈ P ∗
2d[−1, 1] if and only if 

y0 y1 . . . yd
y1 y2 . . . yd+1

...
...

. . .
...

yd yd+1 . . . y2d

 ⪰ 0, (16a)


y0 y1 . . . yd−1

y1 y2 . . . yd
...

...
. . .

...
yd−1 yd . . . y2d−2

−


y2 y3 . . . yd+1

y3 y4 . . . yd+2

...
...

. . .
...

yd+1 yd+2 . . . y2d

 ⪰ 0. (16b)

It is clear that (16a) corresponds to q1(x)
2 and (16b) corresponds to (1− x2)q22(x). Also, note that (16a) is

the same as the Hankel matrix H(y) associated with y in (11). This is also easy to understand, since any
nonnegative measure on interval [−1, 1] is also a nonnegative measure on the real line, i.e.,

P ∗
2d[−1, 1] ⊂ P ∗

2d.

This is also reflected in the simple fact that P2d ⊂ P2d[−1, 1].

Remark 16.5 (Constructing a measure). Theorem 16.1 and Theorem 16.3 present semidfinite characteri-
zations of P ∗

2d and P ∗
2d[−1, 1], respectively. But, how can we find an atomic measure associated to a sequence

of moments y? For the univariate case, we have good algorithms. For the multivariate case, a well-known
sufficient condition is so-called flat extension theory [2]; see [1, Chapter 3.5] for more discussions. □

Notes

The preparation of this lecture was based on [3, Lectures 11 & 12]. Further reading for this lecture can
refer [1, Chapter 3] and [4, Chapter 3].
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