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A B S T R A C T

Chordal and factor-width decomposition methods for semidefinite programming and polynomial optimization
have recently enabled the analysis and control of large-scale linear systems and medium-scale nonlinear
systems. Chordal decomposition exploits the sparsity of semidefinite matrices in a semidefinite program
(SDP), in order to formulate an equivalent SDP with smaller semidefinite constraints that can be solved more
efficiently. Factor-width decompositions, instead, relax or strengthen SDPs with dense semidefinite matrices
into more tractable problems, trading feasibility or optimality for lower computational complexity. This article
reviews recent advances in large-scale semidefinite and polynomial optimization enabled by these two types of
decomposition, highlighting connections and differences between them. We also demonstrate that chordal and
factor-width decompositions allow for significant computational savings on a range of classical problems from
control theory, and on more recent problems from machine learning. Finally, we outline possible directions
for future research that have the potential to facilitate the efficient optimization-based study of increasingly
complex large-scale dynamical systems.
. Introduction

The design of innovative technology capable of addressing the
hallenges of the 21st century relies on the ability to analyze, predict,
nd control large-scale complex systems, which are typically nonlinear
nd may interact over networks (Astrom & Kumar, 2014; Murray,
strom, Boyd, Brockett, & Stein, 2003). Convex optimization is one
f the key tools for achieving these goals, because many questions
elated to the stability and operational safety of dynamical systems,
he synthesis of optimal control policies, and the certification of robust
erformance can be posed as (or relaxed into) convex optimization
roblems. Very often, these take the form of semidefinite programs
SDPs)—a generalization of linear optimization problems with positive
emidefinite matrix variables.

For linear systems, well-known methods based on linear matrix
nequalities (LMIs) enable one to tackle a wide range of problems,
ncluding the study of stability, reachability, input-to-state and input-
o-output properties, and the design of optimal and robust control
trategies (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994; Kailath,
980; Zhou, Doyle, Glover, et al., 1996). Methods based on LMIs
ave been successfully applied across a broad spectrum of applica-
ions, including automotive applications (Rajamani, 2011), flight con-
rol (Giulietti, Pollini, & Innocenti, 2000), power grids (Riverso, Sarzo,
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E-mail addresses: zhengy@eng.ucsd.edu (Y. Zheng), giovanni.fantuzzi10@imperial.ac.uk (G. Fantuzzi), antonis@eng.ox.ac.uk (A. Papachristodoulou).

& Ferrari-Trecate, 2014; Sadabadi, Shafiee, & Karimi, 2016), and traffic
systems (Li, Zheng, et al., 2017; Ploeg, Shukla, van de Wouw, &
Nijmeijer, 2013; Zheng, Wang, & Li, 2020). For nonlinear systems with
polynomial dynamics, SDP relaxations based on sum-of-squares poly-
nomials (or, equivalently, moment sequences) enable stability analysis
(Anderson & Papachristodoulou, 2015; Henrion & Garulli, 2005; Par-
rilo, 2000; Peet & Papachristodoulou, 2012), the estimation of regions
of attractions (Chesi, 2011; Henrion & Korda, 2014; Korda, Henrion,
& Jones, 2013; Topcu, Packard, Seiler, & Balas, 2009; Valmorbida
& Anderson, 2017) and reachable sets (Jones & Peet, 2019; Magron,
Garoche, Henrion, & Thirioux, 2019), safety verification (Miller, Hen-
rion, & Sznaier, 2021; Prajna, Jadbabaie, & Pappas, 2007), analysis of
extreme or average behavior (Fantuzzi & Goluskin, 2020; Fantuzzi, Go-
luskin, Huang, & Chernyshenko, 2016; Goluskin, 2020; Korda, Henrion,
& Mezić, 2021; Kuntz, Ottobre, Stan, & Barahona, 2016), and optimal
control (Han & Tedrake, 2018; Henrion & Lasserre, 2006; Lasagna,
Huang, Tutty, & Chernyshenko, 2016; Lasserre, Henrion, Prieur, &
Trélat, 2008; Majumdar, Vasudevan, Tobenkin, & Tedrake, 2014; Pra-
jna, Papachristodoulou, & Wu, 2004).

A widespread view since the 1990s (Boyd et al., 1994; Parrilo
& Lall, 2003) is that, once a control problem is reformulated as an
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Fig. 1.1. Illustration of chordal decomposition, where ⪰ denotes positive semidefiniteness and 𝑋 ∈ S𝑛+( , ?) is a positive semidefinite completion constraint (see Section 2.2 for
precise definition). (a) A chordal graph with five vertices, six edges, and two maximal cliques (complete connected subgraphs), 1 = {1, 2, 3} and 2 = {3, 4, 5}; (b) Chordal

ecomposition of a semidefinite constraint on a sparse matrix 𝑋 into smaller positive semidefinite constraints on matrices 𝑌1 , 𝑌2 with nonzero entries indexed by the cliques 1
nd 2; (c) Chordal decomposition of a positive semidefinite completion constraint on a sparse matrix 𝑋 with smaller positive semidefinite constraints on its principal submatrices
1 and 𝑋2 indexed by the cliques 1 and 2.
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DP or relaxed into one, then it is effectively solved because SDPs
an be solved computationally to global optimality using algorithms
ith polynomial-time complexity (Nemirovski, 2006; Nesterov, 2003;
esterov & Nemirovski, 1994; Vandenberghe & Boyd, 1996; Ye, 2011).
hile this is true in theory, in practice solving large-scale SDPs accu-

ately and without recourse to extremely large computational resources
s a widely recognized challenge that remains largely unresolved. The
eed for scalable algorithms that can handle the very-large-scale SDPs
ncountered in real-life applications is even more pressing in today’s
orld of complex, interconnected systems. Barring significant break-

hrough, therefore, the relaxation of control problems into SDPs that
an be solved with currently available algorithms requires further
hought.

One particular bottleneck is the complexity of handling large
emidefinite constraints; for instance, each iteration of classical
nterior-point algorithms requires (𝑛3𝑚 + 𝑛2𝑚2 + 𝑚3) time and (𝑛2 +
2) memory (Nesterov, 2003, Section 4.3.3), where 𝑛 is the size of

emidefinite constraint and 𝑚 is the number of equality constraints (see
ection 3 for precise definitions). The majority of established general-
urpose SDP solvers currently available, therefore, cannot handle large
roblems (e.g., with 𝑛 larger than a few hundreds and 𝑚 larger than a
ew thousands) on a regular computer. Consequently, the application
f SDP-based frameworks for analysis and control is currently limited
o medium-scale linear systems and small-scale nonlinear ones.

Overcoming these scalability issues is a problem that has received
uch attention in recent years (Ahmadi, Hall, Papachristodoulou,

aunderson, & Zheng, 2017; De Klerk, 2010; Majumdar, Hall, & Ah-
adi, 2020; Vandenberghe & Andersen, 2015), and significant progress
as been made through a number of different approaches. Most of them
re related by a simple, yet powerful, underlying idea: decompose a large
ositive semidefinite matrix 𝑋 as a sum of structured ones, for which it is
asier to impose positivity.

One type of structured decomposition considers sums of low-rank
atrices (Burer & Choi, 2006; Burer & Monteiro, 2003, 2005; Burer,
onteiro, & Zhang, 2002). Specifically, one writes 𝑋 =

∑𝑡
𝑖=1 𝑣𝑖𝑣

𝖳
𝑖 for

ome vectors 𝑣1,… , 𝑣𝑡 ∈ R𝑛, where 𝑡 ≤ 𝑛 is a parameter to be chosen,
nd optimizes over the choice of such vectors. Such a decomposition is
uaranteed to exist for a properly chosen 𝑡, and there are explicit lower
ounds on this parameter ensuring that the global minimum of the
ecomposed problem coincides with that of the original SDP (Barvinok,
995; Pataki, 1998). However, while low-rank decomposition can bring
onsiderable performance gains on large SDPs, it transforms a convex
roblem into a nonconvex one. Solution algorithms for the latter cannot
e guaranteed to converge to the global minimum unless the original
DP is sufficiently ‘‘smooth’’ and 𝑡 is large enough (Boumal, Voroninski,
Bandeira, 2020; Waldspurger & Waters, 2020).
A second type of structured decomposition, which we focus on in

his paper, considers sums of sparse matrices. In this case, one writes
=
∑𝑡

𝑖=1 𝑌𝑖 for positive semidefinite matrices 𝑌1,… , 𝑌𝑡 that are nonzero
nly on a certain (and, ideally, small) principal submatrix. The choice
f these principal submatrices is crucial in determining the particular
ype of matrix decomposition, as well as its properties. Two common
election strategies distinguish whether the original matrix 𝑋 is dense
244

r sparse.
If 𝑋 is sparse, the principal submatrices are usually indexed by
he maximal cliques of the sparsity graph of 𝑋; these notions will be
efined precisely in Section 2, but are illustrated in Fig. 1.1. When the
parsity graph is chordal, meaning that all cycles of length larger than
hree have an edge between nonconsecutive vertices, the existence of a
lique-based decomposition is guaranteed (Agler, Helton, McCullough,

Rodman, 1988; Griewank & Toint, 1984; Kakimura, 2010). One
an therefore replace the optimization of the large matrix 𝑋 with the
ptimization of the matrices 𝑌1,… , 𝑌𝑡 without any loss of generality.
ogether with a dual result on the existence of positive semidefinite
atrix completions (Grone, Johnson, Sá, & Wolkowicz, 1984), this
hordal decomposition strategy enables one to significantly reduce the

computational complexity of SDPs involving sparse positive semidefi-
nite matrices (Fukuda, Kojima, Murota, & Nakata, 2001; Kim, Kojima,
Mevissen, & Yamashita, 2011; Nakata, Fujisawa, Fukuda, Kojima, &
Murota, 2003; Vandenberghe & Andersen, 2015).

When 𝑋 is dense, instead, each matrix 𝑌𝑖 in the decomposition
𝑋 =

∑𝑡
𝑖=1 𝑌𝑖 is chosen to be nonzero only on one of the 𝑡 =

(𝑛
𝑘

)

ossible 𝑘 × 𝑘 principal submatrices of 𝑋, where the parameter 𝑘 ≥ 2
s specified a priori. This type of decomposition leads to factor-width-𝑘
nner approximations of the positive semidefinite cone (Boman, Chen,
arekh, & Toledo, 2005), which are conservative but improve as 𝑘
s increased. When 𝑘 ≪ 𝑛, optimizing over the matrices 𝑌1,… , 𝑌𝑡,
ather than over the original dense matrix 𝑋, leads to SDPs with small
ositive semidefinite cones, which can often be handled efficiently. In
he extreme case 𝑘 = 2, one obtains a second-order cone program,
hich can often be solved more efficiently in practice (Alizadeh &
oldfarb, 2003).

This paper offers a comprehensive review of chordal and factor-
idth-𝑘 decomposition methods, as well as of their application to

arge-scale semidefinite programming and polynomial optimization.
ur goal is to introduce practitioners in control theory to the latest
dvances in these fields, which over the last decade or so have increased
he scale of systems for which optimization-based frameworks for anal-
sis and control can be implemented at a reasonable cost. Examples of
roblems that can now be handled efficiently include the analysis and
ynthesis of large-scale linear networked systems (Andersen, Pakazad,
ansson & Rantzer, 2014; Mason & Papachristodoulou, 2014; Zheng,
amgarpour, Sootla & Papachristodoulou, 2018; Zheng, Mason & Pa-
achristodoulou, 2018), the stability analysis and the approximation
f regions of attraction for sparse nonlinear systems (Ahmadi & Ma-
umdar, 2019; Schlosser & Korda, 2020; Tacchi, Cardozo, Henrion &
asserre, 2019; Zheng, Fantuzzi & Papachristodoulou, 2019), optimal
ower flow in power grids (Andersen, Hansson, & Vandenberghe, 2014;
abr, 2011; Molzahn, Holzer, Lesieutre, & DeMarco, 2013), and nu-
erous problems in machine learning (Batten, Kouvaros, Lomuscio, &
heng, 2021; Chen, Lasserre, Magron & Pauwels, 2020; Dahl, Vanden-
erghe, & Roychowdhury, 2008; Kim, Kojima, & Waki, 2009; Latorre,
olland, & Cevher, 2020; Newton & Papachristodoulou, 2021; Zhang,
attahi, & Sojoudi, 2018). We hope that knowledge of the advanced
ptimization techniques discussed here can assist control theorists in
eveloping efficient modeling frameworks that can be applied much
ore widely and, crucially, to increasingly complex large-scale systems.
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1.1. Outline

After introducing relevant graph-theoretic notions in Section 2, we
discuss chordal decomposition methods for general SDPs in Section 3.
Section 4 looks at decomposition methods for sparse polynomial op-
timization problems, which arise when relaxing analysis and control
problems for nonlinear systems. Factor-width-𝑘 decompositions for
dense matrices are discussed in Section 5. Section 6 presents examples
of how matrix decomposition can be applied to some classical control
problems and to some recent problems in machine learning. Section 7
draws conclusions and outlines possible directions for future research.

1.2. Basic notation

Mathematical symbols are defined as necessary in each of the
following sections, but we summarize common notation here. The 𝑚-
imensional Euclidean space, the vector space of 𝑛 × 𝑛 real symmetric
atrices, and the cone of 𝑛×𝑛 positive semidefinite symmetric matrices

re denoted, respectively, by R𝑚, S𝑛, and S𝑛+. Angled brackets are used
o denote the inner product in any of these spaces; in particular, ⟨𝑥, 𝑦⟩ =
𝖳𝑦 when 𝑥, 𝑦 ∈ R𝑚 and ⟨𝑋, 𝑌 ⟩ = trace(𝑋𝑌 ) when 𝑋, 𝑌 ∈ S𝑛. We often
rite 𝑋 ⪰ 0 instead of 𝑋 ∈ S𝑛+ when the matrix size is clear from

he context or is unimportant, and write 𝑋 ≻ 0 if 𝑋 is strictly positive
efinite.

. Chordal graphs and matrix decomposition

This section reviews chordal graphs and their applications to sparse
atrix decomposition. Matrix decomposition is central to many

parsity-exploiting techniques for semidefinite and polynomial opti-
ization. Detailed introductions to chordal graphs can be found in

he surveys by Blair and Peyton (1993) and Rose (1970), and in the
onographs by Vandenberghe and Andersen (2015) and Golumbic

2004). We first introduce some graph-theoretic notions in Section 2.1,
nd then given an overview of classical matrix decomposition and
ompletion results in Section 2.2. Extensions to sparse block-partitioned
atrices are discussed in Section 2.3.

.1. Chordal graphs

A graph ( , ) is defined by a set of vertices  = {1, 2,… , 𝑛} and
set of edges  ⊆  ×  . A graph  is undirected if (𝑣𝑖, 𝑣𝑗 ) ∈ 

mplies that (𝑣𝑗 , 𝑣𝑖) ∈  . A path in ( , ) is a sequence of edges that
onnect a sequence of distinct vertices. A graph is connected if there is
path between any two vertices, and complete if any two vertices are

onnected by an edge, i.e.,  = × . The subgraph induced by a subset
f vertices  ⊂  is the undirected graph with vertices  and edges
∩( ×). A subset of vertices  ⊆  is called a clique if the subgraph

nduced by  is complete. If  is not contained in any other clique, it
s a maximal clique. The number of vertices in  is denoted by ||.

A cycle of length 𝑘 ≥ 3 in a graph  is a set of pairwise distinct
ertices {𝑣1, 𝑣2,… , 𝑣𝑘} ⊂  such that (𝑣𝑘, 𝑣1) ∈  and (𝑣𝑖, 𝑣𝑖+1) ∈ 

for 𝑖 = 1,… , 𝑘 − 1. A chord in a cycle is an edge connecting two
nonconsecutive vertices.

Definition 2.1. An undirected graph ( , ) is chordal if every cycle
f length 𝑘 ≥ 4 has at least one chord.

Examples of chordal graphs are given in Fig. 2.1. Observe also that
any common types of graphs are chordal, including chains, acyclic
ndirected graphs (i.e., graphs with no cycles, such as trees), undirected
raphs with cycles of length no greater than three, and complete
raphs.

Chordal graphs have a number of properties that make them easy to
andle computationally. For example, a connected chordal graph has
t most 𝑛 − 1 maximal cliques, and they can be identified in linear
245
Fig. 2.1. Examples of chordal graphs: (a) A generic chordal graph. (b) A ‘‘banded’’
chordal graph; (c) A ‘‘block-arrow’’ graph. The names ‘‘banded’’ and ‘‘block-arrow’’ are
motivated by the fact that, as explained in Section 2.2.1, these graphs describe the
sparsity patterns of the matrices in Fig. 2.3.

Fig. 2.2. (a) A nonchordal graph: the cycle (1-2-3-4) is of length four but has no
hords. (b) Minimal chordal extension obtained by adding edge (2, 4). The maximal
liques are 1 = {1, 2, 4} and 2 = {2, 3, 4}. (c) Minimal chordal extension obtained by
dding edge (1, 3). The maximal cliques are 1 = {1, 2, 3} and 2 = {1, 3, 4}. (d) Trivial
hordal extension by completion.

ime with respect to the number of vertices and edges (Vandenberghe
Andersen, 2015) using, for instance, Algorithm 2 in Appendix C. In

ddition, any induced subgraph of a chordal graph is chordal because
ycles in the subgraph are also cycles in the original graph. This is a
seful fact in several induction proofs using chordality (Blair & Peyton,
993, Section 2). Finally, chordal graphs admit a so-called perfect
limination ordering of the vertices, which is central to the zero fill-
n property of Cholesky factorizations for sparse matrices. These two
roperties are reviewed in Appendix A.

Given the rich structure implied by chordality, it is very often
onvenient to extend a nonchordal graph ( , ) into a chordal graph
̂( , ̂) with larger edge set ̂ ⊃  , which is called a chordal extension of
. Usually, a graph admits many different chordal extensions, including
he trivial one with edge set ̂ =  × obtained by completion, and the
ne obtained by completing only the graph’s connected components.
inding a minimal chordal extension, meaning that the smallest pos-
ible number of additional edges has been added, is an NP-complete
roblem (Yannakakis, 1981). However, approximately minimal chordal
xtensions can often be constructed in practice using heuristic strategies
uch as the maximum cardinality search (Berry, Blair, Heggernes, &
eyton, 2004) and the symbolic Cholesky factorization with an approx-
mate minimum degree ordering (Fukuda et al., 2001; Vandenberghe &
ndersen, 2015).

Fig. 2.2 illustrates these concepts. The graph in Fig. 2.2(a) is not
hordal, but can be extended to the chordal graph in Fig. 2.2(b) by
dding edge (2, 4), edge (1, 3), or both. The first two extensions are

minimal, while the latter is the trivial extension by completion. The
minimal chordal extension obtained by adding edge (2, 4) has two
maximal cliques, 1 = {1, 2, 4} and 2 = {2, 3, 4}.

2.2. Sparse matrix decomposition

This subsection reviews two fundamental results on the decompo-
sition of sparse positive semidefinite matrices whose sparsity can be
described using chordal graphs.

2.2.1. Sparse symmetric matrices
Fix any positive integer 𝑛 and set  = {1,… , 𝑛}. Given an undirected

𝑛
graph ( , ), we say that a symmetric matrix 𝑋 ∈ S has a sparsity
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Fig. 2.3. Sparsity patterns of 8 × 8 matrices corresponding to the chordal graphs in
igs. 2.1(a)–2.1(c), respectively (throughout this paper, denotes a real number).

graph  (alternatively, sparsity pattern ) if 𝑋𝑖𝑗 = 𝑋𝑗𝑖 = 0 when
(𝑖, 𝑗) ∉  . We denote the space of sparse symmetric matrices by

S𝑛( , 0)∶={𝑋 ∈ S𝑛 ∣ 𝑋𝑖𝑗 = 𝑋𝑗𝑖 = 0, if (𝑖, 𝑗) ∉ }.

For example, the graph1 in Fig. 2.2(b) describes the sparsity pattern of
the matrix

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑋11 𝑋12 0 𝑋14

𝑋21 𝑋22 𝑋23 𝑋24

0 𝑋32 𝑋33 𝑋34

𝑋41 𝑋42 𝑋43 𝑋44

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ S4, (2.1)

where each entry 𝑋𝑖𝑗 may be nonzero or zero. Similarly, the symbolic
matrices in Fig. 2.3 have sparsity patterns described by the graphs in
Fig. 2.1.

Given 𝑋 ∈ S𝑛( , 0), the diagonal elements 𝑋𝑖𝑖 and the off-diagonal
elements 𝑋𝑖𝑗 with (𝑖, 𝑗) ∈  may be nonzero or zero. Thus, if 𝑋 ∈
S𝑛( , 0) and ̂ ⊃  is an extension of the edge set, then we also have
𝑋 ∈ S𝑛(̂ , 0). In this paper, we are especially interested in chordal
extensions of sparsity pattern. For simplicity, we will say that a matrix
𝑋 has a chordal sparsity pattern if its corresponding sparsity graph
( , ) is chordal. Of course, this can always be achieved via chordal
extension.

In what follows, it will be convenient to refer to particular principal
submatrices of a sparse matrix, indexed by the maximal cliques of
its sparsity graph. Given a clique 𝑘 of ( , ), we define a matrix
𝐸𝑘 ∈ R|𝑘|×𝑛 with entries

(𝐸𝑘 )𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1, if 𝑘(𝑖) = 𝑗,

0, otherwise,
(2.2)

where 𝑘(𝑖) is the 𝑖th vertex.2 Given 𝑋 ∈ S𝑛, the definition of 𝐸𝑘
implies that the operation 𝐸𝑘𝑋𝐸𝖳

𝑘
∈ S|𝑘| extracts the principal

submatrix of 𝑋 indexed by the clique 𝑘. Conversely, the operation
𝐸𝖳
𝑘
𝑌 𝐸𝑘 ‘‘inflates’’ a |𝑘|× |𝑘| matrix 𝑌 into a sparse 𝑛× 𝑛 symmetric

matrix that has 𝑌 as its principal submatrix indexed by 𝑘, and is zero
otherwise. For example, the chordal graph in Fig. 2.2(b) has a maximal
clique 1 = {1, 2, 4}, and the corresponding matrix 𝐸1 is

𝐸1 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

.

1 Throughout, we assume that each vertex has a self-loop, unless otherwise
oted. We omit the self-loops when plotting a graph.

2 The elements of 𝑘 can be sorted in any convenient order. We implicitly
se the natural ordering in this work, but using a different one simply amounts
o a permutation of the rows of 𝐸 .
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𝑘
For the sparse matrix 𝑋 ∈ S4 in (2.1) and any matrix 𝑌 ∈ S3, we have

𝐸1𝑋𝐸𝖳
1

=

⎡

⎢

⎢

⎢

⎣

𝑋11 𝑋12 𝑋14

𝑋21 𝑋22 𝑋24

𝑋41 𝑋42 𝑋44

⎤

⎥

⎥

⎥

⎦

,

𝐸𝖳
1
𝑌 𝐸1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑌11 𝑌12 0 𝑌13
𝑌21 𝑌22 0 𝑌23
0 0 0 0
𝑌31 𝑌32 0 𝑌33

⎤

⎥

⎥

⎥

⎥

⎦

.

.2.2. Cone of sparse positive semidefinite matrices
Denote the set of positive semidefinite matrices with sparsity pattern

by
𝑛
+( , 0) ∶= S𝑛( , 0) ∩ S𝑛+.

his set is a convex cone because it is the intersection of a subspace and
convex cone. If ( , ) is a chordal graph, S𝑛+( , 0) can be represented
sing smaller but coupled convex cones, as stated in the following result
Agler et al. 1988, Theorem 2.3; Griewank and Toint 1984, Theorem
; Kakimura 2010, Theorem 1).

heorem 2.1. Let ( , ) be a chordal graph with maximal cliques
1,… ,𝑡. Then, 𝑍 ∈ S𝑛+( , 0) if and only if there exist matrices 𝑍𝑘 ∈ S|𝑘|+
or 𝑘 = 1, … , 𝑡 such that

=
𝑡

∑

𝑘=1
𝐸𝖳
𝑘
𝑍𝑘𝐸𝑘 . (2.3)

The ‘‘if’’ part of Theorem 2.1 is immediate, since a sum of positive
emidefinite matrices is positive semidefinite. The ‘‘only if’’ part, in-
tead, can be proven using the zero fill-in property of sparse Cholesky
actorization for 𝑍 ∈ S𝑛+( , 0) (Vandenberghe & Andersen, 2015, Sec-
ion 9.2); see Appendices A and B for details. A similar elementary
roof given by Kakimura (2010), based on simple linear algebra and
erfect elimination orderings for chordal graphs, reveals that one can
mpose a rank constraint in the decomposition (2.3): there exist 𝑍𝑘 with
ank(𝑍) =

∑𝑡
𝑘=1 rank(𝑍𝑘) such that (2.3) holds.

emark 2.1. The chordality assumption in Theorem 2.1 is necessary.
or every nonchordal pattern  , while particular matrices in S𝑛+( , 0)
dmit the decomposition (2.3), there always exist matrices in S𝑛+( , 0)
hat do not; see Vandenberghe and Andersen (2015, p. 342) for an ex-
licit example. In addition, the decomposition (2.3) generally requires
ll maximal cliques 1,… ,𝑡, even when a subset of maximal cliques
as already covered the sparsity pattern  (that is  =

⋃

𝑘∈ 𝑘 × 𝑘
ith  ⊂ {1,… , 𝑡}). An example of this is given in Appendix C. ■

xample 2.1. Consider the positive semidefinite matrix

=

⎡

⎢

⎢

⎢

⎣

2 1 0

1 1 1

0 1 2

⎤

⎥

⎥

⎥

⎦

, (2.4)

hose sparsity graph is a chordal chain graph with three vertices, edge
et  = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)}, and maximal cliques 1 = {1, 2}
nd 2 = {2, 3}. Theorem 2.1 guarantees that the decomposition (2.3)
xists. Indeed, we have

1 =

[

1 0 0

0 1 0

]

, 𝐸2 =

[

0 1 0

0 0 1

]

,

nd

= 𝐸𝖳
1

[

2 1

1 0.5

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑍1⪰0

𝐸1 + 𝐸𝖳
2

[

0.5 1

1 2

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑍2⪰0

𝐸2 .

his decomposition satisfies the rank constraint mentioned above since
ank(𝑍) = 2 and rank(𝑍 ) = rank(𝑍 ) = 1. ■
1 2
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c
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i

Fig. 2.4. Joint feasible set of the decomposed LMIs in (2.6): (a) projection onto the
(𝑥1 , 𝑥2) plane; (b) projection onto the (𝑥1 , 𝑑) plane; (c) projection onto the (𝑥2 , 𝑑) plane.
Panel (a) also shows the boundary (thick black line) of the feasible set of the original
3 × 3 LMI (2.5).

Example 2.2. Given a variable 𝑥 ∈ R2, consider the 3 × 3 linear
matrix inequality (LMI)

𝑍(𝑥) ∶=

⎡

⎢

⎢

⎢

⎣

2𝑥1 𝑥1 + 𝑥2 0

𝑥1 + 𝑥2 5 − 𝑥1 − 𝑥2 𝑥1
0 𝑥1 𝑥2 + 1

⎤

⎥

⎥

⎥

⎦

⪰ 0. (2.5)

This LMI has the same chordal sparsity pattern as the matrix in (2.4).
Consequently, Theorem 2.1 implies that (2.5) holds if and only if there
exist matrices

𝑍1 ∶=

[

𝑎 𝑏

𝑏 𝑐

]

⪰ 0 and 𝑍2 ∶=

[

𝑑 𝑒

𝑒 𝑓

]

⪰ 0

such that
⎡

⎢

⎢

⎢

⎣

𝑎 𝑏 0

𝑏 𝑐 + 𝑑 𝑒

0 𝑒 𝑓

⎤

⎥

⎥

⎥

⎦

= 𝑍(𝑥).

After eliminating the variables 𝑎, 𝑏, 𝑐, 𝑒 and 𝑓 using this matching
condition, we conclude that (2.5) holds if and only if there exists 𝑑
such that
[

2𝑥1 𝑥1 + 𝑥2
𝑥1 + 𝑥2 5 − 𝑥1 − 𝑥2 − 𝑑

]

⪰ 0,

[

𝑑 𝑥1
𝑥1 𝑥2 + 1

]

⪰ 0.

(2.6)

Fig. 2.4 shows two-dimensional projections of the three-dimensional
feasible set of the two LMIs in (2.6). As expected, the projection on
the (𝑥1, 𝑥2) plane coincides with the feasible set of LMI (2.5), which is
contained inside the thick black line in Fig. 2.4(a). This confirms that
the LMIs in (2.6) are equivalent to the LMI (2.5). Therefore, we have
decomposed a 3 × 3 LMI into two coupled LMIs of size 2 × 2. ■

2.2.3. Cone of positive-semidefinite-completable matrices
A concept related to the matrix decomposition above is that of

positive semidefinite matrix completion. Given a matrix 𝑋 ∈ S𝑛, let

PS𝑛( ,0)(𝑋) =

⎧

⎪

⎨

⎪

⎩

𝑋𝑖𝑗 if (𝑖, 𝑗) ∈  ,

0 otherwise
(2.7)

be its projection onto the space of sparse matrices S𝑛( , 0) with respect
to the Frobenius matrix norm. We define the cone

S𝑛+( , ?) ∶= PS𝑛( ,0)(S𝑛+).

Using (2.7), it is not hard to see that a sparse matrix 𝑋 is in S𝑛+( , ?)
if and only if it has a positive semidefinite completion, meaning that
some (or all) of the zero entries 𝑋𝑖𝑗 with (𝑖, 𝑗) ∉  can be replaced
with nonzeros to obtain a positive semidefinite matrix 𝑋. We call 𝑋 the
completion of 𝑋 and refer to S𝑛+( , ?) as the cone of positive-semidefinite-
ompletable matrices.
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Remark 2.2 (Nonuniqueness of the Positive Semidefinite Completion). The
positive semidefinite completion of a matrix 𝑋 ∈ S𝑛+( , ?) with sparsity
pattern  is generally not unique. For a chordal sparsity pattern  ,
two widely used and efficient strategies to compute a completion 𝑋
are the maximum determinant completion (Vandenberghe & Andersen,
2015, Chapter 10.2), which maximizes det(𝑋), and the minimum rank
ompletion (see Dancis 1992; Jiang 2017; Sun 2015, Chapter 3.3),
hich minimizes rank(𝑋). In particular, there exists a positive semidef-

nite completion 𝑋 whose rank agrees with the maximum rank of the
principal submatrices 𝐸𝑖𝑋𝐸𝖳

𝑖
(Dancis, 1992, Theorem 1.5), i.e.,

rank(𝑋) = max
𝑘=1,2,…,𝑡

rank(𝐸𝑘𝑋𝐸𝖳
𝑘
). (2.8)

■

For any undirected graph ( , ), the cones S𝑛+( , ?) and S𝑛+( , 0) are
dual to each other with respect to the trace inner product ⟨𝑋,𝑍⟩ =
trace(𝑋𝑍) in the space S𝑛( , 0) (Vandenberghe & Andersen, 2015,
Chapter 10). To see this, observe that

(S𝑛+( , ?))
∗ = {𝑍 ∈ S𝑛( , 0) ∣ ⟨𝑋,𝑍⟩ ≥ 0 ∀𝑋 ∈ S𝑛+( , ?)}

= {𝑍 ∈ S𝑛( , 0) ∣
⟨

PS𝑛( ,0)(𝑋), 𝑍
⟩

≥ 0 ∀𝑋 ⪰ 0}

= {𝑍 ∈ S𝑛( , 0) ∣ ⟨𝑋,𝑍⟩ ≥ 0 ∀𝑋 ⪰ 0}

= {𝑍 ∈ S𝑛( , 0) ∣ 𝑍 ⪰ 0}

= S𝑛+( , 0).

For a chordal matrix sparsity pattern, Theorem 2.1 on the decomposi-
tion of the cone S𝑛+( , 0) can be dualized to obtain the following char-
acterization of S𝑛+( , ?), first proved by Grone et al. (1984, Theorem 7).

Theorem 2.2. Let ( , ) be a chordal graph with maximal cliques
1,… ,𝑡. Then, 𝑋 ∈ S𝑛+( , ?) if and only if

𝐸𝑘𝑋𝐸𝖳
𝑘

∈ S|𝑘|+ ∀𝑘 = 1, … , 𝑡. (2.9)

The ‘‘only if’’ part of Theorem 2.2 is immediate, since any principal
submatrix of a positive semidefinite matrix is positive semidefinite. The
‘‘if’’ part, instead, relies on the properties of chordal graphs and, as
mentioned above, can be proven by combining the duality between
S𝑛+( , 0) and S𝑛+( , ?) with Theorem 2.1 (Vandenberghe & Andersen,
2015, p. 357). Precisely,

𝑋 ∈ S𝑛+( , ?) ⇔ ⟨𝑋,𝑍⟩ ≥ 0 ∀𝑍 ∈ S𝑛+( , 0),

⇔

⟨

𝑋,
𝑡

∑

𝑘=1
𝐸𝖳
𝑘
𝑍𝑘𝐸𝑘

⟩

≥ 0 ∀𝑍𝑘 ∈ S|𝑘|+ ,

⇔
𝑡

∑

𝑘=1

⟨

𝐸𝑘𝑋𝐸𝖳
𝑘
, 𝑍𝑘

⟩

≥ 0 ∀𝑍𝑘 ∈ S|𝑘|+ ,

⇔ 𝐸𝑘𝑋𝐸𝖳
𝑘

∈ S|𝑘|+ ∀𝑘 = 1,… , 𝑡.

The first equivalence expresses the duality between S𝑛+( , 0) and S𝑛+( , ?),
the second one follows from Theorem 2.1, and the third one follows
from the cyclic property of the trace operator: trace(𝑀𝑁) = trace(𝑁𝑀)
for any matrices 𝑀,𝑁 of compatible dimensions. Fig. 2.5 illustrates
how the duality between S𝑛+( , 0) and S𝑛+( , ?) is mirrored in the duality
between Theorem 2.1 and Theorem 2.2 for chordal graphs.

Example 2.3. Consider the symmetric matrix

𝑋 =

⎡

⎢

⎢

⎢

⎣

2 1 0

1 0.5 1

0 1 2

⎤

⎥

⎥

⎥

⎦

,

whose sparsity pattern is the (by now usual) 3-node chordal chain
graph with maximal cliques 1 = {1, 2} and 2 = {2, 3}. It is easy
to check that, while 𝑋 is not positive semidefinite, the principal sub-
matrices indexed by the cliques  and  are. Then, Theorem 2.2
1 2
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Fig. 2.5. Summary of duality between S𝑛+( , 0) and S𝑛+( , ?) and duality between Theorems 2.1 and 2.2 for a chordal graph ( , ) with maximal cliques 1 ,… ,𝑡.
guarantees that 𝑋 ∈ S𝑛+( , ?), meaning that the zero entries may be
replaced by nonzeros to obtain a positive semidefinite matrix 𝑋. One
possible positive semidefinite completion is

𝑋 =

⎡

⎢

⎢

⎢

⎣

2 1 2

1 0.5 1

2 1 2

⎤

⎥

⎥

⎥

⎦

.

In fact, this is the minimum-rank completion whose rank, rank(𝑋) = 1,
coincides with the maximum rank of individual principal submatrices
of 𝑋 (cf. Remark 2.2). ■

Example 2.4. Consider the problem of finding a variable 𝑥 ∈ R3 such
that the matrix

𝑋(𝑥)∶=

⎡

⎢

⎢

⎢

⎣

1 − 𝑥1 𝑥1 + 𝑥2 0

𝑥1 + 𝑥2 𝑥2 𝑥2 + 𝑥3
0 𝑥2 + 𝑥3 2𝑥3 + 1

⎤

⎥

⎥

⎥

⎦

(2.10)

admits a positive semidefinite completion. This is equivalent to finding
𝑥 ∈ R3 as well as a corresponding scalar 𝑦 ∈ R such that

⎡

⎢

⎢

⎢

⎣

1 − 𝑥1 𝑥1 + 𝑥2 𝑦

𝑥1 + 𝑥2 𝑥2 𝑥2 + 𝑥3
𝑦 𝑥2 + 𝑥3 2𝑥3 + 1

⎤

⎥

⎥

⎥

⎦

⪰ 0. (2.11)

Since the sparsity graph of 𝑋(𝑥) is chordal, Theorem 2.2 implies that
(2.10) is equivalent to the two LMIs
[

1 − 𝑥1 𝑥1 + 𝑥2
𝑥1 + 𝑥2 𝑥2

]

⪰0,

[

𝑥2 𝑥2 + 𝑥3
𝑥2 + 𝑥3 2𝑥3 + 1

]

⪰0. (2.12)

Feasible vectors 𝑥 for the first of these two LMIs can be found by
imposing 1 − 𝑥1 + 𝑥2 ≥ 0 and (1 − 𝑥1)𝑥2 − (𝑥1 + 𝑥2)2 ≥ 0, while feasible
𝑥 for the second LMI are found by requiring 𝑥2 + 2𝑥3 + 1 ≥ 0 and
𝑥2(2𝑥3 + 1) − (𝑥2 + 𝑥3)2 ≥ 0. The feasible sets obtained in each case are
illustrated by the red and green regions in Fig. 2.6, respectively. The
blue region in the figure, instead, represents the three-dimensional set
of feasible 𝑥 for (2.11). As expected from Theorem 2.2, this is exactly
the intersection of the feasible regions for the two LMIs in (2.12).
Similar to Example 2.2, one can therefore replace the original 3 × 3
completion constraint—which is equivalent to LMI (2.11)—with the
two 2 × 2 LMIs in (2.12) without any loss of generality. ■

2.3. Block-partitioned matrices

Theorems 2.1 and 2.2 can be extended to block-partitioned matrices
characterized by block-sparsity. Such matrices arise, for example, when
modeling network systems (cf. Section 6.1), where each block in the
partition corresponds to an individual subsystem and sparsity in the
network connectivity translates into block-sparsity. Block-partitioned
matrices are also useful in extending factor-width decomposition that
248

will be discussed in Section 5.
Fig. 2.6. Region of R3 where the matrix 𝑋(𝑥) in (2.10) admits a positive semidefinite
completion (blue shading). This region coincides with the intersection of the region of
R3 where the first LMI in (2.12) is feasible (red shading; the region extends to infinity
in the 𝑥3 direction) and the cylindrical region of R3 where the second LMI in (2.12) is
feasible (green shading; the region extends to infinity in the 𝑥1 direction). Thick red
and green lines highlight the cross section of these two regions.

2.3.1. Sparse block matrices
Given a positive integer 𝑛, any finite set of positive integers 𝛼 =

{𝛼1, 𝛼2,… , 𝛼𝑝} is called a partition of 𝑛 if ∑𝑝
𝑖=1 𝛼𝑖 = 𝑛. The set of all

possible partitions of 𝑛 can be equipped with the following (partial)
order relation.

Definition 2.2. Let 𝛼 = {𝛼1,… , 𝛼𝑝} and 𝛽 = {𝛽1,… , 𝛽𝑞} be two
partitions of an integer 𝑛 with 𝑝 < 𝑞. We say that 𝛽 is finer than 𝛼
(and 𝛼 is coarser than 𝛽), denoted by 𝛽 ⊏ 𝛼, if there exist integers
{𝑚1, 𝑚2,… , 𝑚𝑝+1} with 𝑚1 = 1, 𝑚𝑝+1 = 𝑞+1 and 𝑚𝑖 < 𝑚𝑖+1 for 𝑖 = 1,… , 𝑝
such that 𝛼𝑖 =

∑𝑚𝑖+1−1
𝑗=𝑚𝑖

𝛽𝑗 for all 𝑖 = 1,… , 𝑝.

Essentially, a finer partition 𝛽 breaks some entries of 𝛼 into smaller
ones (conversely, a coarser partition 𝛼 is obtained by summing some
consecutive entries of 𝛽). For example, the partitions 𝛼 = {4, 2}, 𝛽 =
{2, 2, 2} and 𝛾 = {1, 1, 1, 1, 1, 1} of 𝑛 = 6 satisfy 𝛾 ⊏ 𝛽 ⊏ 𝛼.

Given any integer 𝑛 and any partition 𝛼 = {𝛼1,… , 𝛼𝑝} of 𝑛, a matrix
𝑀 ∈ R𝑛×𝑛 can be written in the block form

𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑀11 𝑀12 … 𝑀1𝑝

𝑀12 𝑀22 … 𝑀2𝑝

⋮ ⋮ ⋱ ⋮

𝑀𝑝1 𝑀𝑝2 … 𝑀𝑝𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

with 𝑀𝑖𝑗 ∈ R𝛼𝑖×𝛼𝑗 for all 𝑖, 𝑗 = 1,… , 𝑝. For the finest partition 𝛼 =
{1,… , 1} = 𝟏𝑛, the block 𝑀𝑖𝑗 reduces to the entry (𝑖, 𝑗) of 𝑀 . As shown
below and in Section 5.3, however, the freedom to consider a nontrivial
partition offers considerable flexibility when devising decomposition
strategies for a large matrix 𝑀 . In particular, by refining or coarsening
a partition one can in principle split a matrix into blocks of optimal size
for the computational resources at one’s disposal.

The block sparsity pattern of an 𝑛 × 𝑛 matrix 𝑀 whose blocks are
defined by a partition 𝛼 = {𝛼1,… , 𝛼𝑝} of 𝑛 can be described using
a graph ( , ) with  = {1,… , 𝑝} and edge set such that 𝑀𝑖𝑗 = 0
if (𝑖, 𝑗) ∉  , where 𝑀𝑖𝑗 is the (𝑖, 𝑗)-th block in 𝑀 and 0 denotes
a zero block of appropriate size. We call 𝛼 a chordal partition if the
corresponding block sparsity graph ( , ) is chordal. The linear space
of sparse symmetric block matrices with a prescribed block sparsity
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Fig. 2.7. (a) Nonchordal sparsity graph of the 9 × 9 matrix 𝑀 in Remark 2.3. Blue
nodes and edges form a cycle of length 6 with no chord. (b) Chordal block sparsity
graph of the same matrix with partition 𝛼1 = {2, 1, 1, 2, 2, 1}. (c) Chordal block sparsity
graph of the same matrix with partition 𝛼2 = {3, 3, 3}.

pattern  is then given by

S𝑛𝛼( , 0) ∶= {𝑀 ∈ S𝑛|𝑀𝑖𝑗 =0 if (𝑖, 𝑗)∉}.

The block-sparse positive semidefinite cone and the block-sparse
positive-semidefinite-completable cone are simply

S𝑛𝛼,+( , 0) ∶= S𝑛𝛼( , 0) ∩ S𝑛+, (2.13a)

S𝑛𝛼,+( , ?) ∶= PS𝑛𝛼 ( ,0)(S
𝑛
+). (2.13b)

Remark 2.3 (Chordal Partitions and Chordal Extension). If 𝑀 is a sparse
matrix with nonchordal sparsity pattern, it is often possible to find one
or more chordal partitions 𝛼. An example is the 9 × 9 symbolic matrix

𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where the partitions 𝛼1 = {2, 1, 1, 2, 2, 1} and 𝛼2 = {3, 3, 3} are both
chordal (the corresponding block sparsity graphs are illustrated in
Fig. 2.7). For a given chordal partition, in this example but also in
general, completing all blocks of 𝑀 that are not identically zero results
in a chordal extension of 𝑀 . For instance, the chordal extension of
the 9 × 9 matrix above resulting from the partitions 𝛼1 and 𝛼2 are,
respectively,

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where entries colored in red have been added by the block-completion
process. Finding a chordal partition for a matrix, therefore, gives a way
of performing a particular chordal extension of its sparsity pattern. The
opposite, however, is not true: not all chordal extensions are obtained
via a block-completion operation. One example for the 9 × 9 matrix
above is the chordal extension
⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

which is obtained by a symbolic Cholesky factorization with an approx-
imate minimum degree ordering. ■

2.3.2. Chordal decomposition of sparse block matrices
As anticipated above, decomposition results similar to Theorems 2.1

and 2.2 hold for S𝑛𝛼,+( , ?) and S𝑛𝛼,+( , 0) when 𝛼 is a chordal partition
of 𝑛. Given a clique  of the chordal block sparsity graph ( , )
249

𝑘

subordinate to the chordal partition 𝛼, we define the block matrix
𝐸𝑘 ,𝛼 ∈ R𝑠(𝛼,𝑘)×𝑛, where 𝑠(𝛼, 𝑘) =

∑

𝑖∈𝑘 𝛼𝑖, as

(𝐸𝑘 ,𝛼)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝐼𝛼𝑖 , if 𝑘(𝑖) = 𝑗,

0, otherwise.
(2.14)

Here, 𝐼𝛼𝑖 is an identity matrix of dimension 𝛼𝑖. When 𝛼 = {1,… , 1} is
the trivial partition, 𝐸𝑘 ,𝛼 reduces to the matrix 𝐸𝑘 in (2.2). Similar
to the case studied in Section 2.2, the operation 𝐸𝑘 ,𝛼𝑋𝐸𝖳

𝑘 ,𝛼
∈ S𝑠(𝛼,𝑘)

extracts the principal block-submatrix of 𝑋 whose blocks are indexed
by 𝑘, while 𝐸𝖳

𝑘 ,𝛼
𝑌 𝐸𝑘 ,𝛼 ‘‘inflates’’ an 𝑠(𝛼, 𝑘)×𝑠(𝛼, 𝑘) matrix into a sparse

𝑛 × 𝑛 block matrix.
We are now ready to extend Theorems 2.1 and 2.2 to the case of

sparse block matrices.

Theorem 2.3 (Chordal Block-decomposition). Let ({1,… , 𝑝}, ) be a
chordal graph with maximal cliques 1,… ,𝑡, and let 𝛼 = {𝛼1,… , 𝛼𝑝} be
a partition of 𝑛. Then, 𝑍 ∈ S𝑛𝛼,+( , 0) if and only if there exist matrices
𝑍𝑘 ∈ S𝑠(𝛼,𝑘)+ for 𝑘 = 1, … , 𝑡 such that

𝑍 =
𝑡

∑

𝑘=1
𝐸𝖳
𝑘 ,𝛼

𝑍𝑘𝐸𝑘 ,𝛼 . (2.15)

Theorem 2.4 (Chordal Block-completion). Let ({1,… , 𝑝}, ) be a chordal
graph with maximal cliques 1,… ,𝑡, and let 𝛼 = {𝛼1,… , 𝛼𝑝} be a partition
of 𝑛. Then, 𝑋 ∈ S𝑛𝛼,+( , ?) if and only if

𝐸𝑘 ,𝛼𝑋𝐸𝖳
𝑘 ,𝛼

∈ S𝑠(𝛼,𝑘)+ ∀𝑘 = 1, … , 𝑡. (2.16)

The proofs of Theorems 2.3 and 2.4 rely on the fact that the
block sparsity graph of 𝑋 ∈ S𝑛𝛼( , 0) induces a chordal extension of
the standard sparsity graph of 𝑋 (cf. Remark 2.3) and, in fact, it
is a hypergraph of the latter. The normal chordal decomposition and
completion from Theorems 2.1 and 2.2 can then be applied to the
chordal extension of 𝑋, and the hypergraph structure implies the two
results above. Interested readers are referred to Zheng (2019, Chapter
2.4) for details.

Example 2.5. Consider the 9 × 9 matrices

𝑋 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 1 0 1 1 0 0 0 0
1 2 1 0 1 1 0 0 0
0 1 2 0 0 1 0 0 0
1 0 0 2 1 0 1 1 0
1 1 0 1 2 1 0 1 1
0 1 1 0 1 2 0 0 1
0 0 0 1 0 0 2 1 0
0 0 0 1 1 0 1 2 1
0 0 0 0 1 1 0 1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

𝑌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 1 1 0 0 0 0
1 1 1 0 1 1 0 0 0
0 1 1 0 0 1 0 0 0
1 0 0 1 1 0 1 1 0
1 1 0 1 1 1 0 1 1
0 1 1 0 1 1 0 0 1
0 0 0 1 0 0 1 1 0
0 0 0 1 1 0 1 1 1
0 0 0 0 1 1 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

which have the same nonchordal sparsity pattern as the symbolic
matrix considered in Remark 2.3. Readers can easily check that 𝑋 is
positive semidefinite, while 𝑌 admits a positive semidefinite comple-
tion (e.g., replace all zero entries with ones to obtain 𝑌 = 𝟏𝟏𝖳 ⪰ 0).
The partitions 𝛼1 = {2, 1, 1, 2, 2, 1} and 𝛼2 = {3, 3, 3} are both chordal,
so while Theorem 2.1 cannot be directly applied to decompose 𝑋,
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Theorem 2.3 guarantees the existence of decompositions either in the
symbolic form

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
⪰0

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
⪰0

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
⪰0

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
⪰0

(corresponding to the partition 𝛼1) or in the symbolic form

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(corresponding to the partition 𝛼2). These coincide with the classical
chordal decompositions applied to the chordal extensions of 𝑋 from
the chordal partitions 𝛼1 and 𝛼2. Thus, one can choose whether to
decompose 𝑋 as a sum of four matrices with 5 × 5 nonzero principal
submatrices, or as a sum of two matrices with 6 × 6 nonzero principal
submatrices. Similarly, one can apply Theorem 2.4 to verify that the
matrix 𝑌 admits a positive semidefinite completion by checking the
positive semidefiniteness of either four 5 × 5 principal submatrices, or
two 6 × 6 ones. ■

3. Sparse semidefinite optimization

The matrix decomposition and completion results in Theorems 2.1
and 2.2 can be used to reduce the complexity of algorithms for sparse
semidefinite optimization. A semidefinite program (SDP) in standard
primal form takes the form

min
𝑋

⟨𝐶,𝑋⟩

subject to ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, 𝑖 = 1,… , 𝑚,

𝑋 ∈ S𝑛+,

(3.1)

where 𝐶,𝐴1,… , 𝐴𝑚 ∈ S𝑛, 𝑏 ∈ R𝑚 are the problem data. The dual
problem to (3.1) is also an SDP,

max
𝑦,𝑍

𝑏𝖳𝑦

subject to 𝑍 +
𝑚
∑

𝑖=1
𝑦𝑖𝐴𝑖 = 𝐶,

𝑍 ∈ S𝑛+.

(3.2)

In this section, we describe decomposition techniques for SDPs
that exploit the joint sparsity pattern of the coefficient matrices 𝐶,
𝐴1,… , 𝐴𝑚, called the aggregate sparsity pattern. For simplicity, we as-
sume that the matrices 𝐴1,… , 𝐴𝑚 are linearly independent and that
there exist 𝑋 ≻ 0, 𝑦 ∈ R and 𝑍 ≻ 0 satisfying the equality con-
straints in (3.1) and (3.2). This ensures that the primal and dual
optimal values are finite, equal, and attained. SDPs that are infeasible
or have unbounded objective can be tackled using homogeneous self-
dual embeddings (O’Donoghue, Chu, Parikh, & Boyd, 2016; Permenter,
Friberg, & Andersen, 2017; Ye, 2011; Ye, Todd, & Mizuno, 1994)
or by analyzing the divergence of the iterates produced by solution
algorithms (Banjac, Goulart, Stellato, & Boyd, 2019; Liu, Ryu, & Yin,
2017). Sparsity can be exploited within these frameworks, too, and
we refer the interested reader to Zheng, Fantuzzi, Papachristodoulou,
Goulart, and Wynn (2020, Section 5) and Garstka, Cannon, and Goulart
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(2021) for details.
.1. Aggregate sparsity

The pair of SDPs (3.1)-(3.2) is said to have aggregate sparsity graph
( , ) if

, 𝐴1,… , 𝐴𝑚 ∈ S𝑛( , 0). (3.3)

f course, if  ′ is an extension of  , then ( ,  ′) is also a suitable
ggregate sparsity graph. The minimal one, therefore, is simply the
nion of the individual sparsity graphs of 𝐶, 𝐴1, … , 𝐴𝑚. Throughout
his section, however, we consider a chordal extension of the minimal
ggregate sparsity graph. We therefore assume from now on that the
ggregate sparsity pattern  is chordal and has 𝑡 maximal cliques
1, … , 𝑡.

It must be noted that an SDP may have a complete aggregate
parsity graph even if all coefficient matrices 𝐶 and 𝐴1,… , 𝐴𝑚 are very
parse; Zheng, Fantuzzi, and Papachristodoulou (2018c) give explicit
xamples. The decomposition methods described below cannot be ap-
lied to such problems. However, there are broad classes of SDPs for
hich very sparse aggregate sparsity graphs can be expected, or even
uaranteed.

One such family consists of SDPs arising from relaxations of graph
ptimization problems and control problems over networks, which typ-
cally inherit the structure of the underlying network or graph. Notable
xamples include SDP relaxations of combinatorial graph optimization
roblems, such as Max-Cut (Goemans & Williamson, 1995) and graph
quipartition (Karisch & Rendl, 1998), eigenvalue optimization prob-
ems over graphs (Boyd, Diaconis, & Xiao, 2004), analysis of linear
etworked systems (Deroo, Meinel, Ulbrich, & Hirche, 2015; Mason
Papachristodoulou, 2014; Zheng, Kamgarpour et al., 2018; Zheng,
ason et al., 2018), sensor network localization (Kim et al., 2009;
ie, 2009; So & Ye, 2007), neural network verification in machine

earning (Batten et al., 2021; Raghunathan, Steinhardt, & Liang, 2018),
nd the optimal power flow problem in electricity networks (Andersen,
ansson et al., 2014; Bai, Wei, Fujisawa, & Wang, 2008; Jabr, 2011).
e briefly discuss some of these applications in Section 6.
Another source of SDPs with aggregate sparsity is the reformulation

f intractable constraints (either convex or nonconvex) as tractable
MIs using auxiliary variables (Ben-Tal & Nemirovski, 2001; Vanden-
erghe & Andersen, 2015). For example, consider the uncountable
amily of ‘‘uncertain’’ convex quadratic constraints

𝖳𝐴𝖳𝐴𝑥 − 2𝑏𝖳𝑥 − 𝑐 ≤ 0

n a variable 𝑥 ∈ R𝑞 , to be imposed for all matrices 𝐴 ∈ R𝑝×𝑞 , vectors
∈ R𝑞 and scalars 𝑐 ∈ R in the form

= 𝐴0 +
𝑟
∑

𝑖=0
𝑢𝑖𝐴𝑖, 𝑏 = 𝑏0 +

𝑟
∑

𝑖=0
𝑢𝑖𝑏𝑖, 𝑐 = 𝑐0 +

𝑟
∑

𝑖=1
𝑢𝑖𝑐𝑖

ith 𝑢𝖳𝑢 ≤ 1. Here, 𝐴0, 𝑏0 and 𝑐0 are nominal reference values, and
𝐴𝑖, 𝑏𝑖, 𝑐𝑖} are fixed perturbations. Andersen, Vandenberghe and Dahl
2010) showed that this family of constraints is equivalent to a sparse
MI in the form
⎡

⎢

⎢

⎢

⎣

𝑓 (𝑥) − 𝑡 (𝐴0𝑥)𝖳 ℎ(𝑥)𝖳

𝐴0𝑥 𝐼𝑝 𝐺(𝑥)𝖳

ℎ(𝑥) 𝐺(𝑥) 𝑡𝐼𝑟

⎤

⎥

⎥

⎥

⎦

⪰ 0, (3.4)

here 𝑡 ∈ R while 𝐺 ∶ R𝑞 → R𝑟×𝑝, ℎ ∶ R𝑞 → R𝑟 and 𝑓 ∶ R𝑞 → R
re known linear functions whose exact form is not important here.
hen 𝑟 ≫ 𝑝, this matrix has a ‘‘block-arrow’’ aggregate sparsity pattern

nalogous to that shown in Fig. 2.3(c) (that figure is recovered exactly
hen 𝑝 = 1, 𝑟 = 6, and 𝑞 is arbitrary). This particular type of sparsity
attern is commonly encountered in robust optimization (Andersen,
andenberghe et al., 2010; Ben-Tal & Nemirovski, 1998; Goldfarb &

yengar, 2003).



Annual Reviews in Control 52 (2021) 243–279Y. Zheng et al.

r
v
f
A
g
6

Remark 3.1 (Promoting Aggregate Sparsity). Sometimes, it is possible to
eformulate SDPs with no aggregate sparsity as equivalent SDPs with
ery sparse aggregate sparsity graphs through a carefully chosen trans-
ormation of variables (Fukuda et al., 2001, Section 6; Vandenberghe &
ndersen, 2015, Chapter 14.1). For instance, the SDP relaxation of the
raph equipartition problem studied by Fukuda et al. (2001, Section
) has sparse data matrices 𝐶 and 𝐴1,… , 𝐴𝑚−1, but the 𝑚th constraint

⟨𝟏𝟏𝖳, 𝑋⟩ = 0 destroys the problem’s aggregate sparsity because the
matrix 𝐴𝑚 = 𝟏𝟏𝖳 is dense. However, any matrix 𝑋 ∈ S𝑛+ satisfying
⟨𝟏𝟏𝖳, 𝑋⟩ = 0 can be expressed as 𝑋 = 𝑉 𝑌 𝑉 𝖳 for some matrix 𝑌 ∈ S𝑛−1+ ,
where

𝑉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 … 0 0

−1 1 0 … 0 0

0 −1 1 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 … −1 1

0 0 0 … 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑛×(𝑛−1).

Thus, the original SDP can be reformulated as

min
𝑌

⟨𝐶 ′, 𝑌 ⟩

subject to ⟨𝐴′
𝑖 , 𝑌 ⟩ = 𝑏𝑖, 𝑖 = 1,… , 𝑚 − 1,

𝑌 ∈ S𝑛−1+ ,

where 𝐶 ′ ∶= 𝑉 𝖳𝐶𝑉 and 𝐴′
𝑖 ∶= 𝑉 𝖳𝐴𝑖𝑉 . Since 𝑉 is a sparse basis

matrix and the original data matrices are sparse, this new SDP is
characterized by aggregate sparsity (Fukuda et al., 2001, Section 6).
Sparsity-promoting modeling strategies that generalize this example are
discussed in Vandenberghe and Andersen (2015, Chapter 14.1). ■

3.2. Nonsymmetric formulation

The aggregate sparsity of the primal–dual pair of SDPs (3.1)–(3.2)
can be exploited by reformulating them into a nonsymmetric pair of
optimization problems, proposed by Fukuda et al. (2001) and later
discussed extensively by Andersen, Dahland Vandenberghe (2010), Kim
et al. (2011), Sun et al. (2014), Zheng et al. (2020).

Consider first the dual-standard-form SDP (3.2). Any feasible matrix
𝑍 must be at least as sparse as the aggregate sparsity pattern of the
SDP. We can therefore restrict 𝑍 to the subspace S𝑛( , 0), where  is
the edge set of the aggregate sparsity graph, and rewrite (3.2) as

max
𝑦,𝑍

⟨𝑏, 𝑦⟩

subject to 𝑍 +
𝑚
∑

𝑖=1
𝐴𝑖 𝑦𝑖 = 𝐶,

𝑍 ∈ S𝑛+( , 0).

(3.5)

The primal-standard-form SDP (3.1), instead, typically has a dense
optimal matrix 𝑋. However, the value of the cost function and the
equality constraints depend only on the entries 𝑋𝑖𝑗 with (𝑖, 𝑗) ∈  , while
the remaining ones simply guarantee that 𝑋 is positive semidefinite.
We can therefore pose (3.1) as an optimization problem over the
cone S𝑛+( , ?) of sparse matrices that admit a positive semidefinite
completion,

min
𝑋

⟨𝐶,𝑋⟩

subject to ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, 𝑖 = 1, … , 𝑚,

𝑋 ∈ S𝑛+( , ?).

(3.6)

Problems (3.5) and (3.6) are a primal–dual pair of linear conic
programs because the cones S𝑛+( , ?) and S𝑛+( , 0) are dual to each other
(see Section 2.2 and Fig. 2.5). Even though the sparse matrix cones
S𝑛+( , ?) and S𝑛+( , 0) are not self-dual (Andersen, 2011; Andersen, Dahl
et al., 2010), so this sparse formulation is nonsymmetric, one can solve
(3.6), (3.5), or both problems simultaneously using a variety of first-
order or interior-point algorithms. The next two subsections discuss
some of them.
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Remark 3.2. A special type of aggregate sparsity arises when the
data matrices 𝐶,𝐴1, … , 𝐴𝑚 are block-diagonal. In this case, any fea-
sible matrix 𝑋 for (3.6) is automatically positive semidefinite and,
consequently, can be restricted to S𝑛+( , 0). Therefore, the nonsym-
metric formulation described above becomes symmetric. In particular,
problems (3.5) and (3.6) are simply SDPs with a Cartesian product
S𝑛1+ × S𝑛2+ × ⋯ × S𝑛𝑙+ of semidefinite cones, where 𝑛𝑖 is the size of the
𝑖th diagonal block and 𝑙 is the number of blocks. ■

3.3. First-order algorithms

First-order optimization algorithms rely only on gradient informa-
tion and have iterations with low computational complexity, which
can often be implemented in a distributed manner (Beck, 2017; Boyd,
Parikh, Chu, Peleato, & Eckstein, 2011). For these reasons, the last
decade has witnessed the development of a range of first-order methods
to solve large-scale SDPs, many of which are listed in Table 1. Some of
these methods (O’Donoghue et al., 2016; Wen et al., 2010; Yurtsever
et al., 2021; Zhao et al., 2010) focus on generic SDPs and do not ex-
ploit aggregate sparsity. Others, instead, tackle the sparsity-exploiting
nonsymmetric formulations (3.5)–(3.6) using so-called domain space
or range-space conversion frameworks, which replace the matrix cones
S𝑛+( , ?) and S𝑛+( , 0) with smaller positive semidefinite cones using the
chordal decomposition and completion results in Theorems 2.1 and
2.2 (see, e.g., Dall’Anese et al., 2013; Garstka et al., 2021; Kalbat &
Lavaei, 2015; Lam et al., 2012; Lu et al., 2007; Madani, Kalbat et al.,
2017; Sun et al., 2014; Sun & Vandenberghe, 2015; Zheng, Fantuzzi,
& Papachristodoulou, 2018b; Zheng et al., 2020). Many of these works
combine this strategy with additional separability assumptions for the
equality constraints, which are satisfied in optimal power flow prob-
lems (Dall’Anese et al., 2013; Eltved, Dahl, & Andersen, 2020; Kalbat
& Lavaei, 2015; Lam et al., 2012) and the matrix nearness problems
(Sun et al., 2014) but not in general. To the best of our knowledge, the
only first-order methods that can currently handle general SDPs with
aggregate sparsity (including infeasible or unbounded ones) are those
developed by Zheng et al. (2020) and Garstka et al. (2021).

3.3.1. Domain- and range-space conversion
Consider problem (3.6). When the aggregate sparsity graph is

chordal and has maximal cliques 1,… ,𝑡, Theorem 2.2 allows one to
replace the constraint 𝑋 ∈ S𝑛+( , ?) with

𝐸𝑘𝑋𝐸𝖳
𝑘

∈ S|𝑘|+ ∀𝑘 = 1, … , 𝑡. (3.7)

These constraints are coupled in general because the matrices 𝐸𝑝𝑋𝐸𝖳
𝑝

and 𝐸𝑞𝑋𝐸𝖳
𝑞

depend on the same entries of 𝑋 if 𝑝 intersects 𝑞 . The
works referenced above differ primarily in how these couplings are
handled and, as discussed in Remarks 3.3 and 3.5 below, the choice
of strategy can have a considerable impact on the overall complexity
of the iterations in a first-order method.

A simple but powerful strategy was proposed recently by Zheng
et al. (2020), who used ‘‘slack’’ matrices 𝑋1,… , 𝑋𝑡 to rewrite (3.7) as

⎧

⎪

⎨

⎪

⎩

𝑋𝑘 = 𝐸𝑘𝑋𝐸𝖳
𝑘

∀𝑘 = 1, … , 𝑡,

𝑋𝑘 ∈ S|𝑘|+ ∀𝑘 = 1, … , 𝑡.
(3.8)

The primal SDP (3.6) is then equivalent to

min
𝑋,𝑋1 ,…,𝑋𝑡

⟨𝐶,𝑋⟩

subject to ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, 𝑖 = 1,… , 𝑚,

𝑋𝑘 = 𝐸𝑘𝑋𝐸𝖳
𝑘
, 𝑘 = 1,… , 𝑡,

𝑋𝑘 ∈ S|𝑘|+ , 𝑘 = 1,… , 𝑡.

(3.9)

Following Fukuda et al. (2001) and Zheng et al. (2020), we refer to

(3.9) as the domain-space decomposition of the primal SDP (3.1).
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Table 1
Comparison of first-order algorithms for solving SDPs. ‘‘Chordal Sparsity’’: whether the algorithm exploits chordal sparsity; ‘‘SDP Type’’: the types of SDP problems
the algorithm considers; ‘‘Algorithm’’: the underlying first-order algorithm; ‘‘infeas./unbounded’’: whether the algorithm can detect infeasible or unbounded cases;
‘‘Solver’’: whether the code is open-source.

Reference Chordal Sparsity SDP Type Algorithm Infeas./ Unbounded Solver

Wen, Goldfarb, and Yin (2010) ✗ (3.2) ADMM ✗ ✗

Zhao, Sun, and Toh (2010) ✗ (3.2) Augm. Lagrang. ✗ SDPNAL
O’Donoghue et al. (2016) ✗ (3.1)-(3.2) ADMM ✓ SCS
Yurtsever, Tropp, Fercoq, Udell, and Cevher (2021) ✗ (3.1)a SketchyCGAL ✗ CGAL

Lu, Nemirovski, and Monteiro (2007) ✓ (3.1) Mirror-Prox ✗ ✗

Lam, Zhang, and David (2012) ✓ OPFb Primal–dual ✗ ✗

Dall’Anese, Zhu, and Giannakis (2013) ✓ OPFb ADMM ✗ ✗

Sun, Andersen, and Vandenberghe (2014) ✓ (3.1)-(3.2) Spingarn ✗ ✗

Sun and Vandenberghe (2015) ✓ Specialc Gradient proj. ✗ ✗

Kalbat and Lavaei (2015) ✓ Speciald ADMM ✗ ✗

Madani, Kalbat and Lavaei (2017) ✓ Generale ADMM ✗ ✗

Zheng et al. (2020) ✓ (3.1)-(3.2) ADMM ✓ CDCS
Garstka et al. (2021) ✓ Quad. SDPf ADMM ✓ COSMO

aSpecial SDPs with an explicit trace constraint on 𝑋.
bSpecial SDPs from the optimal power flow (OPF) problem.
cSpecial SDPs from the matrix nearness problem.
dSpecial SDPs with decoupled affine constraints.
eGeneral SDPs with inequality constraints.

fA dual SDP (3.2) with a quadratic objective function.
Fig. 3.1. Duality between the original primal and dual SDPs, and the decomposed primal and dual SDPs.
w
o
g
v
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A range-space decomposition of the dual SDP (3.2) can be formulated
in a very similar way. When the aggregate sparsity pattern  is chordal,
Theorem 2.1 implies that the constraint 𝑍 ∈ S𝑛+( , 0) is equivalent to

⎧

⎪

⎨

⎪

⎩

𝑍 =
𝑡

∑

𝑘=1
𝐸𝖳
𝑘
𝑍𝑘𝐸𝑘 ,

𝑍𝑘 ∈ S|𝑘|+ ∀𝑘 = 1, … , 𝑡.

(3.10)

Observe that, as before, the first of these conditions couples the positive
semidefinite matrices 𝑍𝑝 and 𝑍𝑞 if the cliques 𝑝 and 𝑞 of the ag-
gregate sparsity graph overlap. To decouple them, Zheng et al. (2020)
introduced slack variables 𝑉1,… , 𝑉𝑡 and reformulated (3.10) as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑍 =
𝑡

∑

𝑘=1
𝐸𝖳
𝑘
𝑉𝑘𝐸𝑘 ,

𝑉𝑘 = 𝑍𝑘 ∀𝑘 = 1, … , 𝑡,

𝑍𝑘 ∈ S|𝑘|+ ∀𝑘 = 1, … , 𝑡.

(3.11)

Using this to eliminate 𝑍 from (3.5) yields the range-space decompo-
sition

max
𝑦,𝑍1 ,…,𝑍𝑡 ,𝑉1 ,…,𝑉𝑡

⟨𝑏, 𝑦⟩

subject to
𝑚
∑

𝑖=1
𝐴𝑖 𝑦𝑖 +

𝑡
∑

𝑘=1
𝐸𝖳
𝑘
𝑉𝑘𝐸𝑘 = 𝐶,

𝑍𝑘 − 𝑉𝑘 = 0, 𝑘 = 1,… , 𝑡,

𝑍𝑘 ∈ S|𝑘|+ , 𝑘 = 1,… , 𝑡.

(3.12)

While the domain- and range-space decompositions (3.9) and (3.12)
have been derived independently, it is not difficult to verify that they
are a primal–dual pair of SDPs. The duality between the original SDPs
(3.1) and (3.2) is thus inherited by the decomposed SDPs (3.9) and
(3.12) by virtue of the duality between Theorems 2.1 and 2.2. This
elegant picture is illustrated in Fig. 3.1.
252
Remark 3.3. The introduction of variables 𝑋𝑘 and 𝑉𝑘 leads to
redundancies in the affine constraints of (3.9) and (3.12), but is es-
sential to obtain a decomposition framework that is suitable for the
development of fast first-order SDP solvers. For example, as explained
in Section 3.3.2 below, applying the alternating direction method of
multipliers (ADMM) to (3.9) leads to an algorithm whose iterations
have closed-form update rules that can be implemented efficiently.
The same is usually not true if the redundant constraints in (3.9) are
used to eliminate the matrix 𝑋: the iterations of the first-order method
proposed by Sun et al. (2014), for instance, require the solution of a
further SDP with quadratic objective function, which limits its scala-
bility. However, the matrix 𝑋 may be eliminated from (3.9) without
compromising efficiency if the original primal SDP (3.1) has separable
affine constraints. This observation was exploited to solve sparse SDPs
arising from optimal power flow problems (Dall’Anese et al., 2013;
Eltved et al., 2020; Kalbat & Lavaei, 2015) and matrix nearness prob-
lems (Sun & Vandenberghe, 2015). Similar observations apply to the
seemingly redundant matrices 𝑉𝑘 in the range-space decomposed SDP
(3.12). ■

3.3.2. ADMM for decomposed SDPs
The alternating direction method of multipliers (ADMM) is a first-

order operator-splitting method developed in the mid-1970s (Gabay &
Mercier, 1976; Glowinski & Marroco, 1975) to solve general optimiza-
tion problems in the form

min
∈X
∈Y

𝑓 () + 𝑔()

subject to () + () = ,
(3.13)

here 𝑓 and 𝑔 are proper convex (but not necessarily smooth) functions
n finite-dimensional normed vector spaces X and Y,  and  are
iven linear operators from X and Y into a finite-dimensional normed
ector space Z, and  ∈ Z is given. Given a penalty parameter 𝜌 > 0
nd a dual variable  ∈ Z that acts as a Lagrange multiplier for
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the equality constraint, ADMM finds a saddle point of the (scaled)
augmented Lagrangian

𝜌( , ,) ∶= 𝑓 () + 𝑔() +
𝜌
2
‖() + () −  +‖

2

y updating the primal variables  ,  and the dual variable  accord-
ing to the following rules:

 (𝑞+1) = argmin


𝜌( , (𝑞),(𝑞)), (3.14a)

 (𝑞+1) = argmin


𝜌( (𝑞+1), ,(𝑞)), (3.14b)

(𝑞+1) = (𝑛) +( (𝑞+1)) + ( (𝑞+1)) − . (3.14c)

The superscript (𝑞) indicates that a variable is fixed to its value at
the 𝑞th iteration. Under mild technical conditions (Boyd et al., 2011,
Section 3.2), the method converges to an 𝜖-approximate solution of
(3.13) using at most (1∕𝜖) iterations.

Given its slow convergence rate, ADMM is suitable only when
(3.14a) and (3.14b) have closed-form expressions and/or can be solved
efficiently. Below, we show that this is true when the method is applied
to the decomposed SDPs (3.9) and (3.12).

Domain-space decomposition. Consider the domain-space decomposi-
tion (3.9). Let 𝜒(𝑥) denote the characteristic function of a set ,
i.e.,

𝜒(𝑥) ∶=

⎧

⎪

⎨

⎪

⎩

0 if 𝑥 ∈ ,

+∞ otherwise.

or simplicity, we write 𝜒0 when  ≡ {0}. Problem (3.9) is equivalent
to

min
𝑋,𝑋1 ,…,𝑋𝑡

⟨𝐶,𝑋⟩ +
𝑚
∑

𝑖=1

[

𝜒0
(

⟨𝐴𝑖, 𝑋⟩ − 𝑏𝑖
)

+ 𝜒
S|𝑘 |+

(𝑋𝑘)
]

subject to 𝑋𝑘 = 𝐸𝑘𝑋𝐸𝖳
𝑘
, 𝑘 = 1,… , 𝑡.

Upon letting  ∶= {𝑋} and  ∶= {𝑋1, … , 𝑋𝑡}, this problem may be
written in the standard form (3.13) over the spaces X = S𝑛 and Y = Z =
S|1|×⋯×S|𝑡|, and can therefore be solved using ADMM. Introducing a
penalty parameter 𝜌 > 0 and a dual variable  ∶= {𝛬1, … , 𝛬𝑡}, where
each 𝛬𝑘 ∈ S|𝑘| acts as a Lagrange multiplier for the corresponding
constraint 𝑋𝑘 = 𝐸𝑘𝑋𝐸𝖳

𝑘
, it is not difficult to check that the ADMM

step (3.14a) reduces to an equality-constrained quadratic program,

𝑋(𝑞+1) = argmin
⟨𝐴𝑖,𝑋⟩=𝑏𝑖
𝑖=1,…,𝑚

{

𝜌
2

𝑡
∑

𝑘=1

‖

‖

‖

𝑋(𝑞)
𝑘 − 𝐸𝑘𝑋𝐸𝖳

𝑘
+ 𝛬(𝑞)

𝑘
‖

‖

‖

2

𝐹
+ ⟨𝐶,𝑋⟩

}

.

tep (3.14b), instead, reduces to 𝑡 independent positive semidefinite
rojections of the form

(𝑞+1)
𝑘 = argmin

𝑋𝑘∈S
|𝑘 |
+

‖

‖

‖

𝑋𝑘 − 𝐸𝑘𝑋
(𝑞+1)𝐸𝖳

𝑘
+ 𝛬(𝑞)

𝑘
‖

‖

‖

2

𝐹
.

Finally, step (3.14c) updates the multipliers 𝛬1,… , 𝛬𝑡 according to

𝛬(𝑞+1)
𝑘 = 𝛬(𝑞)

𝑘 +𝑋(𝑞+1)
𝑘 − 𝐸𝑘𝑋

(𝑞+1)𝐸𝖳
𝑘
.

These three steps have efficient closed-form solutions and can be
implemented efficiently (Zheng et al., 2020, Section 4.1). In particular,
the 𝑡 independent projections onto the cones S|𝑘|+ required to compute
𝑋(𝑞+1)

1 ,… , 𝑋(𝑞+1)
𝑡 can be performed through an eigenvalue decomposi-

tion with complexity of 𝑂(|
|

𝑘||
3) floating-point operations. This is not

expensive when all cliques 1,… ,𝑡 of the aggregate sparsity graph 
are small, which is often true in many applications. In contrast, the
first-order algorithms for generic SDPs developed by Wen et al. (2010)
and by O’Donoghue et al. (2016) without chordal decomposition re-
quire a projection onto the semidefinite cone S𝑛+ at each iteration,
which becomes a bottleneck when 𝑛 ≫ 1. It is therefore clear that
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exploiting sparsity via chordal decomposition can bring significant
computational savings in ADMM algorithms. In principle, the algorithm
by O’Donoghue et al. (2016) can be used to solve the homogeneous
self-dual embedding of (3.9) and (3.12), but to maximize efficiency the
underlying problem structure should be exploited when solving a large
linear system of equations at each iteration. This can be done via a
sequence of block eliminations, as explained by Zheng et al. (2020,
Section 5.2).

Range-space decomposition:. The range-space decomposition (3.12) of
the dual-standard-form SDP (3.2) can be solved using an ADMM algo-
rithm very similar to that presented above. First, observe that (3.12) is
equivalent to

min
𝑦,𝑉𝑘 ,𝑍𝑘

− ⟨𝑏, 𝑦⟩ + 𝜒0

(

𝐶 −
𝑚
∑

𝑖=1
𝐴𝑖 𝑦𝑖 −

𝑡
∑

𝑘=1
𝐸𝖳
𝑘
𝑉𝑘𝐸𝑘

)

+
𝑡

∑

𝑘=1
𝜒
S|𝑘 |+

(𝑍𝑘)

ubject to 𝑍𝑘 − 𝑉𝑘 = 0, 𝑘 = 1, … , 𝑡.

Grouping the variables as  ∶= {𝑦, 𝑉1, … , 𝑉𝑡} and  ∶= {𝑍1, … ,
𝑍𝑡}, this problem can be written in the general form (3.13) over the
spaces X = R𝑚 × S|1| ×⋯× S|𝑡| and Y = Z = S|1| ×⋯× S|𝑡|. Given a
penalty parameter 𝜌 > 0 and a dual variable  ∶= {𝛬1, … , 𝛬𝑡}, where
each 𝛬𝑘 acts as a Lagrange multiplier for the corresponding constraint
𝑍𝑘 − 𝑉𝑘 = 0, one can easily verify that the ADMM step (3.14a) reduces
to solving the equality-constrained quadratic program

min
𝑦,𝑉1 ,…,𝑉𝑡

− ⟨𝑏, 𝑦⟩ +
𝜌
2

𝑡
∑

𝑘=0

‖

‖

‖

𝑍(𝑞)
𝑘 − 𝑉𝑘 + 𝛬(𝑞)

𝑘
‖

‖

‖

2

𝐹

ubject to 𝐶 −
𝑚
∑

𝑖=1
𝐴𝑖 𝑦𝑖 −

𝑡
∑

𝑘=1
𝐸𝖳
𝑘
𝑉𝑘𝐸𝑘 = 0.

tep (3.14b), instead, reduces to 𝑡 independent positive semidefinite
rojections of the form
(𝑞+1)
𝑘 = argmin

𝑍𝑘∈S
|𝑘 |
+

‖

‖

‖

𝑍𝑘 − 𝑉 (𝑞+1)
𝑘 + 𝛬(𝑞)

𝑘
‖

‖

‖

2

𝐹
.

Finally, the dual variables 𝛬1,… , 𝛬𝑡 are updated through step (3.14c)
as

𝛬(𝑞+1)
𝑘 = 𝛬(𝑞)

𝑘 +𝑍(𝑞+1)
𝑘 − 𝑉 (𝑞+1)

𝑘 .

Again, these iterations admit inexpensive closed-loop expressions.
Moreover, it is not difficult to see that the ADMM iterations for the
range-space decomposition (3.12) and for the domain-space decom-
position (3.9) have similar leading-order complexity. In fact, Zheng
et al. (2020, Section 4.3) showed that the ADMM algorithms for the
primal and dual decomposed SDPs are scaled versions of each other.
The duality picture of Figs. 2.5 and 3.1 is therefore reflected also at
the algorithmic level.

Remark 3.4. For any fixed penalty parameter 𝜌 > 0, the primal and
dual ADMM algorithms outlined above converge to a solution of (3.9)
and (3.12), respectively, provided that strict primal–dual feasibility
conditions are satisfied (Boyd et al., 2011, Section 3.2). An efficient
ADMM algorithm that can handle primal or dual infeasible problems
was developed by Zheng et al. (2020, Section 5), who considered the
homogeneous self-dual embedding (O’Donoghue et al., 2016; Ye et al.,
1994) of the domain-space decomposition (3.9) and the range-space
decomposition (3.12). ■

Remark 3.5. As anticipated in Remark 3.3, considering the variables
𝑋𝑘 and the constraints 𝑋𝑘 = 𝐸𝑘𝑋𝐸𝖳

𝑘
without eliminating any redun-

dant variables is essential to obtain efficient ADMM iterations. This
is because the conic constraints separate completely from the affine
ones in (3.9) when applying the splitting strategy of ADMM, making
it easy to update each 𝑋𝑘 via simple projections onto positive semidef-
inite cones. Similarly, the redundant variables 𝑉𝑘 and the constraints
𝑍𝑘 = 𝑉𝑘 in (3.12) are essential to decouple the conic constraints
from the affine ones, which enables one to handle positive semidefinite
constraints via simple projections. ■
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3.4. Interior-point algorithms

Interior-point algorithms for convex optimization problems with
equality and inequality constraints employ Newton’s method to solve
a sequence of modified equality-constrained problems, obtained by
replacing any inequality constraints with barrier functions in the ob-
jective (Nesterov, 2003; Ye, 2011). These barrier functions approximate
the characteristic function of the set defined by the original inequality
constraints and ensure that the optimal solution of each modified
problem is strictly feasible for the original problem, meaning that it
is an interior point of the original feasible set.

Since Newton’s method relies on second-order (Hessian) informa-
tion, interior-point algorithms do not share the slow convergence of
first-order methods. Instead, they converge to an 𝜖-approximate so-
lution using at most (log(1∕𝜖)) Newton iterations (Nesterov, 2003;

e, 2011). In practice, convergence often occurs within tens of itera-
ions. Therefore, interior-point methods are typically preferred when
olving (3.1)-(3.2) to high accuracy. The general-purpose SDP solvers
eDuMi (Sturm, 1999), SDPT3 (Tütüncü, Toh, & Todd, 2003), SDPA

(Yamashita, Fujisawa, Fukuda, Kobayashi, Nakata, & Nakata, 2012),
and MOSEK (Mosek, 2015) are all based on primal–dual interior-point
methods, and they can very reliably solve small and medium-sized
SDPs (e.g., when 𝑛 is less than a few hundreds and 𝑚 is less than
a few thousands in (3.1)-(3.2)) on regular computers. However, they
become impractical for large SDPs because the CPU time and memory
requirements for each interior-point iteration increase as (𝑛3𝑚+𝑛2𝑚2+
𝑚3) and (𝑛2 + 𝑚2), respectively (Nesterov, 2003, Section 4.3.3).

Chordal graph techniques can be exploited to improve the efficiency
of interior-point methods when solving large-scale SDPs with chordal
aggregate sparsity (Andersen, 2011; De Klerk, 2010; Fukuda et al.,
2001). This section reviews two general approaches for doing so. The
first one, similar to the conversion methods in Section 3.3.1, reformu-
lates problems (3.5) and (3.6) as SDPs with small positive semidefinite
cones, which are often easier to solve with general-purpose interior-
point solvers (Fukuda et al., 2001; Kim et al., 2011; Nakata et al.,
2003; Zhang & Lavaei, 2020b). The second approach, instead, directly
solves (3.6)-(3.5) using an interior-point method for nonsymmetric
conic optimization (Andersen, Dahl et al., 2010; Coey, Kapelevich, &
Vielma, 2020; Nesterov, 2012; Skajaa & Ye, 2015). For other ways
to exploit chordal sparsity in the computation of interior-point search
directions, we refer the reader to the works by (Benson, Ye, & Zhang,
2000), Pakazad, Hansson, Andersen and Rantzer (2017) and Fukuda
et al. (2001, Section 5).

3.4.1. Conversion methods
Starting from the domain-space decomposed SDP (3.9), Fukuda

et al. (2001) and Kim et al. (2011) suggested to eliminate the global
matrix 𝑋 and rewrite the SDP (3.6) only in terms of variables 𝑋𝑘 ∈
S|𝑘|+ , 𝑘 = 1,… , 𝑡. To rewrite the cost function and the first set of equality
constraints, one must choose matrices 𝐶𝑘 and 𝐴𝑖𝑘 that satisfy
𝑡

∑

𝑘=1
⟨𝐶𝑘, 𝑋𝑘⟩ = ⟨𝐶,𝑋⟩

and
𝑡

∑

𝑘=1
⟨𝐴𝑖𝑘, 𝑋𝑘⟩ = ⟨𝐴𝑖, 𝑋⟩, 𝑖 = 1,… , 𝑚.

These affine relations do not usually determine 𝐶𝑘 and 𝐴𝑖𝑘 uniquely,
and some choices may be more convenient than others from the point
of view of computations (Sun et al., 2014, Section 3.1, Zhang & Lavaei,
2020b, Section 6). The second set of constraints in (3.9), instead, can
be enforced via consistency constraints on the entries of 𝑋1,… , 𝑋𝑡 that
correspond to the same elements of 𝑋. Such consistency constraints can
be formulated as

𝐸
(

𝐸𝖳 𝑋 𝐸 − 𝐸𝖳 𝑋 𝐸
)

𝐸𝖳 = 0 ∀𝑗, 𝑘 ∶  ∩ ≠ ∅. (3.18)
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𝑗∩𝑘 𝑘 𝑘 𝑘 𝑗 𝑗 𝑗 𝑗∩𝑘 𝑗 𝑘
The primal SDP (3.6) can therefore be rewritten as

min
𝑋1 ,…,𝑋𝑡

𝑡
∑

𝑘=1
⟨𝐶𝑘, 𝑋𝑘⟩

subject to
𝑡

∑

𝑘=1
⟨𝐴𝑖𝑘, 𝑋𝑘⟩ = 𝑏𝑖, 𝑖 = 1,… , 𝑚,

(3.18), 𝑋𝑘 ∈ S|𝑘|+ ∀𝑘 = 1,… , 𝑡.

(3.19)

This conversion process, first proposed in Fukuda et al. (2001),
is known as the domain-space decomposition (Kim et al., 2011). The
reformulated problem (3.19) has more constraints than the original SDP
(3.1), but the large matrix constraint 𝑋 ∈ S𝑛+ is replaced by 𝑡 smaller
ones, 𝑋𝑘 ∈ S|𝑘|+ for 𝑘 = 1,… , 𝑡. In certain cases, the decomposed
problem (3.19) is easier to solve than the original SDP (3.1) using
general-purpose interior-point solvers; see Nakata et al. (2003) and
Fujisawa, Kim, Kojima, Okamoto, and Yamashita (2009) for numeri-
cal examples. However, the decomposed problem can be degenerate
if the original SDP has a low-rank optimal solution (Raghunathan
& Knyazev, 2016, Theorem 1), which may complicate its numerical
solution. Three other variants of this conversion method, including
range-space decompositions, have been studied by Kim et al. (2011).

The main drawback of these conversion methods is that, sometimes,
the additional consistency constraints (3.18) significantly increase the
size of the Schur complement system that needs to be solved at each
interior-point iteration. Even though this system is typically sparse, the
increase in its size can offset the benefits of the clique-based matrix
decomposition. As shown recently by Zhang and Lavaei (2020b), this
issue can be mitigated using a dualization technique (Löfberg, 2009a).

Remark 3.6 (Removing Redundant Constraints). Since the maximal
cliques in a chordal graph satisfy the running intersection property
(Blair & Peyton, 1993; Fukuda et al., 2001) (see also Appendix C),
it is in fact sufficient to enforce the consistency between pairs 𝑗 ,𝑘
that correspond to the parent–child pairs in a clique tree. Redundant
constraints in (3.18) can therefore be removed using the running
intersection property. Interested readers are referred to Kim et al.
(2011) and Vandenberghe and Andersen (2015) for details. ■

Remark 3.7 (Dropping or Fixing Consistency Constraints). In some appli-
cations, the SDP (3.1) comes from a semidefinite relaxation of a non-
convex optimization problem. Dropping some consistency constraints
in (3.18) leads to a valid weaker relaxation with a lower computa-
tional complexity. This idea was successfully applied to semidefinite
relaxations for optimal power flow problems (Andersen, Hansson et al.,
2014) and neural network verification (Batten et al., 2021). Other
times, one can enforce some of the consistency conditions a priori and
look for feasible but suboptimal points for an SDP at a low computa-
tional cost. This idea was used by Zheng, Mason et al. (2018) to develop
a scalable approach for solving distributed control problems. ■

3.4.2. Nonsymmetric interior-point algorithms
Chordal graph techniques can be exploited to speed up interior-

point methods for the nonsymmetric pair of sparse SDPs (3.6)-(3.5)
without appealing to the matrix decomposition and conversion frame-
works described above. Since the cones S𝑛+( , ?) and S𝑛+( , 0) are not
self-dual, such sparsity-exploiting methods cannot enjoy a complete
primal–dual symmetry (Andersen, Dahl et al., 2010). Instead, one must
resort to purely primal, purely dual, or nonsymmetric primal–dual path-
following methods (Andersen, Dahl et al., 2010; Burer, 2003; Coey
et al., 2020; Nesterov, 2012; Skajaa & Ye, 2015).

To construct nonsymmetric interior-point methods, Dahl et al. (2008
and Andersen, Dahl et al. (2010) introduced barrier functions 𝜙 ∶
S𝑛( , 0) → R and 𝜙∗ ∶ S𝑛( , 0) → R for the cones S𝑛+( , 0) and S𝑛+( , ?),
defined as

𝜙(𝑍) =

⎧

⎪

⎨

⎪

− log det𝑍 𝑍 ∈ int(S𝑛+( , 0)),

+∞ otherwise,
(3.20a)
⎩



Annual Reviews in Control 52 (2021) 243–279Y. Zheng et al.

l

𝐻

w
d
e
S

i
(
H
f
e
a
t
p

F
H
c
f
n
e

f
d
p
e
t

𝑃

T
o

(

𝜙

b
c
t

p

∇

D
c
c
C

a

∇

A
f
h
𝑍
b

∇
t

and

𝜙∗(𝑋) = sup
𝑍∈S𝑛( ,0)

(−⟨𝑋,𝑍⟩ − 𝜙(𝑍)). (3.20b)

Note that 𝜙 (resp. 𝜙∗) is finite only on the interior of S𝑛+( , 0) (resp.
S𝑛+( , ?)) and tends to +∞ as 𝑍 (resp. 𝑋) approaches the boundary of
this cone. Observe also that 𝜙∗ is simply the Legendre transform of 𝜙
evaluated at −𝑋.

Thanks to the properties of the barrier functions, a minimizing
sequence {𝑋𝜇}𝜇>0 for (3.6) can be computed by solving the regularized
primal problem

min
𝑋

⟨𝐶,𝑋⟩ + 𝜇𝜙∗(𝑋)

subject to ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, 𝑖 = 1, … , 𝑚,
(3.21)

and letting 𝜇 → 0. Similarly, a minimizing sequence {𝑦𝜇 , 𝑍𝜇}𝜇>0 for
(3.5) is found upon solving the regularized dual problem

max
𝑦,𝑍

⟨𝑏, 𝑦⟩ − 𝜇𝜙(𝑍)

subject to 𝑍 +
𝑚
∑

𝑖=1
𝐴𝑖 𝑦𝑖 = 𝐶

(3.22)

for 𝜇 → 0. Solutions of the regularized problems for fixed finite 𝜇
are usually found using Newton’s method, leading to so-called primal
scaling and dual scaling interior-point methods. Other methods can
also be used; for instance, Jiang and Vandenberghe (2021) recently
suggested solving (3.21) with a Bregman first-order method, where
the complexity of evaluating the Bregman proximal operator can be
reduced using a sparse Cholesky factorization.

When Newton’s method is applied to (3.21), the KKT optimality
conditions are

⟨𝐴𝑖, 𝑋
𝜇
⟩ = 𝑏𝑖, 𝑖 = 1,… , 𝑚, (3.23a)

𝑚
∑

𝑖=1
𝑦𝑖𝐴𝑖 +𝑍 = 𝐶, (3.23b)

𝜇∇𝜙∗(𝑋𝜇) +𝑍 = 0, (3.23c)

where 𝑦 ∈ R𝑚 is a Lagrange multiplier for the equality constraint in
(3.21) and 𝑍 is an auxiliary variable arising from the definition of
𝜙∗ via the Legendre transform. Solutions 𝑋𝜇 ∈ S𝑛+( , ?) as 𝜇 is varied
define the so-called central path for (3.6). Similarly, the KKT optimality
conditions for (3.22) are

⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, 𝑖 = 1,… , 𝑚, (3.24a)
𝑚
∑

𝑖=1
𝑦𝜇𝑖 𝐴𝑖 +𝑍𝜇 = 𝐶, (3.24b)

𝜇∇𝜙(𝑍𝜇) +𝑋 = 0, (3.24c)

where 𝑋 is a Lagrange multiplier for the equality constraint in (3.22).
Solutions {𝑦𝜇 , 𝑍𝜇} ∈ R𝑚 ×S𝑛+( , 0) as 𝜇 is varied define the central path
for (3.5). It is possible to show that (3.23) and (3.24) are equivalent
(Andersen, 2011, Chapter 3), so the set of points {𝑋𝜇 , 𝑦𝜇 , 𝑍𝜇}𝜇>0 in
S𝑛+( , ?) × R𝑚 × S𝑛+( , 0) define a primal–dual central path.

The rest of this section briefly outlines how the chordality of the
sparsity pattern  can be exploited in the context of dual-scaling
interior point methods. Similar ideas can be used to formulate primal-
scaling methods, and we refer interested readers to the work by Ander-
sen, Dahl et al. (2010, Section 4.2) for details.

Dual-scaling interior-point methods. Search directions in a dual-scaling
interior-point method are obtained by linearizing (3.24) around the
current interior iterate 𝑋 ∈ int(S𝑛+( , ?)), 𝑦 ∈ R𝑚 and 𝑍 ∈ int(S𝑛+( , 0)).
Replacing 𝑋, 𝑦 and 𝑍 with 𝑋+𝛥𝑋, 𝑦+𝛥𝑦, 𝑍+𝛥𝑍 in (3.24), linearizing
(3.24c), and eliminating 𝛥𝑍 yields the Newton equations

⟨𝐴𝑖, 𝛥𝑋⟩ = 𝑟𝑖, 𝑖 = 1,… , 𝑚,
𝑚
∑

𝛥𝑦𝑖𝐴𝑖 −
1 ∇2𝜙(𝑍)−1[𝛥𝑋] = 𝑅,

(3.25)
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𝑖=1 𝜇 S
where ∇2𝜙(𝑍)−1 is the inverse Hessian of 𝜙 at 𝑍, 𝑟𝑖 = 𝑏𝑖 − ⟨𝐴𝑖, 𝑋⟩ and
𝑅 = 𝐶 −

∑𝑚
𝑖=1 𝑦𝑖𝐴𝑖 − 2𝑍 + 1

𝜇∇
2𝜙(𝑍)−1[𝑋]. Further elimination of 𝛥𝑋

eads to the Schur complement equation

𝛥𝑦 = 𝑔, (3.26)

here 𝑔 ∈ R𝑚 is a vector and 𝐻 is an 𝑚×𝑚 positive definite matrix, both
epending only on the current (known) iterates 𝑋, 𝑦 and 𝑍. Explicit
xpression for these quantities are given by Andersen, Dahl et al. (2010,
ection 4.3).

Finding the dual-scaling search direction 𝛥𝑋, 𝛥𝑦, 𝛥𝑍 requires solv-
ng the Newton equation (3.25) or the Schur complement equation
3.26). To do this using a direct method, one must first calculate the
essian of the barrier function 𝜙(𝑍) in (3.20a), and then form and

actorize the matrix 𝐻 . This is typically the most computationally
xpensive part of any interior-point method. One must also be able to
pply the inverse Hessian to form the right-hand side 𝑔 of (3.26). It is in
hese computations that one can exploit the chordality of the sparsity
attern  (Andersen, Dahl et al., 2010).

ast calculations involving the barrier functions. The value, gradient,
essian, and inverse Hessian of the dual barrier 𝜙(𝑍) in (3.20a) can be
omputed efficiently if the sparsity pattern  of 𝑍 is chordal. Similar
ast algorithms exist for the primal barrier 𝜙∗(𝑋) in (3.20b), but we do
ot review them here and refer interested readers to Andersen, Dahl
t al. (2010, Section 3.2) for details.

The key ingredient of these efficient algorithms is a sparse Cholesky
actorization with zero fill-in (Blair & Peyton, 1993; Rose, 1970; Van-
enberghe & Andersen, 2015): as reviewed in Appendix A, for any
ositive definite matrix 𝑍 in int(S𝑛+( , 0)) with chordal sparsity there
xists a permutation matrix 𝑃 and a lower triangular matrix 𝐿 such
hat

𝑍𝑃 𝖳 = 𝐿𝐿𝖳, 𝑃 𝖳(𝐿 + 𝐿𝖳)𝑃 ∈ S𝑛( , 0). (3.27)

his factorization can be computed efficiently by following a recursion
n a clique tree (Vandenberghe & Andersen, 2015, Chapter 9.3).

Now, to evaluate 𝜙(𝑍) it suffices to substitute 𝑍 = 𝑃 𝖳𝐿𝐿𝖳𝑃 into
3.20a) and observe that

(𝑍) = −2
𝑛
∑

𝑖=1
log𝐿𝑖𝑖

ecause determinants distribute over products and permutation matri-
es have unit determinant. Thus, 𝜙(𝑍) can be evaluated efficiently once
he Cholesky factorization (3.27) has been computed.

The gradient of 𝜙(𝑍), instead, is given by the following negative
rojected inverse

𝜙(𝑍) = −PS𝑛( ,0)(𝑍−1).

espite the fact that 𝑍−1 is in general dense, the projection onto S𝑛( , 0)
an be computed from its sparse Cholesky factorization (3.27) without
omputing any other entries of 𝑍−1 (Vandenberghe & Andersen, 2015,
hapter 9.5).

The Hessian of 𝜙 at 𝑍 applied to a matrix 𝑌 ∈ S𝑛( , 0) is computed
s
2𝜙(𝑍)[𝑌 ] = 𝑑

𝑑𝑡
∇𝜙(𝑍 + 𝑡𝑌 ) ∣𝑡=0= PS𝑛( ,0)(𝑍−1𝑌 𝑍−1).

gain, this quantity can be evaluated knowing only the sparse Cholesky
actorization of 𝑍 and its projected inverse PS𝑛( ,0)(𝑍−1), without
aving to compute explicitly the inverse 𝑍−1 or the matrix product
−1𝑌 𝑍−1 (Andersen, Dahl et al., 2010; Andersen, Dahl, & Vanden-
erghe, 2013).

Finally, thanks to the chordal structure, solving the linear equation
2𝜙(𝑍)[𝑈 ] = 𝑌 for 𝑈 in order to apply the inverse Hessian to 𝑌 has

he same cost as calculating ∇2𝜙(𝑍)[𝑌 ]; see Andersen, Dahl et al. (2010,

ection 3.2) and Andersen et al. (2013).
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3.5. Algorithm implementations

We conclude this section by providing a list of numerical pack-
ages that implement some of the approaches reviewed above. This
list is not exhaustive, and the goal here is to give the interested
reader a starting point for numerical experiments. First-order solvers
based on augmented Lagrangian methods and ADMM for generic SDPs
include SDPNAL/SDPNAL+ (Sun, Toh, Yuan, & Zhao, 2020; Zhao
et al., 2010) and SCS (O’Donoghue, Chu, Parikh, & Boyd, 2019).
CDCS (Zheng, Fantuzzi, Papachristodoulou, Goulart, & Wynn, 2016)
and COSMO (Garstka et al., 2021) are two open-source first-order
solvers that exploit chordal sparsity in SDPs. The MATLAB package
CDCS implements the algorithms described in Section 3.3.2 and has
interfaces with the optimization toolboxes YALMIP (Löfberg, 2004)
nd SOSTOOLS (Prajna, Papachristodoulou, & Parrilo, 2002). The Julia
ackage COSMO solves SDPs with quadratic objective functions.

The conversion methods in Section 3.4.1 are implemented in Spar-
eCoLO (Fujisawa et al., 2009) and CHOMPACK (Andersen & Van-
enberghe, 2015). We note that CHOMPACK also provides useful im-
lementation of many other chordal matrix computations, including
aximum determinant positive definite completion and minimum rank
ositive semidefinite completion. Another MATLAB package Dual-
TC (Zhang & Lavaei, 2020a) implements a dualized clique tree conver-
ion (Zhang & Lavaei, 2020b). The reformulated SDPs after conversion
an be solved using general-purpose interior-point solvers, such as Se-
uMi (Sturm, 1999), SDPT3 (Tütüncü et al., 2003), SDPA (Yamashita
t al., 2012), and MOSEK (Mosek, 2015). SMCP (Andersen & Vanden-

berghe, 2014) is a nonsymmetric interior-point solver that provides
a Python implementation of the algorithms in Section 3.4.2. Finally,
SDPA-C (Fujisawa, Fukuda, Kojima, Nakata, & Yamashita, 2004) is a
primal–dual interior-point solver that exploits chordal sparsity using
the maximum-determinant positive definite completion.

4. Sparse polynomial optimization

We have seen in Section 3 that the chordal decomposition of large
emidefinite matrices allows for significant efficiency gains in the solu-
ion of sparse SDPs. The same ideas can often be leveraged to replace
DP relaxations of intractable optimization problems, which gener-
lly have no inherent sparsity or other computationally advantageous
tructure, with SDPs that do.

This section describes how sparsity (primarily chordal, but also
onchordal) can be exploited in the context of sum-of-squares (SOS)
elaxation techniques for polynomial optimization. As mentioned in the
ntroduction, SOS methods are at the heart of many recent tractable
rameworks for the analysis and optimal control of nonlinear systems
ith polynomial dynamics; see Ahmadi and Gunluk (2018), Ahmadi,
almorbida, Gayme and Papachristodoulou (2019), Fantuzzi and Go-

uskin (2020), Fantuzzi et al. (2016), Goluskin (2020), Han and Tedrake
2018), Henrion and Korda (2014), Jones and Peet (2019), Korda et al.
2021), Lasagna et al. (2016), Lasserre et al. (2008), Majumdar et al.
2014), Miller et al. (2021), Papachristodoulou and Prajna (2005), Pra-
na et al. (2004), Valmorbida, Ahmadi, and Papachristodoulou (2015),
almorbida and Anderson (2017) to name but a few contributions.

Our goal is not to offer an exhaustive review of all sparsity-
xploiting methods that have been proposed in this field, but rather
o introduce the key ideas underpinning most of these methods from

general perspective, in the hope that this can guide further de-
elopments. For this reason, we concentrate mainly on two basic
roblems. The first, discussed in Section 4.2, is to prove that an 𝑛-

variate polynomial of even degree 2𝑑 is a sum of squares and, therefore,
globally nonnegative. In this case, we seek to exploit the structure
of polynomials that depend only on a small subset of all possible
degree-2𝑑 monomials—a property often referred to as term sparsity. The
econd problem, discussed in Section 4.3, is to check whether a sparse
nd symmetric 𝑛-variate polynomial matrix 𝑃 (𝑥) is SOS, and therefore
256

c

positive semidefinite for all 𝑥 ∈ R𝑛. In this case, our goal is to leverage
the structural sparsity of 𝑃 , meaning that many of its entries are zero.

Although we focus only on global nonnegativity, all of the sparsity-
exploiting techniques discussed in this section can be extended to
prove polynomial (matrix) nonnegativity locally on basic semialgebraic
sets. Such extensions, which have been studied extensively in order to
build hierarchies of sparse SDP relaxations for polynomial optimization
problems (Lasserre, 2006; Waki, Kim, Kojima, & Muramatsu, 2006;
Waki, Kim, Kojima, Muramatsu, & Sugimoto, 2008; Wang, Magron, &
Lasserre, 2021a, 2021b; Wang, Magron, Lasserre & Mai, 2020; Zheng
& Fantuzzi, 2020), require some careful technical adjustments, but the
underlying strategy is the same as for the global nonnegativity setting.
We outline some of these adjustments in Sections 4.2.5 and 4.3.2, and
refer readers to the excellent literature on this topic for full details.

4.1. Background

Let R[𝑥]𝑛,𝑑 be the
(𝑛+𝑑

𝑑

)

-dimensional space of polynomials with
independent variables 𝑥 = (𝑥1,… , 𝑥𝑛) and degree no larger than 𝑑. The
𝑛-variate monomial with exponent 𝛽 = (𝛽1,… , 𝛽𝑛) ∈ N𝑛 and degree
|𝛽| = 𝛽1 +⋯ + 𝛽𝑛 is denoted by 𝑥𝛽 = 𝑥𝛽11 𝑥𝛽22 ⋯ 𝑥𝛽𝑛𝑛 . Given a finite set of
exponents B ⊂ N𝑛, we write 𝑥B = (𝑥𝛽 )𝛽∈B for the (column) vector of
monomials with exponents in B. The cardinality of B is denoted by |B|.
We also define

B + B ∶= {𝛽 + 𝛾 ∶ 𝛽, 𝛾 ∈ B}, (4.1a)

2B ∶= {2𝛽 ∶ 𝛽 ∈ B}. (4.1b)

If N𝑛
𝑑 = {𝛽 ∈ N𝑛 ∶ |𝛽| ≤ 𝑑} is the set of all 𝑛-variate exponents of

egree 𝑑 or less, the vector 𝑥N
𝑛
𝑑 is a basis for R[𝑥]𝑛,𝑑 and any polynomial

∈ R[𝑥]𝑛,𝑑 can be written as 𝑓 (𝑥) =
∑

𝛽∈N𝑛
𝑑
𝑓𝛽𝑥𝛽 for some coefficients

𝛽 ∈ R. The set of exponents with nonzero coefficient,

upp(𝑓 ) = {𝛽 ∈ N𝑛
𝑑 ∶ 𝑓𝛽 ≠ 0}, (4.2)

s called the support of 𝑓 . Its convex hull is called the Newton polytope
f 𝑓 and is denoted by New(𝑓 ).

.1.1. SOS polynomials and SDPs
A polynomial 𝑓 ∈ R[𝑥]𝑛,2𝑑 of even degree 2𝑑 is SOS if there exist

egree-𝑑 polynomials 𝑓1,… , 𝑓𝑘 ∈ R[𝑥]𝑛,𝑑 such that

= 𝑓 2
1 +⋯ + 𝑓 2

𝑘 . (4.3)

he set of 𝑛-variate degree-2𝑑 SOS polynomials, denoted by 𝛴𝑛,2𝑑 ,
s a proper cone in R[𝑥]𝑛,2𝑑 (Blekherman, Parrilo, & Thomas, 2012,
heorem 3.26). Given an exponent set A ⊆ N𝑛

2𝑑 , we define the subcone
f SOS polynomials supported on A as

[A] ∶= {𝑓 ∈ 𝛴𝑛,2𝑑 ∶ supp(𝑓 ) ⊆ A}. (4.4)

It is well known (see, e.g., Parrilo, 2003, 2013) that a polynomial
∈ R[𝑥]𝑛,2𝑑 is SOS if and only if there exist a set of exponents B ⊆ N𝑛

𝑑
nd a positive semidefinite matrix 𝑄 ∈ S|B|+ such that

(𝑥) = (𝑥B)𝖳 𝑄𝑥B. (4.5)

n particular, if 𝑓 is SOS, the so-called Gram matrix representation in
4.5) is guaranteed to exist with (Reznick, 1978)

= 1
2
New(𝑓 ) ∩ N𝑛

𝑑 . (4.6)

he exponent set obtained with this Newton polytope reduction can be
implified further using more general facial reduction techniques (Löf-
erg, 2009b; Permenter & Parrilo, 2014a, 2014b; Waki & Muramatsu,
010). These techniques analyze the support of 𝑓 in order to remove
edundant elements from B, and construct a smaller exponent set for
hich (4.5) is guaranteed to hold as long as 𝑓 is SOS.

It is clear that SOS polynomials are nonnegative globally. The

onverse is true only for univariate polynomials (𝑛 = 1, 𝑑 arbitrary),
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quadratic polynomials (𝑑 = 1, 𝑛 arbitrary), and bivariate quartics
𝑛 = 2, 𝑑 = 2) (Hilbert, 1888). In general, therefore, being SOS is
nly a sufficient condition for global nonnegativity, and there are well-
nown examples of nonnegative polynomials that are not SOS, such the
otzkin polynomial (Motzkin, 1967). However, while verifying poly-

omial nonnegativity is an NP-hard problem (Murty & Kabadi, 1987),
hecking whether a polynomial 𝑓 is SOS can be done in polynomial

time by solving an SDP. Specifically, for each exponent 𝛼 ∈ B + B, let
𝛼 ∈ S|B| be the symmetric binary matrix satisfying

𝐴𝛼]𝛽,𝛾 ∶=

⎧

⎪

⎨

⎪

⎩

1, 𝛽 + 𝛾 = 𝛼,

0, otherwise,
(4.7)

nd observe that

𝑥B)𝖳 𝑄𝑥B = ⟨𝑄, 𝑥B(𝑥B)𝖳⟩ =
∑

𝛼∈B+B
⟨𝑄,𝐴𝛼⟩𝑥

𝛼 . (4.8)

Then, condition (4.5) holds if and only if ⟨𝑄,𝐴𝛼⟩ = 𝑓𝛼 for all 𝛼 ∈ B+B
and we conclude that

𝑓 ∈ 𝛴𝑛,2𝑑 ⟺ ∃𝑄 ∈ S|B|+ such that ⟨𝑄,𝐴𝛼⟩ = 𝑓𝛼 ∀𝛼 ∈ B + B. (4.9)

The condition on the right-hand side defines an SDP, so a positive
semidefinite Gram matrix 𝑄 certifying that 𝑓 is SOS can (in principle)
be constructed in polynomial time.

4.1.2. SOS polynomial matrices and SDPs
Let R[𝑥]𝑟×𝑠𝑛,𝑑 be the space of 𝑟 × 𝑠 matrices whose entries are 𝑛-

variate polynomials of degree 𝑑. We say that a symmetric polynomial
matrix 𝑃 ∈ R[𝑥]𝑟×𝑟𝑛,2𝑑 is positive semidefinite (resp. definite) globally if
𝑃 (𝑥) ⪰ 0 (resp. 𝑃 (𝑥) ≻ 0) for all 𝑥 ∈ R𝑛. We also say that 𝑃 is positive
emidefinite locally on a set K if the same conditions hold for 𝑥 ∈ K,
ut not necessarily otherwise.

A symmetric polynomial matrix 𝑃 ∈ R[𝑥]𝑟×𝑟𝑛,2𝑑 is called SOS if there
xist an integer 𝑠 and a polynomial matrix 𝑀 ∈ R[𝑥]𝑠×𝑟𝑛,𝑑 such that

𝑃 (𝑥) = 𝑀(𝑥)𝖳𝑀(𝑥). (4.10)

The set of 𝑟 × 𝑟 SOS polynomial matrices with entries in R[𝑥]𝑛,2𝑑 will
be denoted by 𝛴𝑟

𝑛,2𝑑 . All SOS polynomial matrices are clearly positive
semidefinite globally, and the converse is true in the univariate case
(𝑛 = 1); see Aylward, Itani, and Parrilo (2007) for a recent proof.

It is well known (see, e.g., Gatermann & Parrilo, 2004; Kojima,
2003; Parrilo, 2013) that a symmetric polynomial matrix 𝑃 ∈ R[𝑥]𝑟×𝑟𝑛,2𝑑
is SOS if and only if it admits a Gram matrix representation in the form

𝑃 (𝑥) = (𝐼𝑟 ⊗ 𝑥B)𝖳 𝑄 (𝐼𝑟 ⊗ 𝑥B) (4.11)

for some exponent set B ⊆ N𝑛
𝑑 and some positive semidefinite sym-

etric matrix 𝑄 ∈ S𝑟|B|+ . One may always take B = N𝑛
𝑑 , and smaller

xponent sets can be constructed with the same reduction techniques
sed for SOS polynomials. As in the scalar case (𝑟 = 1), condition (4.11)
efines a set of affine constraints on 𝑄, so verifying that a polynomial
atrix is SOS amounts to solving an SDP.

.2. Sparse SOS decompositions

A major obstacle to constructing SOS certificates of global polyno-
ial nonnegativity via semidefinite programming is that the matrix
is both dense and very large. If 𝑓 ∈ R[𝑥]𝑛,2𝑑 has dense support

upp(𝑓 ) = N𝑛
2𝑑 , then one must take B = N𝑛

𝑑 and 𝑄 is a
(𝑛+𝑑

𝑑

)

×
(𝑛+𝑑

𝑑

)

dense
atrix. Often, however, the support of 𝑓 is small, i.e., |supp(𝑓 )| is much

maller than
(𝑛+2𝑑

2𝑑

)

. This property, called term sparsity (Wang, Li, & Xia,
019; Wang et al., 2021a, 2021b; Wang, Magron et al., 2020), can be
xploited in various ways to reduce the computational complexity of
he SDP in (4.9).

The facial reduction techniques mentioned above, which replace the
ull exponent set N𝑛

𝑑 with a (sometimes significantly) smaller subset, are
rguably the simplest way to exploit term sparsity. However, as the next
xample demonstrates, they are often not sufficient.
257
xample 4.1. Fix 𝑛 = 50 and 𝑑 = 2. The support of

(𝑥) =
49
∑

𝑖=2
(𝑥𝑖−1 + 𝑥𝑖 + 𝑥𝑖+1)4 (4.12)

ontains only 485 out of the
(50+4

4

)

= 316 251 possible monomials, so
is term sparse. However, it is not hard to check that the Newton

olytope New(𝑓 ) consists of all points 𝜉 ∈ R50
+ with ‖𝜉‖1 = 4, so the

ewton-reduced exponent set B = 1
2 New(𝑓 ) ∩ N50

2 = N50
2 ⧵ N50

1 contains
all homogeneous exponents of degree 2. Therefore, Newton polytope
eduction removes only

(50+1
1

)

= 51 of the possible
(50+2

2

)

= 1326 in the
full set N50

2 , and the SDP in (4.9) still involves a 1275 × 1275 Gram
matrix 𝑄. ■

Techniques to exploit term sparsity beyond what can be achieved
with facial reduction methods alone are clearly desirable. Section 4.2.1
describes a general strategy to search for sparse SOS decompositions,
which is based on the same matrix decomposition approach used to
tackle large-scale sparse SDPs in Section 3. Sections 4.2.2–4.2.4 show
that different types of sparse SOS decompositions proposed in the litera-
ture are particular cases of this general approach. Section 4.2.5 outlines
how these methods can be extended to prove polynomial nonnegativity
on basic semialgebraic sets, rather than globally. Throughout, B will
denote a fixed set of candidate exponents for the SOS decomposition of
a polynomial 𝑓 , generated from N𝑛

𝑑 using facial reduction or any other
exponent selection technique.

4.2.1. General approach
Let A be a small subset of N𝑛

2𝑑 and 𝑓 be a term-sparse polynomial
supported on A. To reduce the cost of testing if 𝑓 is SOS, a natural
idea is to check whether 𝑓 belongs to a subset of the sparse SOS cone
𝛴[A] that admits a semidefinite representation with low computational
complexity. Such a subset can be constructed using a simple strategy:
prescribe a sparsity graph (B, ) for the Gram matrix 𝑄 and impose its
positive semidefiniteness through matrix decomposition.

Precisely, let (B, ) be a graph with maximal cliques 1,… ,𝑡 and
ith edge set  ⊆ B × B satisfying

A ⊆ {𝛽 + 𝛾 ∶ (𝛽, 𝛾) ∈ }. (4.13)

Consider the cone of sparse SOS polynomial whose Gram matrix 𝑄
has sparsity graph  and admits the clique-based positive semidefinite
decomposition

𝑄 =
𝑡

∑

𝑘=1
𝐸𝖳
𝑘
𝑆𝑘𝐸𝑘 , 𝑆𝑘 ∈ S|𝑘|+ . (4.14)

e denote this cone by

[A; ] ∶=
{

𝑓 ∈ 𝛴[A] ∶ 𝑓 (𝑥) = (𝑥B)𝖳 𝑄𝑥B, 𝑄 satisfies (4.14)
}

. (4.15)

Conditions (4.13) and (4.14) imply that 𝛴[A; ] ⊆ 𝛴[A]. Moreover,
inserting the clique-based decomposition (4.14) of 𝑄 into (4.9) one
finds that 𝑓 ∈ 𝛴[A; ] if and only if

∃𝑆1 ∈ S|1|+ , … , 𝑆𝑡 ∈ S|𝑡|+ such that
𝑡

∑

𝑘=1
⟨𝑆𝑘, 𝐸𝑘𝐴𝛼𝐸

𝖳
𝑘
⟩ = 𝑓𝛼 ∀𝛼 ∈ B + B.

(4.16)

If the cliques of the prescribed sparsity graph are small, condition
(4.16) defines an SDP with small semidefinite cones and can be solved
more efficiently than (4.9).

Remark 4.1 (Chordality of the Sparsity Graph). The Gram matrix de-
composition (4.14) is motivated by the chordal decomposition result in
Theorem 2.1. However, we do not assume here that the sparsity graph
(B, ) is chordal, so (4.14) is generally not equivalent to requiring
𝑄 ∈ S|B|+ ( , 0). The lack of chordality makes searching for the maximal
cliques 1,… ,𝑡 an NP-hard problem (Tomita, Tanaka, & Takahashi,
2006). Allowing for nonchordal graphs with small cliques that can
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Fig. 4.1. (a) Sparsity graph (B, ) for Example 4.2. The vertices B are such that
𝑥B = (𝑥1 , 𝑥1𝑥2 , 𝑥2 , 𝑥3 , 𝑥2𝑥3). (b) Sparsity pattern of the Gram matrix of SOS polynomials
in 𝛴[A; ].

be determined analytically, however, can be extremely useful when
a chordal extension leads to unacceptably large cliques, even if it is
approximately minimal. Examples of this situation can be found in
works by Nie and Demmel (2009) and Kočvara (2020). ■

Remark 4.2 (Sparse SOS Decompositions). Given a sparsity graph
(B, ), the cone 𝛴[A; ] ⊂ 𝛴[A] contains special SOS polynomials that
admit a sparse SOS decomposition, i.e., a decomposition into a sum of
sparse SOS polynomials. Indeed, substituting (4.14) into (4.5) yields

𝑓 (𝑥) =
𝑡

∑

𝑘=1
(𝑥B)𝖳𝐸𝖳

𝑘
𝑆𝑘 𝐸𝑘𝑥

B =
𝑡

∑

𝑘=1
(𝐸𝑘𝑥

B)𝖳 𝑆𝑘 (𝐸𝑘𝑥
B)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝜎𝑘(𝑥)

. (4.17)

Each polynomial 𝜎𝑘(𝑥) is SOS because 𝑆𝑘 is positive semidefinite, and
is sparse because the operation 𝐸𝑘𝑥

B extracts a subset of the full
monomial vector 𝑥B. ■

It is important to observe that the reduction in computational
complexity granted by the clique-based decomposition (4.14) usually
comes at the expense of conservatism. This is because sparsity in the
support set A does not guarantee the existence of a sparse Gram matrix
𝑄. For a given support set A, special choices of the sparsity graph
(B, ) may ensure that 𝛴[A; ] = 𝛴[A] (Zheng & Fantuzzi, 2020,
Corollaries 4.1 & 4.2; Mai, Magron, & Lasserre, 2020, Theorem 2.1;
Wang et al., 2019, Theorem 4.1; Wang et al., 2021b, Theorem 3.3).
In general, however, sparse SOS polynomials need not admit a sparse
SOS decomposition, so the inclusion 𝛴[A; ] ⊂ 𝛴[A] is strict. The next
example illustrates this.

Example 4.2. (Klep, Magron, & Povh, 2019, Lemma 5.2) Consider the
polynomial 𝑓 (𝑥) = 𝑥21−2𝑥1𝑥2+3𝑥

2
2−2𝑥

2
1𝑥2+2𝑥

2
1𝑥

2
2−2𝑥2𝑥3+6𝑥

2
3+18𝑥

2
2𝑥3−

54𝑥2𝑥23 + 142𝑥22𝑥
2
3 and set A = supp(𝑓 ). Let B ⊂ N3

2 be the exponent
set such that 𝑥B = (𝑥1, 𝑥1𝑥2, 𝑥2, 𝑥3, 𝑥2𝑥3), which is obtained via Newton
polytope reduction. Consider also the (chordal) sparsity graph (B, )
shown in Fig. 4.1, which satisfies (4.13). We claim that 𝑓 belongs to
𝛴[A] but not to 𝛴[A; ]. To see this, observe that any Gram matrix
representation of 𝑓 must take the form

𝑓 (𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑥1
𝑥1𝑥2
𝑥2
𝑥3
𝑥2𝑥3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝖳
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −1 −1 0 𝛼

−1 2 0 −𝛼 0

−1 0 3 −1 9

0 −𝛼 −1 6 −27

𝛼 0 9 −27 142

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑥1
𝑥1𝑥2
𝑥2
𝑥3
𝑥2𝑥3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where 𝛼 ∈ R can be chosen arbitrarily. Setting 𝛼 = 1 makes the Gram
matrix 𝑄 positive semidefinite, so 𝑓 ∈ 𝛴[A]. However, 𝑓 cannot be in
𝛴[A; ] because this would require 𝛼 = 0, for which 𝑄 is not positive
semidefinite. ■
258
4.2.2. Correlative sparsity
The general approach presented in Section 4.2.1 requires specifying

the sparsity graph for the Gram matrix 𝑄 in (4.5). A natural strategy
to do this, pioneered by Waki et al. (2006) and Lasserre (2006), is
to consider the couplings between any two independent variables 𝑥𝑖
and 𝑥𝑗 in a polynomial 𝑓 supported on A. Two variables 𝑥𝑖 and 𝑥𝑗
are considered coupled if a monomial in the vector 𝑥A depends on
both simultaneously, i.e., if there exists 𝛼 ∈ A with 𝛼𝑖𝛼𝑗 > 0. These
couplings can be described using the correlative sparsity (csp) graph of
the support set A (or, alternatively, of the polynomial 𝑓 ), which has
vertices {1,… , 𝑛} and edge set

csp(A) ∶= {(𝑖, 𝑗) ∶ ∃𝛼 ∈ A with 𝛼𝑖𝛼𝑗 > 0}. (4.18)

Correlatively sparse SOS decompositions are obtained upon impos-
ing that the entry 𝑄𝛾,𝛽 of the Gram matrix in (4.5) vanishes if the
monomial 𝑥𝛽+𝛾 introduces couplings between variables that are not
consistent with the csp graph of 𝑓 . This amounts to requiring that 𝑄
has sparsity graph csp(B, csp) with edge set

csp ∶= {(𝛽, 𝛾) ∈ B × B ∶

(𝛽𝑖 + 𝛾𝑖)(𝛽𝑗 + 𝛾𝑗 ) > 0 ⇒ (𝑖, 𝑗) ∈ csp(A)}. (4.19)

One may consider (B, csp) a ‘‘hypergraph’’ with |B| nodes, built
from the csp graph of 𝑓 (which has 𝑛 nodes) to ensure that polynomials
(𝑥B)𝖳 𝑄𝑥B with 𝑄 ∈ S|B|(csp, 0) inherit the correlative sparsity of
the original support set A. Unsurprisingly, therefore, the properties of
(B, csp) can be inferred from those of the (usually much smaller)
csp graph. In the following statement, which can be proved using
arguments similar to those given by Zheng (2019, Section 2.4.3), nnz(𝛽)
denotes the indices of the nonzero entries of an exponent 𝛽.

Proposition 4.1. Suppose that the csp graph of the support set A has
maximal cliques 1,… ,𝑡. Then, (B, csp) has maximal cliques 𝑘 = {𝛽 ∈
B ∶ nnz(𝛽) ⊆ 𝑘} for 𝑘 = 1,… , 𝑡. Moreover, if the csp graph of A is chordal,
then so is (B, csp).

Proposition 4.1 considerably simplifies the construction of the ‘‘in-
flation’’ matrices 𝐸𝑘 in (4.14), because it suffices to find the maximal
cliques of the csp graph of A without building the (much larger) graph
(B, csp). In addition, it is not difficult to check that the operation
𝐸𝑘𝑥

B extracts monomials that depend only on variables indexed by 𝑘.
Using (4.17), one concludes that exploiting correlative sparsity amounts
to searching for a sparse SOS decomposition in the form

𝑓 (𝑥) =
𝑡

∑

𝑘=1
𝜎𝑘(𝑥𝑘 ), 𝜎𝑘 is SOS, (4.20)

where 𝑥𝑘 denotes the subset of variables 𝑥 indexed by 𝑘 (cf. Zheng,
Fantuzzi et al., 2019, Theorem 2).

Remark 4.3. Example 4.2 shows that correlatively sparse SOS poly-
nomials need not admit the sparse SOS decomposition (4.20), even
if the csp graph is chordal. Thus, the inclusion 𝛴[A; csp] ⊂ 𝛴[A] is
generally strict. For further discussion on the existence of sparse SOS
decompositions for polynomials with chordal correlative sparsity, see
Mai et al. (2020) and Zheng and Fantuzzi (2020). ■

Example 4.3. The quartic polynomial 𝑓 in (4.12) is correlatively
sparse, and the csp graph of its support is chordal with maximal cliques
𝑖 = {𝑖, 𝑖+1, 𝑖+2} for 𝑖 = 1,… , 𝑛−2. It is clear that 𝑓 admits a sparse SOS
decomposition (4.20) and this can be searched for by solving the SDP in
(4.16). Since, for each clique 𝑖, only six elements in 𝑥B = 𝑥N

𝑛
2⧵N

𝑛
1 can be

multiplied together without introducing spurious couplings to different
cliques, this SDP has semidefinite matrix variables 𝑆1,… , 𝑆𝑛−2 ∈ S6+. Its
computational complexity is clearly much lower than the corresponding
dense formulation in Example 4.1, and a sparse SOS decomposition for
𝑓 can be found in less than one second on a standard laptop. ■
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Fig. 4.2. (a) Correlative sparsity graph of the polynomial in Example 4.4. (b) The corresponding sparsity graph (B, csp). Graph vertices are labeled by monomials in 𝑥B instead
f the corresponding exponents in B to ease the visualization. Filled vertices have a self-loop (not shown), empty ones do not. Colors mark the maximal cliques 1 ( ), 2 ( ),

3 ( ) and 4 ( ). (c) Sparsity pattern of the Gram matrix 𝑄 induced by (B, csp) and its clique-based decomposition. The vertices of (B, csp) are ordered anticlockwise
starting from 𝑥1𝑥2. The last two rows and columns of all matrices are empty.
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Example 4.4. Consider the quartic polynomial

𝑓 (𝑥) = 2+ 𝑥21𝑥
2
4(𝑥

2
1𝑥

2
4 −1) − 𝑥21 + 𝑥41 +

∑4
𝑖=2

(

𝑥2𝑖 𝑥
2
𝑖−1(𝑥

2
𝑖 𝑥

2
𝑖−1 − 1) − 𝑥2𝑖 + 𝑥4𝑖

)

.

ts csp graph, shown in Fig. 4.2(a), is nonchordal and has maximal
liques 1 = {1, 2}, 2 = {2, 3}, 3 = {3, 4} and 4 = {4, 1}. The
orresponding graph (B, csp), where the set of exponents obtained

with Newton polytope reduction is B = N4
2, is shown in Fig. 4.2(b) and

has cliques 1,… ,4 containing 6 elements each, which are determined
using Proposition 4.1. The sparsity pattern of the Gram matrix 𝑄
induced by (B, csp) and the clique-based matrix decomposition in
(4.14) are also illustrated in the figure. Through this decomposition,
a 15 × 15 positive semidefinite constraint on 𝑄 is replaced with four
semidefinite constraints on 6 × 6 matrices 𝑆1,… , 𝑆4. According to
(4.20), searching for these matrices is equivalent to looking for a sparse
SOS decomposition 𝑓 = 𝜎1(𝑥1, 𝑥2)+𝜎2(𝑥2, 𝑥3)+𝜎3(𝑥3, 𝑥4)+𝜎4(𝑥4, 𝑥1). Such
a decomposition is not guaranteed to exist even if 𝑓 were SOS, but it
does for this example with

𝜎1(𝑥1, 𝑥2) =
1
2

(

𝑥21 −
1
2

)2
+
(

𝑥1𝑥2 −
1
2

)2
+ 1

2

(

𝑥22 −
1
2

)2

2(𝑥2, 𝑥3) =
1
2

(

𝑥22 −
1
2

)2
+
(

𝑥2𝑥3 −
1
2

)2
+ 1

2

(

𝑥23 −
1
2

)2

3(𝑥3, 𝑥4) =
1
2

(

𝑥23 −
1
2

)2
+
(

𝑥3𝑥4 −
1
2

)2
+ 1

2

(

𝑥24 −
1
2

)2

4(𝑥4, 𝑥1) =
1
2

(

𝑥24 −
1
2

)2
+
(

𝑥4𝑥1 −
1
2

)2
+ 1

2

(

𝑥21 −
1
2

)2
.

his proves that 𝑓 ∈ 𝛴[supp(𝑓 ); csp]. ■

4.2.3. TSSOS, chordal-TSSOS and related hierarchies
Fix an exponent set A ⊂ N𝑛

2𝑑 and a polynomial 𝑓 with supp(𝑓 ) ⊆ A.
Correlative sparsity exploits only the sparse couplings between vari-
ables as encoded by the csp graph of A, but does not take into account
any further structure of A. This is not efficient when |A| is much smaller
than

(𝑛+2𝑑
2𝑑

)

, so 𝑓 is term-sparse, but the csp graph is fully connected or
nearly so.

For this reason, Wang et al. (2019, 2021a, 2021b) introduced
the term-sparse-SOS (TSSOS) and the chordal-TSSOS decomposition
hierarchies, which exploit term sparsity irrespective of whether 𝑓 is
correlatively sparse. These are two particular examples of a broader
family of possible sparsity-exploiting SOS decomposition hierarchies,
each of which is obtained upon imposing the clique-based Gram ma-
trix decomposition (4.14) for a sequence {(B, 𝑘)}𝑘≥1 of increasingly
connected sparsity graphs ( ⊆  ).
259

𝑘 𝑘+1
Irrespective of the particular hierarchy being considered (TSSOS,
chordal-TSSOS, or another), the construction of such sparsity graphs
begins with the observation that, in order to ensure (4.13), each edge
set 𝑘 should contain at least all edges (𝛽, 𝛾) with 𝛽 + 𝛾 ∈ A. This
guarantees that A ⊆ supp((𝑥B)𝖳 𝑄𝑥B) for any Gram matrix 𝑄 defined
via the clique-based decomposition (4.14), which is necessary for the
feasibility of the SDP in (4.16). One should also not force diagonal
entries 𝑄𝛽𝛽 of the Gram matrix to vanish, because this amounts to
saying that the monomial 𝑥𝛽 is redundant and 𝛽 could be removed from
the exponent set B. For these reasons, we define an initial exponent set
B0 and an initial edge set 0 as

B0 ∶= 2B ∪ A, (4.21a)

0 = {(𝛽, 𝛾) ∈ B × B ∶ 𝛽 + 𝛾 ∈ B0}. (4.21b)

Next, consider an extension operator E ∶ B×B → B×B, which extends
given edge set  ⊂ B × B according to a given rule. The edge sets
1 ⊆ 2 ⊆ ⋯ ⊆ 𝑘 ⊆ ⋯ and their corresponding support sets B𝑘 are
efined using the iterative rule

𝑘 ∶= E
(

{(𝛽, 𝛾) ∈ B × B ∶ 𝛽 + 𝛾 ∈ B𝑘−1}
)

, (4.22a)

𝑘 ∶= {𝛽 + 𝛾 ∶ (𝛽, 𝛾) ∈ 𝑘}. (4.22b)

ote that 𝑘 ⊆ {(𝛽, 𝛾) ∈ B × B ∶ 𝛽 + 𝛾 ∈ B𝑘}, so the extension operator
uarantees that 𝑘 ⊆ 𝑘+1. Moreover, the sequence {𝑘}𝑘≥1 must
onverge to an edge set ∗ in a finite number of iterations because 𝑘
annot be extended beyond the complete edge set B×B. The sequence
f sparsity graphs {(B, 𝑘)}𝑘≥1 obtained in this way is therefore finite,
nd yields the (finite) hierarchy of nested sparse SOS cones

[A; 1] ⊆ 𝛴[A; 2] ⊆ ⋯ ⊆ 𝛴[A; ∗] ⊆ 𝛴[A]. (4.23)

ere, 𝛴[A; ] is as defined in (4.15) and all inclusions are strict in
eneral.

Different extension operators produce different types of sparse SOS
ecomposition hierarchies. In particular:

• If E is a block-completion operator that completes all connected
components of the edge set {(𝛽, 𝛾) ∈ B × B ∶ 𝛽 + 𝛾 ∈ B𝑘−1},
one recovers the TSSOS hierarchy (Wang et al., 2019, 2021b). At
each step of the hierarchy, 𝑄 has chordal sparsity (specifically,
a block-diagonal structure) and (4.14) is equivalent to imposing
𝑄 ∈ S|B|( , 0).
+ 𝑘
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• If E is an approximately minimal chordal extension operator that
extends the edge sets {(𝛽, 𝛾) ∈ B × B ∶ 𝛽 + 𝛾 ∈ B𝑘−1} such
that (B, 𝑘) is chordal, one recovers the chordal-TSSOS hierarchy
(Wang et al., 2021a). At each step of the hierarchy, 𝑄 has chordal
sparsity and (4.14) is equivalent to requiring 𝑄 ∈ S|B|+ (𝑘, 0).

In both cases, the edge extensions are performed on a graph with
|B| nodes and the maximal cliques of (B, 𝑘) must be found at each
iteration. This is unlike the correlative sparsity strategy in Section 4.2.2,
where the maximal cliques of (B, csp) are built from those in the csp
graph of A, which has only 𝑛 nodes (cf. Proposition 4.1).

The choice of extension operator determines the computational
complexity of the resulting sparse SOS decomposition hierarchy, as well
as the gap between 𝛴[A, ∗] and 𝛴[A]. For example, the chordal-TSSOS
hierarchy has a lower complexity than the TSSOS one in general, as
its sparsity graphs have fewer edges (see Wang et al., 2021a, 2021b
for detailed complexity estimates). However, the TSSOS hierarchy has
a higher representation power because 𝛴[A, ∗] = 𝛴[A], which is
generally not true for the chordal-TSSOS hierarchy.

Theorem 4.1 (Wang et al., 2021b). If ∗
tssos is the stabilized edge set of

the TSSOS hierarchy, then 𝛴[A, ∗
tssos] = 𝛴[A], i.e., 𝑓 is SOS if and only if

𝑓 ∈ 𝛴[A, ∗
tssos].

Remark 4.4. Theorem 4.1 follows from a stronger result (Wang
et al., 2021b, Theorem 6.5) which reveals that the constraint 𝑄 ∈
S|B|+ (∗

tssos, 0) imposes the well-known block-diagonal structure implied
by the sign symmetries of 𝑓 (see, e.g., Löfberg, 2009b). ■

Example 4.5. The trivariate quartic polynomial

𝑓 (𝑥) = 1 + 𝑥41 + 𝑥42 + 𝑥43 + 𝑥21𝑥
2
2 + 𝑥21𝑥

2
3 + 𝑥22𝑥

2
3 + 𝑥2𝑥3

is term sparse but not correlatively sparse, since its csp graph is a
complete graph with three nodes. The candidate exponent set to search
for an SOS decomposition of 𝑓 is B = N3

2, as Newton polytope reduction
removes no terms. For convenience, we order B such that

𝑥B = (𝑥23, 𝑥
2
2, 𝑥

2
1, 𝑥2𝑥3, 1, 𝑥1, 𝑥1𝑥3, 𝑥1𝑥2, 𝑥3, 𝑥2)

𝖳.

The TSSOS hierarchy yields the sparsity graphs shown in Fig. 4.3,
which stabilize at the second iteration (𝑘 = 2). The corresponding
sparsity patterns of the Gram matrix 𝑄 are also shown in that figure.
Observe how the connected components of the initial graph (B, 0)
are completed at the first iteration to obtain the graph (B, 1). As
discusses in Remark 4.4, the stabilized block-diagonal structure of 𝑄 co-
incides with the partition of 𝑥B into the groups {𝑥23, 𝑥

2
2, 𝑥

2
1, 1, 𝑥2𝑥3}, {𝑥1},

{𝑥3, 𝑥2} and {𝑥1𝑥2, 𝑥1𝑥3} implied by the sign symmetries of 𝑓 , which is
invariant under the transformations (𝑥1, 𝑥2, 𝑥3) ↦ (−𝑥1,−𝑥2,−𝑥3) and
(𝑥1, 𝑥2, 𝑥3) ↦ (𝑥1,−𝑥2,−𝑥3) (the four groups of monomials are invariant
under both, the first, the second, and none of these transformations). In
this example, the SDP in (4.16) is feasible at all iterations of the TSSOS
hierarchy because 𝑓 admits the positive semidefinite Gram matrix
representation

𝑓 (𝑥) = 1
8
(𝑥B)𝖳

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

8 3 4 0 0 0 0 0 0 0
3 8 4 0 0 0 0 0 0 0
4 4 8 0 0 0 0 0 0 0
0 0 0 2 4 0 0 0 0 0
0 0 0 4 8 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑥B

and the Gram matrix is consistent with the sparsity graphs in Fig. 4.3.
Thus, all steps of the TSSOS hierarchy are able to prove that 𝑓 is SOS.
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Fig. 4.3. Sparsity graphs and corresponding matrix sparsity patterns for the TSSOS
hierarchy in Example 4.5 at initialization (top; edge set 0), at the first iteration
(middle; edge set 1) and at the second iteration (bottom; edge set 2). After that,
the hierarchy stabilizes. Graph vertices are labeled by monomials in 𝑥B instead of
the corresponding exponents in B to ease the visualization. Colors mark the maximal
cliques.

Fig. 4.4. Sparsity graph (left) and corresponding matrix sparsity pattern (right) for the
chordal-TSSOS hierarchy in Example 4.5, which stabilizes at the first iteration (𝑘 = 1).
Graph vertices are labeled by monomials in 𝑥B instead of the corresponding exponents
in B to ease the visualization. Colors mark the maximal cliques; multicolored vertices
and matrix entries belong to multiple cliques.

Note that this can be guaranteed a priori only for the last step by virtue
of Theorem 4.1.

For the same polynomial 𝑓 , the chordal-TSSOS hierarchy stabilizes
t the first iteration (𝑘 = 1) and yields the sparsity graph shown
n Fig. 4.4. The corresponding Gram matrix 𝑄 is sparser than those

encountered in the TSSOS hierarchy, leading to smaller semidefinite
constraints in (4.16). Again, this SDP is feasible in light of the Gram
matrix decomposition given above, so the chordal-TSSOS hierarchy is
able to prove that 𝑓 is SOS. This, however, cannot be guaranteed. ■

Remark 4.5. The explicit Gram matrix decomposition in Example 4.5
reveals that the smaller monomial basis 𝑥B = (𝑥23, 𝑥

2
2, 𝑥

2
1, 𝑥2𝑥3, 1) would

suffice to construct an SOS decomposition of 𝑓 . It remains to be seen
whether this reduced basis can be identified using strategies that are
more sophisticated than the Newton polytope reduction. ■

4.2.4. Correlatively term-sparse hierarchies
The sparse SOS decomposition hierarchies described in Section 4.2.3

can be combined with the correlative sparsity techniques outlined in
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Section 4.2.2 in a natural way. Let 𝑘 be the edge set obtained using
the iterations in (4.22) for a given extension operator, and let csp be
the edge set in (4.19) constructed using correlative sparsity. Then, the
sequence of sparsity graphs

(B, 𝑘 ∩ csp), 𝑘 ≥ 1 (4.24)

yields a hierarchy of ‘‘correlatively term-sparse’’ SOS decompositions,
which exploit simultaneously term and correlative sparsity. Since 𝑘 ⊆
𝑘+1 by construction, and since the sequence {𝑘}𝑘≥1 stabilizes onto
an edge set ∗ in a finite number of steps, the sparse SOS cones
corresponding to this hierarchy satisfy

𝛴[A; 1 ∩ csp] ⊆ 𝛴[A; 2 ∩ csp] ⊆ ⋯

⋯ ⊆ 𝛴[A; ∗ ∩ csp] ⊆
⎧

⎪

⎨

⎪

⎩

𝛴[A; ∗]

𝛴[A; csp].

All inclusions are generally strict. Note also that one may remove from
B all exponents that violate the correlative sparsity before constructing
the edge sets 𝑘, because the intersection with csp eliminates all edges
between such exponents (including self-loops).

When the extension operator used to build 𝑘 is the block-
completion operation used in the TSSOS hierarchy, the sparsity graphs
in (4.24) yield exactly the CS-TSSOS hierarchy introduced by Wang,
Magron et al. (2020). In this case, by Theorem 4.1, the stabilized
sparsity graph (B, ∗∩csp) simply encodes sign symmetries and correl-
ative sparsity. Since exploiting sign symmetries in SOS decompositions
brings no conservatism (Löfberg, 2009b), one immediately obtains the
following corollary.

Proposition 4.2. If ∗
tssos is the stabilized edge set of the TSSOS hierarchy,

then 𝛴[A; ∗
tssos ∩ csp] = 𝛴[A; csp] for any exponent set A ⊆ N𝑛

2𝑑 .

Example 4.6. (Wang, Magron et al., 2020, Example 3.4) Let

𝑓 (𝑥) = 1 + 𝑥1𝑥2𝑥3 + 𝑥3𝑥4𝑥5 + 𝑥3𝑥4𝑥6 + 𝑥3𝑥5𝑥6 + 𝑥4𝑥5𝑥6 +
6
∑

𝑖=1
𝑥4𝑖 . (4.25)

This polynomial is both term and correlatively sparse, and its csp graph
has two maximal cliques 1 = {1, 2, 3} and 2 = {3, 4, 5, 6}. It is
also invariant under the sign symmetry transformation (𝑥1, 𝑥2, 𝑥3, 𝑥4,
𝑥5, 𝑥6) ↦ (−𝑥1,−𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6). To search for an SOS decomposition
of 𝑓 using the CS-TSSOS hierarchy, we let B be the exponent set
defining the monomial vector

𝑥B = (𝑥2, 𝑥1𝑥3, 𝑥2𝑥3, 𝑥1, 𝑥1𝑥2, 𝑥3, 𝑥5𝑥6, 𝑥4𝑥6, 𝑥3𝑥6,
𝑥5, 𝑥4𝑥5, 𝑥3𝑥5, 𝑥4, 𝑥3𝑥4, 𝑥6, 𝑥

2
1, 𝑥

2
2, 𝑥

2
3, 1, 𝑥

2
6, 𝑥

2
5, 𝑥

2
4).

This is obtained upon removing from the full basis 𝑥N
6
2 all monomials

that violate the correlative sparsity of 𝑓 (these would be removed
anyway by the CS-TSSOS hierarchy).

The CS-TSSOS sparsity graphs obtained with (4.24) and the corre-
sponding sparsity patterns for the Gram matrix 𝑄 of 𝑓 , illustrated in
Fig. 4.5, are chordal. The hierarchy stabilizes after three steps. At the
first step, the clique-based decomposition (4.14) replaces the 22 × 22
semidefinite constraint on the Gram matrix 𝑄 with six semidefinite
constraints of size 2, 2, 2, 10, 4 and 5. The first step of the TSSOS
hierarchy, instead, leads to an SDP with five semidefinite constraints of
size 2, 2, 2, 10, 7 (Wang, Magron et al., 2020, Example 3.4). The second
iteration of the CS-TSSOS hierarchy produces significant fill-in, and the
size of the largest semidefinite constraint increases to 15. The third
iteration brings only minimal additional fill-in. At this final stage, the
connected components of the sparsity graph correspond to a partition
of the monomials 𝑥B according to the sign symmetry of 𝑓 (the first four
monomials in 𝑥B are not invariant under the symmetry transformation,
while the rest are), but the correlative sparsity prevents the completion
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Fig. 4.5. Sparsity graphs and corresponding matrix sparsity patterns for the first
(top), second (middle) and third (bottom) iterations of the CS-TSSOS hierarchy in
Example 4.6. After that, the hierarchy stabilizes. Graph vertices are labelled by
monomials in 𝑥B instead of the corresponding exponents in B to ease the visualization.
Colors mark the maximal cliques; multicolor vertices and matrix entries belong to
multiple cliques.

of the largest connected component, i.e., of the bottom-right connected
matrix block in Fig. 4.5(c).

Numerical solution of the SDP (4.16) shows that all steps of the
CS-TSSOS hierarchy are feasible, so an SOS decomposition of the poly-
nomial 𝑓 in (4.25) can be constructed at a lower computational cost
than any other hierarchy discussed in this work. Note that feasibility
cannot be guaranteed a priori at any step of the hierarchy, even the last
(stabilized) one, due to the conservative nature of correlatively sparse
SOS decomposition (see Remark 4.3). ■

4.2.5. Sparse SOS decompositions on semialgebraic sets
The sparsity-exploiting methods to construct SOS decompositions

described so far prove global polynomial nonnegativity, but can be
extended to establish local nonnegativity on a basic semialgebraic set
defined by 𝑚 polynomial inequalities,

K ∶= {𝑥 ∈ R𝑛 ∶ 𝑔1(𝑥) ≥ 0,… , 𝑔𝑚(𝑥) ≥ 0}. (4.26)

Set 𝑔0(𝑥) ≡ 1 for convenience. To verify that 𝑓 ∈ R[𝑥]𝑛,𝑑 (not
ecessarily of even degree) is nonnegative on K, it suffices to find an
nteger 𝜔 (known as the relaxation order) and exponent sets B0,… ,B𝑚 ⊆
𝑛
𝜔 such that

(𝑥) =
𝑚
∑

𝑔𝑖(𝑥)(𝑥B𝑖 )𝖳 𝑄𝑖 𝑥
B𝑖 , 𝑄𝑖 ∈ S|B𝑖|

+ . (4.27)

𝑖=0
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As before, these conditions define the feasible set of an SDP. Generally,
one chooses 𝜔 such that

2𝜔 ≥ max{deg(𝑓 ), deg(𝑔1),… , deg(𝑔𝑚)}

and then takes

B𝑖 = N𝑛
𝜔𝑖
, 𝜔𝑖 ∶= 𝜔 − ⌈

1
2 deg(𝑔𝑖)⌉,

here ⌈𝑎⌉ is the smallest integer greater than or equal to 𝑎. This ensures
that each term in the sum in (4.27) is a polynomial of degree at most
2𝜔. One can allow for 2𝜔 > deg(𝑓 ) because cancellations may occur

hen summing all terms.
Since each polynomial 𝜎𝑖(𝑥) ∶= (𝑥B𝑖 )𝖳 𝑄𝑖 𝑥B𝑖 in (4.27) is SOS, this

condition gives a weighted SOS decomposition of 𝑓—that is, a rep-
resentation of 𝑓 as a weighted sum of SOS polynomials, where the
weights are 𝑔0 = 1 and the polynomials 𝑔1,… , 𝑔𝑚 appearing in the
semialgebraic definition of K. Remarkably, this sufficient condition for
local nonnegativity is also necessary if 𝑓 is strictly positive on K and
this is a compact set satisfying the so-called Archimedean condition.

Assumption 1 (Archimedean Condition). There exist an integer 𝜈 ≥ 0,
SOS polynomials 𝜎0,… , 𝜎𝑚 ∈ 𝛴𝑛,2𝜈 , and a constant 𝑟 ∈ R such that
2 − ‖𝑥‖22 =

∑𝑚
𝑖=0 𝑔𝑖(𝑥)𝜎𝑖(𝑥).

heorem 4.2 (Putinar, 1993). Suppose that 𝑓 ∈ R[𝑥]𝑛,𝑑 is strictly positive
n a basic semialgebraic set K defined as in (4.26) that satisfies the
rchimedean condition. Then, there exists a relaxation order 𝜔 such that
admits the weighted SOS decomposition (4.27).

If 𝑓 and the polynomials 𝑔1,… , 𝑔𝑚 are term sparse, one can proceed
s in Section 4.2.1 and attempt to reduce the computational complexity
f the generic weighted SOS decomposition (4.27) by requiring the
atrices 𝑄0,… , 𝑄𝑚 to be sparse and to admit a clique-based positive

emidefinite matrix decomposition. The only new aspect is that one
ust consider how the sparse polynomial (𝑥B𝑖 )𝖳 𝑄𝑖 𝑥B𝑖 interacts with

the corresponding 𝑔𝑖 in order to determine the overall structure of the
sum on the right-hand side of (4.27). This requires some care, especially
if one hopes to recover sparse versions of Theorem 4.2.

To give an example of this general strategy, let us explain how to
extend the correlative sparsity technique outlined in Section 4.2.2. In
this case, one replaces the csp graph of 𝑓 constructed with the joint
csp graph of the polynomials 𝑓, 𝑔1,… , 𝑔𝑚, which has vertices {1,… , 𝑛}
and an edge between vertices 𝑖 and 𝑗 if at least one of the following
conditions hold:

(a) The variables 𝑥𝑖 and 𝑥𝑗 are multiplied together in 𝑓 ;
(b) At least one of 𝑔1,… , 𝑔𝑚 depends on both 𝑥𝑖 and 𝑥𝑗 , even if these

variables are not multiplied together.

The different treatment of 𝑓 and 𝑔1,… , 𝑔𝑚 reflects the asymmetric role
these polynomials play in (4.27). Then, one imposes that each matrix
𝑄𝑖 in (4.27) is the densest possible matrix such that the support of
𝑔𝑖(𝑥)(𝑥B𝑖 )𝖳 𝑄𝑖 𝑥B𝑖 is consistent with the joint csp graph. Precisely, let
1,… ,𝑡 be the maximal cliques of the joint csp graph and, for each
𝑖 = 0,… , 𝑚, let var(𝑔𝑖) ⊂ {1,… , 𝑛} be the set of indices of the variables
on which 𝑔𝑖 depends, with the convention that var(𝑔0) = var(1) = ∅. By
condition (b) above, there is at least one clique 𝑘 such that var(𝑔𝑖) ⊆ 𝑘
and we denote the set of clique indices 𝑘 for which this holds by

𝑖 ∶=
{

𝑘 ∈ {1,… , 𝑡} ∶ var(𝑔𝑖) ⊆ 𝑘
}

. (4.28)

Observe in particular that 0 = {1,… , 𝑡} since var(𝑔0) = ∅ ⊂ 𝑘 for all
𝑘 = 1,… , 𝑡. The sparsity graph 𝑖(B𝑖, 𝑖) of 𝑄𝑖 is defined to have the
edge set

𝑖 ∶=
⋃

𝑘∈𝑖

{

(𝛽, 𝛾) ∈ B𝑖 × B𝑖 ∶ nnz(𝛽 + 𝛾) ⊆ 𝑘
}

. (4.29)

One can check that 𝑖(B𝑖, 𝑖) is chordal if so is the joint csp graph
of 𝑓, 𝑔 ,… , 𝑔 . Moreover, it has maximal cliques  ,… , with
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1 𝑚 𝑖,1 𝑖,|𝑖|
𝑖,𝑘 ∶= {𝛽 ∈ B𝑖 ∶ nnz(𝛽) ⊆ 𝑘}. Consequently, the clique-based positive
semidefinite decomposition of 𝑄𝑖 reads

𝑄𝑖 =
|𝑖|
∑

𝑘=1
𝐸𝖳
𝑖,𝑘

𝑆𝑘𝐸𝑖,𝑘 , 𝑆𝑘 ∈ S|𝑖,𝑘|+ . (4.30)

If the cliques 𝑖,𝑘 are small, imposing this clique-based decomposi-
tion for each 𝑖 = 0,… , 𝑚 in (4.27) allows one to search for a weighted
SOS decomposition of 𝑓 by solving an SDP with low computational
complexity. Moreover, arguing as in Remark 4.2, one concludes that
this process yields the representation

𝑓 (𝑥) =
𝑚
∑

𝑖=0

∑

𝑘∈𝑖

𝑔𝑖(𝑥)𝜎𝑖,𝑘(𝑥𝑘 ), (4.31)

where each SOS polynomial 𝜎𝑖,𝑘 depends only on variables indexed by
a single clique of the joint csp graph. Crucially, the following sparse
version of Theorem 4.2 guarantees that such a sparse weighted SOS
decomposition exists if the joint csp graph is chordal, the semialgebraic
definition of the set K in (4.26) includes inequalities of the form
𝑟2𝑘 − ‖𝑥𝑘‖

2
2 ≥ 0 for all 𝑘 = 1,… , 𝑡, and 𝑓 > 0 on K.

Theorem 4.3 (Grimm, Netzer, & Schweighofer, 2007; Lasserre, 2006).
Let 𝑓 be a polynomial that is strictly positive on a basic semialgebraic set
K = {𝑥 ∈ R𝑛 ∶ 𝑔1(𝑥) ≥ 0,… , 𝑔𝑚(𝑥) ≥ 0}, whose definition includes the
inequalities 𝑟2𝑘−‖𝑥𝑘‖

2 ≥ 0 for some constants 𝑟1,… , 𝑟𝑡 and all 𝑘 = 1,… , 𝑡.
If the joint csp graph of 𝑓, 𝑔1,… , 𝑔𝑚 is chordal, then 𝑓 has a sparse weighted
SOS decomposition in the form (4.31).

Remark 4.6. The assumption that the semialgebraic definition of K
includes the inequalities 𝑟2𝑘 − ‖𝑥𝑘‖

2
2 ≥ 0 can be weakened by requiring

that the |

|

𝑘
|

|

-dimensional set

K𝑘 ∶= {𝑥̂ ∈ R|𝑘| ∶ 𝑔𝑖(𝑥̂) ≥ 0 ∀𝑖 s.t. var(𝑔𝑖) ⊆ 𝑘}

satisfies the Archimedean condition for each 𝑘 = 1,… , 𝑡. Moreover,
the assumption is mild when K is compact because, in principle, the
inequalities 𝑟2𝑘 − ‖𝑥𝑘‖

2 ≥ 0 can be added with values of 𝑟𝑘 large
enough not to change the set K. Proving that K remains unchanged
for candidate 𝑟𝑘, however, may not be easy in practice. ■

The TSSOS, chordal-TSSOS and CS-TSSOS hierarchies can also be
extended to produce weighted SOS decomposition on basic semialge-
braic sets (Wang et al., 2021a, 2021b; Wang, Magron et al., 2020).
Interested readers are referred to these works for the details. Here we
simply observe that, just like their global counterparts described in Sec-
tions 4.2.3 and 4.2.4, these extended hierarchies stabilize after a finite
number of steps. Upon stabilization, moreover, the extended TSSOS
and CS-TSSOS hierarchies recover the block-diagonal structure of the
matrices 𝑄0,… , 𝑄𝑚 implied by joint sign symmetries of the polynomi-
als 𝑓, 𝑔1,… , 𝑔𝑚 (see Wang et al., 2021b, Theorem 6.5 and Corollary
6.8; Wang, Magron et al., 2020, Proposition 3.10). This observation
can be combined with a symmetry-exploiting version of Theorem 4.2
(Riener, Theobald, Andrén, & Lasserre, 2013, Theorem 3.5) and with
Theorem 4.3 to conclude that the TSSOS and CS-TSSOS hierarchies are
guaranteed to work for term-sparse polynomials that are strictly positive
on compact sets, provided the semialgebraic definition of the latter
satisfies suitable versions of the Archimedean condition.

4.3. Decomposition of sparse polynomial matrices

Having studied sparsity-exploiting techniques to reduce the com-
plexity of searching for SOS representations of term-sparse polynomials,
we now switch gear and review how chordal sparsity can be exploited
when looking for SOS representations of sparse polynomial matri-
ces. Section 4.3.1 presents results by Zheng and Fantuzzi (2020) that
partially extend the classical chordal decomposition theorem (Theo-
rem 2.1) to SOS polynomial matrices with chordal sparsity. Decomposi-
tion results giving SOS certificates of matrix positivity on semialgebraic
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sets are briefly outlined in Section 4.3.2. All of these results are useful
for static output controller design (Henrion & Lasserre, 2006), robust
stability region analysis (Henrion & Lasserre, 2011), and stability anal-
ysis of time-delay systems (Peet, Papachristodoulou, & Lall, 2009).
Note that all results presented in this section consider the structural
sparsity of polynomial matrices, not their term sparsity. In principle,
one could exploit both structural and term sparsity by combining the
results reviewed below with those of Section 4.2.

4.3.1. Global decomposition
Consider a symmetric 𝑛-variate polynomial matrix 𝑃 ∈ R[𝑥]𝑟×𝑟𝑛,2𝑑 of

egree 2𝑑 whose (structural) sparsity pattern is described by a chordal
raph ({1,… , 𝑟}, ), i.e.,

𝑖, 𝑗) ∉  ⟹ 𝑃𝑖𝑗 (𝑥) = 0 ∀𝑥 ∈ R𝑛. (4.32)

ince checking whether 𝑃 is positive semidefinite globally via the SOS
ertificates described in Section 4.1.2 is expensive when 𝑟 is large, we
eek to exploit the sparsity of 𝑃 and replace one large matrix SOS
onstraint with multiple smaller ones.

Let 1,… ,𝑡 be the maximal cliques of . If 𝑃 is positive semidefi-
ite globally, then applying Theorem 2.1 for each 𝑥 ∈ R𝑛 reveals that
here exists 𝑥-dependent positive semidefinite matrices 𝑆𝑘 ∶ R𝑛 → S|𝑘|+
uch that

(𝑥) =
𝑡

∑

𝑖=1
𝐸𝖳
𝑘

𝑆𝑘(𝑥)𝐸𝑘 . (4.33)

owever, this decomposition is not immediately useful in practice
ecause the matrices 𝑆𝑘 need not be polynomial, so they cannot be
earched for using SOS methods. As an example, consider

(𝑥) =

⎛

⎜

⎜

⎜

⎝

2 + 𝑥2 𝑥 + 𝑥2 0

𝑥 + 𝑥2 1 + 2𝑥2 𝑥 − 𝑥2

0 𝑥 − 𝑥2 2 + 𝑥2

⎞

⎟

⎟

⎟

⎠

,

hose sparsity graph is a simple three-node chain graph with two
aximal cliques, 1 = {1, 2} and 2 = {2, 3}. Zheng and Fantuzzi (2020)
roved that this matrix is positive definite globally, but does not admit
chordal decomposition (4.33) with polynomial 𝑆1 and 𝑆2. Using

his example, and recalling that all positive semidefinite univariate
olynomial matrices are also SOS, one can prove the following general
tatement.

roposition 4.3 (Zheng & Fantuzzi, 2020). Let  be a connected and not
omplete chordal graph with 𝑟 ≥ 3 vertices and maximal cliques 1,… ,𝑡.
or any positive integers 𝑛 and 𝑑, there exists a positive definite SOS matrix
∈ 𝛴𝑟

𝑛,2𝑑 with sparsity graph  that does not admit a decomposition (4.33)
ith polynomial matrices 𝑆1,… , 𝑆𝑡.

On the other hand, the direct proof of Theorem 2.1 given by
akimura (2010) can be combined with a diagonalization procedure

or polynomial matrices due to Schmüdgen (2009) to show that (4.33)
olds with SOS matrices 𝑆1,… , 𝑆𝑘 for all positive semidefinite polyno-
ial matrices, up to multiplication by an SOS polynomial.

heorem 4.4 (Zheng & Fantuzzi, 2020). Let 𝑃 ∈ R[𝑥]𝑟×𝑟𝑛,2𝑑 be positive
emidefinite and let 1,… ,𝑡 be the maximal cliques of its sparsity graph.
here exist 𝜈 ∈ N, an SOS polynomial 𝜎 ∈ 𝛴𝑛,2𝜈 , and SOS polynomial
atrices 𝑆𝑘 ∈ 𝛴|𝑘|

𝑛,2𝑑+2𝜈 for 𝑘 = 1,… , 𝑡, such that

(𝑥)𝑃 (𝑥) =
𝑡

∑

𝑘=1
𝐸𝖳
𝑘

𝑆𝑘(𝑥)𝐸𝑘 . (4.34)

When the maximal cliques of the sparsity graph of 𝑃 are small, this
esult enables one to construct an SOS certificate of global positive
emidefiniteness using small matrix SOS constraints, which have a
uch lower computational complexity than simply requiring 𝜎𝑃 to be

OS. Implementation of the chordal SOS decomposition in Theorem 4.4
263
sing SDPs requires the matrix 𝑃 to be fixed, because the SOS weight
must be determined alongside the SOS matrices 𝑆1,… , 𝑆𝑡. Often,

owever, 𝑃 depends on a vector of parameters 𝜆 ∈ R𝓁 that must be
ptimized whilst ensuring that 𝑃 is positive semidefinite. In these cases,
ondition (4.34) is not jointly convex in 𝜆 and 𝜎, so the latter must
e fixed a priori. This is generally restrictive because, when 𝜎 is fixed
rbitrarily, Proposition 4.3 implies that the decomposition (4.34) may
ot exist. However, one can prove a sparse-matrix version of Reznick’s
ositivstellensatz (Reznick, 1995) to conclude that the weight 𝜎(𝑥) =
𝑥‖2𝜈2 is guaranteed to work at least when 𝑃 is a homogeneous positive
efinite matrix.

heorem 4.5 (Zheng & Fantuzzi, 2020). Let 𝑃 ∈ R[𝑥]𝑟×𝑟𝑛,2𝑑 be homogeneous
f degree 2𝑑 and positive definite on R𝑛 ⧵{0}. Let 1,… ,𝑡 be the maximal
liques of the sparsity graph of 𝑃 . There exist 𝜈 ∈ N and SOS polynomial
atrices 𝑆𝑘 ∈ 𝛴|𝑘|

𝑛,2𝑑+2𝜈 for 𝑘 = 1,… , 𝑡 such that

𝑥‖2𝜈2 𝑃 (𝑥) =
𝑡

∑

𝑘=1
𝐸𝖳
𝑘

𝑆𝑘(𝑥)𝐸𝑘 .

Decomposition results such as this, where the SOS weight 𝜎 is
ixed, are of considerable interest because they enable the construction
f convergent hierarchies of sparsity-exploiting SOS relaxations for
ptimization problems with global polynomial matrix inequalities (see
enrion & Lasserre, 2006, 2011 and Peet et al., 2009 for particular
xamples). To illustrate the idea, let us consider the generic convex
inimization problem

∗ ∶= min
𝜆∈R𝓁

𝑏(𝜆)

subject to 𝑃0(𝑥) +
𝓁
∑

𝑖=1
𝜆𝑖𝑃𝑖(𝑥)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑃 (𝑥,𝜆)

⪰ 0 ∀𝑥 ∈ R𝑛, (4.35)

here 𝑏 ∶ R𝓁 → R is a convex cost function and 𝑃0,… , 𝑃𝓁 ∈ R[𝑥]𝑟×𝑟𝑛,2𝑑
re symmetric polynomial matrices whose sparsity graph is chordal and
as maximal cliques 1,… ,𝑡. Given any integer 𝜈 ≥ 0, a feasible vector
and an upper bound on the optimal cost 𝑏∗ may be found by solving

he SOS relaxation
∗
𝜈 ∶= min

𝜆∈R𝓁
𝑏(𝜆)

subject to ‖𝑥‖2𝜈2 𝑃 (𝑥; 𝜆) =
𝑡

∑

𝑘=1
𝐸𝖳
𝑘
𝑆𝑘(𝑥)𝐸𝑘 ,

𝑆𝑘(𝑥) ∈ 𝛴|𝑘|
𝑛,2𝑑+2𝜈 for 𝑘 = 1,… , 𝑡, (4.36)

hich can be reformulated as a standard-form SDP. If the polynomial
atrices 𝑃0,… , 𝑃𝓁 are homogeneous of even degree, and there exists

𝜆0 ∈ R𝓁 such that 𝑃 (𝑥, 𝜆0) is positive definite, then one can use
Theorem 4.5 to prove that 𝑏∗𝜈 → 𝑏∗ from above as 𝜈 → ∞; see
Zheng and Fantuzzi (2020) for more details and numerical examples.
Under further technical assumptions (see Zheng & Fantuzzi, 2020 for
details), asymptotic convergence when 𝑃0,… , 𝑃𝓁 are not homogeneous
is preserved by replacing the SOS multiplier ‖𝑥‖2𝜈2 with (1 + ‖𝑥‖22)

𝜈 .

4.3.2. Decomposition on a semialgebraic set
We now turn our attention to sparse polynomial matrix inequali-

ties on a semialgebraic set K defined as in (4.26) by 𝑚 polynomial
inequalities 𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1,… , 𝑚. A sufficient condition for a symmetric
polynomial matrix 𝑃 ∈ R[𝑥]𝑟×𝑟𝑛,𝑑 to be positive semidefinite on K is that
there exist an integer 𝜈 ∈ N and SOS matrices 𝑆0,… , 𝑆𝑚 ∈ 𝛴𝑚

𝑛,2𝜈 such
that

𝑃 (𝑥) = 𝑆0(𝑥) +
𝑚
∑

𝑖=1
𝑔𝑖(𝑥)𝑆𝑖(𝑥). (4.37)

A matrix version of Putinar’s Positivstellensatz proved by Scherer and
Hol (2006) states that condition (4.37) is also necessary when 𝑃 is
positive definite on K and this set satisfies the Archimedean condition.



Annual Reviews in Control 52 (2021) 243–279Y. Zheng et al.
The weighted matrix SOS decomposition (4.37) can be searched
for with semidefinite programming, but this is prohibitively expensive
when 𝑃 is large. If it has chordal structural sparsity, however, one
can show that the SOS matrices 𝑆𝑖 admit a clique-based decompo-
sition. This yields the following sparse matrix version of Putinar’s
Positivstellensatz.

Theorem 4.6 (Zheng & Fantuzzi, 2020). Let K be a semialgebraic set
defined as in (4.26) that satisfies the Archimedean condition. Suppose that
the symmetric polynomial matrix 𝑃 ∈ R[𝑥]𝑟×𝑟𝑛,𝑑 is positive definite on K and
that its sparsity graph has maximal cliques 1,… ,𝑡. There exist an integer
𝜈 ∈ N and SOS matrices 𝑆𝑖,𝑘 ∈ 𝛴|𝑘|

𝑛,2𝜈 for 𝑖 = 0,… , 𝑚 and 𝑘 = 1,… , 𝑡 such
that

𝑃 (𝑥) =
𝑡

∑

𝑘=1
𝐸𝖳
𝑘

(

𝑆0,𝑘(𝑥) +
𝑚
∑

𝑖=1
𝑔𝑖(𝑥)𝑆𝑖,𝑘(𝑥)

)

𝐸𝑘 . (4.38)

This result can be used to construct sparsity-exploiting SOS relax-
ations of optimization problems with polynomial matrix inequalities
on compact semialgebraic sets that satisfy the Archimedean condition.
For example, consider an optimization problem analogous to (4.35),
where the polynomial matrix inequality is enforced on K rather than
on the full space R𝑛, and denote its optimal value by 𝑏∗. If there exists
𝜆0 ∈ R𝓁 such that the inequality is strict on K and this set satisfies the
Archimedean condition, then the optimal value of the SOS problem

min
𝜆∈R𝓁

𝑏(𝜆)

subject to 𝑃 (𝑥, 𝜆) satisfies (4.38)

𝑆𝑖,𝑘 ∈ 𝛴|𝑘|
𝑛,2𝜈 for 𝑖 = 0,… , 𝑚 and 𝑘 = 1,… , 𝑡

converges to 𝑏∗ from above as 𝜈 → ∞. Interested readers are referred
to Zheng and Fantuzzi (2020) for more details and computational
examples.

4.4. Other approaches

The scalability of SOS approaches to polynomial inequalities and
polynomial optimization problems can be improved using techniques
beyond those described in this section. One example is to replace
semidefinite conditions on a large Gram matrix with stronger con-
ditions based on factor-width-𝑘 decompositions, which are discussed
in Section 5.2. For the particular case of 𝑘 = 2, one obtains scaled
diagonally dominant SOS (SDSOS) certificates of nonnegativity (Ahmadi
& Majumdar, 2019). Another approach is to use bounded-degree SOS
conditions (Lasserre, Toh, & Yang, 2017), in which (loosely speaking)
one restrict the degree of the monomial basis 𝑥B used in the Gram
matrix representation and handles monomials of higher degree using
positivity certificates that can be reformulated as linear programs.
Term sparsity can be exploited in these frameworks, too: the relation
between correlative sparsity and SDSOS conditions is discussed by
Zheng, Fantuzzi et al. (2019), while Weisser, Lasserre, and Toh (2018)
develop sparsity-exploiting bounded-degree SOS hierarchies.

Finally, when working with polynomials that are invariant under
groups of symmetry transformations, a large Gram matrix can be re-
placed with one that has a block-diagonal structure using symmetry re-
duction techniques (Gatermann & Parrilo, 2004; Löfberg, 2009b; Riener
et al., 2013). The block-diagonalization based on sign-symmetries,
recovered by the TSSOS and CS-TSSOS hierarchies discussed in Sec-
tions 4.2.3 and 4.2.4, is only one particular example; more sophisti-
cated strategies require using a ‘‘symmetry-adapted’’ basis for the space

B
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of polynomials in lieu of the monomial basis 𝑥 .
4.5. Open-source software implementations

Many of the sparsity-exploiting techniques for polynomial optimiza-
tion described in this section are implemented in open-source software.
The Newton polytope reduction technique is implemented in almost
all parsers for SOS optimization, including SOSTOOLS (Prajna et al.,
2002), YALMIP (Löfberg, 2004), GloptiPoly (Henrion, Lasserre, &
Löfberg, 2009) and SumOfSquares.jl (Legat, Coey, Deits, Huchette,
& Perry, 2017; Weisser, Legat, Coey, Kapelevich, & Vielma, 2019).
Correlative sparsity techniques are implemented in the MATLAB tool-
boxes SparsePOP (Waki et al., 2008) and aeroimperial-yalmip
(Fantuzzi, 2020). The recent Julia package TSSOS (Magron & Wang,
2021) implements the TSSOS, chordal-TSOS and CS-TSSOS hierarchies.
Term sparsity and symmetries in polynomial optimization can also be
exploited through SumOfSquares.jl (Legat et al., 2017; Weisser
et al., 2019).

5. Factor-width decomposition

We have seen that the matrix decomposition approach can lead to
significant efficiency improvements in the solution of sparse SDPs (cf.
Section 3) and sparse polynomial optimization problems (cf. Section 4).
We now turn our attention to the problem of testing the positive-
semidefiniteness of matrices that are not necessarily sparse, for which
similar matrix decomposition ideas can also be leveraged using ap-
proximation methods. This class of methods is known as factor-width
decomposition (Boman et al., 2005). We will highlight its connections
and differences with the chordal decomposition reviewed above.

After reviewing some background in Section 5.1, we discuss how
a hierarchy of inner and outer approximations for positive semidef-
inite matrices can be constructed based on factor-width-k matrices in
Section 5.2. We then discuss in Section 5.3 how this can be extended
further using the notion of block factor-width-two matrices (Zheng,
Sootla & Papachristodoulou, 2019), which aims to strike a balance be-
tween numerical computation and approximation quality. Applications
to semidefinite and SOS optimization are discussed in Sections 5.4 and
5.5.

5.1. Background

As emphasized in the previous sections, solving large-scale semidef-
inite programs is at the center of many problems in control engineering
and beyond, and the development of fast and reliable solution methods
(mainly focusing on the exploitation of sparsity exploiting and low-rank
structure) has recently attracted significant attention (De Klerk, 2010;
Majumdar et al., 2020). Some of these methods attempt to solve the
problem exactly, for instance by using chordal decomposition when
sparsity is present (cf. Sections 3 and 4), while others try to provide
approximate solutions when these problems are large and dense. This
section focuses on the latter case and shows that, similar to Sections 3
and 4, certain matrix decomposition strategies allow for significant
progress when dealing with large-scale dense SDPs.

One basic way to approach such SDPs is to approximate the positive
semidefinite cone S𝑛+ with the cone of factor-width-𝑘 matrices (Boman
et al., 2005), which allows for a certain matrix decomposition discussed
in Section 5.2. We will denote the cone of factor-width-𝑘 matrices by
𝑛

𝑘, where 𝑛 is the matrix dimension. The case 𝑘 = 2 is of special
interest: 𝑛

2 is the cone of symmetric scaled diagonally dominant ma-
trices, which can be characterized using second-order cone constraints.
Thus, linear functions can be optimized over 𝑛

2 by solving second-
order cone programs (SOCPs). SOCP strengthenings of SDPs are much
more scalable, but can be very conservative: the restricted problem
may even become infeasible. Unfortunately, attempting to reduce this
conservativeness by approximating S𝑛+ with 𝑛

3 will result into an
SDP with (𝑛3) positive semidefinite constraints, which may not strike

a good balance between approximation and computational efficiency.
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For this reason, most work has focused on the case of factor-width-two
matrices and on some closely related extensions (Ahmadi, Dash, Hall,
2017; Ahmadi & Hall, 2017; Wang, Tanaka & Yoshise, 2021).

The notion of factor-width-two matrices was recently extended to
block-partitioned matrices by Zheng, Sootla et al. (2019), who showed
that the approximation of S𝑛+ can be improved significantly compared
o using the cone 𝑛

2 without sacrificing computational feasiblity.
This is in contrast to using 𝑛

3. Block factor-width-two matrices also
ffer a new hierarchy of approximations through a ‘‘coarsening’’ of the
ecomposition results (cf. Definition 2.2). An alternative approach that
esults in an improved approximation is based on the use of decomposed
tructured subsets (Miller, Zheng, Sznaier & Papachristodoulou, 2019),
ut it will not be reviewed here.

.2. Factor-width-𝑘 decompositions

We now introduce the concept of factor-width-𝑘 matrices, originally
defined in Boman et al. (2005).

Definition 5.1. The factor width of a matrix 𝑍 ∈ S𝑛+ is the smallest
integer 𝑘 for which there exists a matrix 𝑉 such that 𝑍 = 𝑉 𝑉 𝖳 and
ach column of 𝑉 has at most 𝑘 nonzeros.

The factor width of 𝑍 is also the smallest integer 𝑘 for which 𝑍 is
he sum of positive semidefinite matrices that are non-zero at most on
𝑘 × 𝑘 principal submatrix:

=
𝑠
∑

𝑖=1
𝐸𝖳
𝑖
𝑍𝑖𝐸𝑖 (5.1)

or some matrices 𝑍𝑖 ∈ S𝑘+, where 𝑖 is a set of 𝑘 distinct integers from
to 𝑛 and 𝑠 =

(𝑛
𝑘

)

. We use 𝑛
𝑘 to denote the set of 𝑛×𝑛 matrices with

actor-width at most 𝑘. The dual of 𝑛
𝑘 with respect to the normal

race inner product is

𝑛
𝑘)

∗ =
{

𝑋 ∈ S𝑛 ∣ 𝐸𝑖𝑋𝐸𝖳
𝑖

∈ S𝑘+ ∀𝑖 = 1,… , 𝑠
}

.

he following hierarchies of inner and outer approximations of S𝑛+
ollow directly from these definitions:

𝑛
1 ⊆ 𝑛

2 ⊆ … ⊆ 𝑛
𝑛 = S𝑛+, (5.2a)

𝑛
+ = (𝑛

𝑛)
∗ ⊆ … ⊆ (𝑛

2)
∗ ⊆ (𝑛

1)
∗. (5.2b)

The set 𝑛
2 is of particular interest because it is equivalent to the

et of symmetric scaled diagonally dominant matrices (Boman et al.,
005). Precisely, a symmetric matrix 𝐴 = [𝑎𝑖𝑗 ] is diagonally dominant
f 𝑎𝑖𝑖 ≥

∑

𝑗≠𝑖 |𝑎𝑖𝑗 |, 𝑖 = 1,… , 𝑛, and it is scaled diagonally dominant if
here exists a diagonal positive semidefinite matrix 𝐷 such that 𝐷𝐴𝐷
s diagonally dominant. Denote the set of 𝑛 × 𝑛 diagonally dominant
atrices as 𝑛 and the set of 𝑛×𝑛 scaled diagonally dominant matrices

s 𝑛. We then have the following relationship (Boman et al., 2005):

𝑛 ⊂ 𝑛 ≡ 𝑛
2.

urthermore, linear optimization over 𝑛
2 can be converted into

n SOCP, for which efficient algorithms exist. The better scalability
f SOCPs compared to SDPs makes inner approximations of positive
emidefinite cones based on 𝑛

2 very attractive, and forms the basis
f the SDSOS framework for polynomial optimization proposed by
hmadi and Majumdar (2019).

emark 5.1 (Factor-Width Decomposition vs Chordal Decomposition). The
ecomposition (5.1) is formally the same as the chordal decomposition
n Theorem 2.1, and the two differ only in the choice of ‘‘cliques’’
1,… ,𝑠. For chordal decomposition, they are the maximal cliques
f (a chordal extension of) the sparsity graph of 𝑍. For factor-width-
decomposition, instead, they are all

(𝑛
𝑘

)

sets of 𝑘 distinct indices
rom {1,… , 𝑛}. These two different choices, however, have consider-
bly different implications: while chordal decomposition is necessary
265
nd sufficient for a sparse matrix to be positive semidefinite, factor-
idth-𝑘 decomposition is only sufficient unless 𝑘 = 𝑛. The quality
f the approximation of positive semidefinite cones by (𝑛

𝑘)
∗ was

ecently investigated by Song and Parrilo (2021) and Blekherman, Dey,
olinaro, and Sun (2020). ■

.3. Block factor-width-two decomposition

The representation (5.1) reveals that checking whether a matrix 𝑍
elongs to 𝑛

𝑘 for any values of 𝑛 and 𝑘 is equivalent to an SDP. When
< 𝑛, this SDP has smaller semidefinite cones than S𝑛+, but may be more

xpensive than checking whether 𝑍 ∈ S𝑛+ directly because of the com-
inatorial number of cones,

(𝑛
𝑘

)

. Setting 𝑘 = 2 does lead to efficiency
ains, but the gap between 𝑛

2 and S𝑛+ might be unacceptably large
n some applications. For this reason, block factor-width-two matrices are
f interest.

Recall from Section 2.3.1 the notion of a block-partition of a matrix
∈ S𝑛 subordinate to a partition 𝛼 of 𝑛. Recall also the definition of

he index matrix 𝐸𝑘 ,𝛼 in (2.14). Here, we further define

𝐸𝑖,𝛼 ∶=
[

0 ⋯ 𝐼𝛼𝑖 ⋯ 0
]

∈ R𝛼𝑖×𝑛, (5.3a)

𝑖𝑗,𝛼 ∶=
[

(𝐸𝑖,𝛼)𝖳 (𝐸𝑗,𝛼)𝖳
]𝖳 ∈ R(𝛼𝑖+𝛼𝑗 )×𝑛. (5.3b)

he set of block factor-width-two matrices, denoted by 𝑛
𝛼,2, is de-

ined as follows (Zheng, Sootla et al., 2019).

efinition 5.2. For any partition 𝛼 = {𝛼1,… , 𝛼𝑝} of 𝑛, a symmetric
atrix 𝑍 ∈ S𝑛 belongs to the class 𝑛

𝛼,2 of block factor-width-two
atrices if and only if

=
𝑝−1
∑

𝑖=1

𝑝
∑

𝑗=𝑖+1
(𝐸𝑖𝑗,𝛼)𝖳𝑋𝑖𝑗𝐸𝑖𝑗,𝛼 (5.4)

or some 𝑋𝑖𝑗 ∈ S𝛼𝑖+𝛼𝑗+ , where 𝐸𝑖𝑗,𝛼 is defined in (5.3b).

It is clear that (5.4) is a direct block extension of (5.1) when 𝑘 = 2.
lso, it is not hard to check that 𝑛

𝛼,2 is a cone. Its dual with respect
o the trace inner product is characterized by the following proposition.

roposition 5.1 (Zheng, Sootla et al., 2019). For any partition 𝛼 =
𝛼1,… , 𝛼𝑝} of 𝑛, the dual of 𝑛

𝛼,2 is

𝑛
𝛼,2)

∗ = {𝑋 ∈ S𝑛 ∣ 𝐸𝑖𝑗,𝛼𝑋(𝐸𝑖𝑗,𝛼)𝖳 ⪰ 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑝}.

urthermore, both 𝑛
𝛼,2 and (𝑛

𝛼,2)
∗ are proper cones, i.e., they are

onvex, closed, solid, and pointed cones.

It should be clear from Definition 5.2 and Proposition 5.1 that
emidefinite programming can be used to verify whether a matrix
elongs to 𝑛

𝛼,2 or to (𝑛
𝛼,2)

∗. While a gap between these cones and
he positive semidefinite cone S𝑛+ remains, the next theorem states that
he size of the gap can be reduced by coarsening the partition 𝛼 (cf. Def-
nition 2.2), generally at the expense of increasing the computational
omplexity of the semidefinite representations of 𝑛

𝛼,2 and (𝑛
𝛼,2)

∗.
his tradeoff between approximation gap and complexity is the main
dvantage of using block factor-width-two cones. Recalling the order
elation 𝛼 ⊏ 𝛽 between two partitions from Definition 2.2, we have the
ollowing result.

heorem 5.1 (Zheng, Sootla et al., 2019). Let 𝛼 ⊏ 𝛽 ⊏ 𝛾 be partitions of
with 𝛾 = {𝛾1, 𝛾2}, and let 𝟏 = {1,… , 1} denote the uniform unit partition.
hen, we have

𝑛
2 = 𝑛

𝟏,2 ⊆ 𝑛
𝛼,2 ⊆ 𝑛

𝛽,2 ⊆ 𝑛
𝛾,2 ≡ S𝑛+

≡ (𝑛
𝛾,2)

∗ ⊆ (𝑛
𝛽,2)

∗ ⊆ (𝑛
𝛼,2)

∗, ⊆ (𝑛
𝟏,2)

∗.
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Fig. 5.1. Regions of the (𝑥, 𝑦) plane for which the 5 × 5 matrix in Example 5.1 belongs
o the block factor-width-two cones 5

𝟏,2 ⊂ 5
𝛼,2 ⊂ 5

𝛽,2 ⊂ 5
𝛾,2 ≡ S5+ (top panel),

and the dual cones S5+ ≡ (5
𝛾,2)

∗ ⊂ (5
𝛽,2)

∗ ⊂ (5
𝛼,2)

∗ (bottom panel). The partitions
are 𝟏 = {1, 1, 1, 1, 1}, 𝛼 = {2, 1, 1, 1}, 𝛽 = {2, 1, 2} and 𝛾 = {2, 3}. The inclusions of the
plotted regions reflect the inclusions of the cones and the order relation 𝟏 ⊏ 𝛼 ⊏ 𝛽 ⊏ 𝛾.

This result does not quantify how well 𝑛
𝛼,2 and (𝑛

𝛼,2)
∗ ap-

proximate the positive semidefinite cone. Such information is clearly
not only of theoretical interest, but also of practical importance, espe-
cially for dense positive semidefinite cone that cannot be studied using
chordal decomposition. Some progress in this direction was recently
made by Zheng, Sootla et al. (2019), who leveraged results by Blekher-
man et al. (2020) to show that the normalized distance between either
𝑛

𝛼,2 or (𝑛
𝛼,2)

∗ and S𝑛+ is at most 𝑝−2
𝑝 , where 𝑝 ≥ 2 is the number

of blocks in the partition 𝛼.
Compared to (5.2), one main advantage of the hierarchy of in-

ner/outer approximations of S𝑛+ via block factor-width-two cones in
Theorem 5.1 is that the number of basis matrices in the representation
(5.4) remains (𝑝2), instead of being a combinatorial number

(𝑛
𝑘

)

.
Moreover, the value of 𝑝 decreases when coarsening the partition.
Therefore, the cone 𝑛

𝛼,2 is often computationally more tractable than
the cone 𝑛

𝑘 with 𝑘 ≥ 3.

Example 5.1. Consider the 5 × 5 matrix

1 + 6𝑥 + 4𝑦 3𝑥 + 𝑦 2𝑥 + 𝑦 𝑥 + 4𝑦 3𝑥 + 3𝑦

3𝑥 + 𝑦 1 + 6𝑦 5𝑥 + 3𝑦 𝑦 2𝑥 + 2𝑦

2𝑥 + 𝑦 5𝑥 + 3𝑦 1 + 2𝑥 + 2𝑦 𝑥 + 2𝑦 5𝑥 + 6𝑦

𝑥 + 4𝑦 𝑦 𝑥 + 2𝑦 1 + 2𝑥 3𝑥 + 3𝑦

3𝑥 + 3𝑦 2𝑥 + 2𝑦 5𝑥 + 6𝑦 3𝑥 + 3𝑦 1 + 6𝑥 + 2𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

nd the progressively coarser partitions 𝟏 = {1, 1, 1, 1, 1}, 𝛼 = {2, 1, 1, 1},
= {2, 1, 2} and 𝛾 = {2, 3}. The regions of the (𝑥, 𝑦) plane for which

he matrix is in the cones 5
𝟏,2 ⊂ 5

𝛼,2 ⊂ 5
𝛽,2 ⊂ 5

𝛾,2 ≡ S5+ are
shown in the top panel in Fig. 5.1. The bottom panel of the same figure,
instead, shows the regions of the plane for which the matrix is in the
dual cones S5+ ≡ (5

𝛾,2)
∗ ⊂ (5

𝛽,2)
∗ ⊂ (5

𝛼,2)
∗. It is evident from

these figures that all of the inclusions are strict. However, the block
factor-width-two cones approximate well the positive semidefinite one
along some directions. ■

5.4. Applications to semidefinite programming

Recall from Theorem 5.1 that the cones 𝑛
𝛼,2 and (𝑛

𝛼,2)
∗ approx-

imate the positive semidefinite cone S𝑛 from the inside and from the
266

+

outside, respectively, and that the approximation improves as the par-
tition 𝛼 is coarsened. This allows one to compute convergent sequences
of upper and lower bounds on the optimal value of an SDP in the
primal standard form (3.1) using optimization problems of increasing
computational complexity that are always simpler to solve than (3.1)
itself. Precisely, since 𝑛

𝛼,2 ⊆ S𝑛+ for any partition 𝛼 of 𝑛, the optimal
alue of the block factor-width cone program

𝑈𝛼 ∶= min
𝑋

⟨𝐶,𝑋⟩

subject to ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, 𝑖 = 1,… , 𝑚,

𝑋 ∈ 𝑛
𝛼,2

(5.5)

ounds the optimal value of the SDP (3.1) from above. A complemen-
ary lower bound is given by

𝐿𝛼 ∶= min
𝑋

⟨𝐶,𝑋⟩

subject to ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, 𝑖 = 1,… , 𝑚,

𝑋 ∈ (𝑛
𝛼,2)

∗

(5.6)

ecause S𝑛+ ⊆ (𝑛
𝛼,2)

∗. By Theorem 5.1, replacing 𝛼 with a coarser
artition can only improve these upper and lower bounds, and we have
he following corollary.

orollary 5.1. Let 𝐽 ∗ denote the optimal value of the SDP (3.1) and let
1 ⊑ 𝛼2 ⊑ … ⊑ 𝛼𝑘 = {𝛼𝑘1 , 𝛼𝑘2} be a sequence of partitions of 𝑛. Then,
𝛼1 ≤ ⋯ ≤ 𝐿𝛼𝑘 = 𝐽 ∗ = 𝑈𝛼𝑘 ≤ ⋯ ≤ 𝑈𝛼1 .

When 𝛼 = 𝟏 = {1,… , 1} is the finest possible partition, problems
5.5) and (5.6) can be reformulated as SOCPs. This case was studied
xtensively by Ahmadi and Majumdar (2019), and numerical experi-
ents show that the optimal values 𝐿𝟏 and 𝑈𝟏 can often be very poor

ounds for 𝐽 ∗. To obtain better results using coarser partitions, one can
everage the definition of 𝑛

𝛼,2 and rewrite the upper bound problem
5.5) as

min
𝑋𝑗𝑙

𝑝−1
∑

𝑗=1

𝑝
∑

𝑙=𝑗+1

⟨

𝐶𝑗𝑙,𝛼 , 𝑋𝑗𝑙
⟩

subject to
𝑝−1
∑

𝑗=1

𝑝
∑

𝑙=𝑗+1

⟨

𝐴𝑖𝑗𝑙,𝛼 , 𝑋𝑗𝑙
⟩

= 𝑏𝑖, 𝑖 = 1,… , 𝑚,

𝑋𝑗𝑙 ∈ S𝛼𝑗+𝛼𝑙+ , 1 ≤ 𝑗 < 𝑙 ≤ 𝑝,

(5.7)

here 𝐶𝑗𝑙,𝛼 ∶= 𝐸𝑗𝑙,𝛼𝐶(𝐸𝑗𝑙,𝛼)𝖳 and 𝐴𝑖𝑗𝑙,𝛼 ∶= 𝐸𝑗𝑙,𝛼𝐴𝑖(𝐸𝑗𝑙,𝛼)𝖳. This is a
tandard-form SDP and can be solved with general-purpose solvers.
bserve that the number of equality constraints in this SDP is the same
s for the original problem (3.1), but the dimension of semidefinite
ones has been reduced. Since general-purpose SDP solvers can handle
ultiple small semidefinite cones much more efficiently than a single

arge one, problem (5.7) can often be solved much faster than (3.1). For
nstance, the numerical experiments in Zheng, Sootla et al. (2019) show
hat useful upper bounds 𝑈𝛼 on the optimal value of SDP relaxations
f polynomial optimization problems can be found with a reduction of
p to 80% in CPU time.

.5. Applications to SOS optimization

Block factor-width-two decompositions can also be applied to re-
uce the computational cost of SOS optimization. As discussed in
ection 4, an 𝑛-variate polynomial 𝑝 ∈ R[𝑥]𝑛,2𝑑 of even degree 2𝑑 is
OS if and only if there exist an exponent set B ⊆ N𝑛

𝑑 and a positive
emidefinite matrix 𝑄 such that (Parrilo, 2000)

(𝑥) = (𝑥B)𝖳 𝑄𝑥B. (5.8)

he fundamental computational challenge in optimization over the
one 𝛴𝑛,2𝑑 of 𝑛-variate SOS polynomials of degree at most 2𝑑 is that
he parameterization (5.8) requires in general an 𝑁 × 𝑁 positive
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semidefinite matrix with 𝑁 =
(𝑛+𝑑

𝑑

)

. This may be prohibitive even for
oderate values of 𝑛 and 𝑑.

For polynomials characterized by term sparsity, the computational
omplexity can be reduced dramatically using the approaches reviewed
n Section 4, which are based on chordal decomposition. To han-
le polynomials that are not term sparse, Ahmadi and Majumdar
2019) introduced the notion of scaled diagonally dominant sum-of-
quares (SDSOS). These are special SOS polynomials whose Gram
atrix 𝑄 in (5.8) belongs to the factor-width-two cone  |B|

2 . As in the
case of semidefinite programming, defining block-SDSOS polynomials
by replacing  |B|

2 with its superset  |B|
𝛼,2 for any partition 𝛼 of |B|

offers an improved inner approximation of 𝛴𝑛,2𝑑 .

efinition 5.3. Given a partition 𝛼 = {𝛼1,… , 𝛼𝑔} of |B|, a polynomial
∈ R[𝑥]𝑛,2𝑑 is said to be 𝛼-SDSOS if and only if there exists coefficient
ectors 𝑓𝑖𝑗,𝑡 ∈ R𝛼𝑖+𝛼𝑗 and exponent sets B𝑖𝑗 ⊆ N𝑛

𝑑 such that

(𝑥) =
∑

1≤𝑖<𝑗≤𝑔

(𝛼𝑖+𝛼𝑗
∑

𝑡=1

(

𝑓𝖳
𝑖𝑗,𝑡𝑥

B𝑖𝑗
)2

)

. (5.9)

The set of all 𝛼-SDSOS polynomials in 𝑛 independent variables and
egree no larger than 2𝑑 will be denoted by 𝛼-SDSOS𝑛,2𝑑 . It is not
ifficult to check that it is a cone. Moreover, since definition (5.9) is
onsiderably more structured that the definition (4.3) of general SOS
olynomials, the inclusion 𝛼-SDSOS𝑛,2𝑑 ⊆ 𝛴𝑛,2𝑑 is immediate.

For the uniform unit partition 𝛼 = {1,… , 1} of
(𝑛+𝑑

𝑑

)

, the cone 𝛼-
DSOS𝑛,2𝑑 reduces to the normal SDSOS cone studied by Ahmadi and
ajumdar (2019). At the other hand of the spectrum, for any partition

n the form 𝛼 = {𝛼1, 𝛼2} one has 𝛼-SDSOS𝑛,2𝑑 = 𝛴𝑛,2𝑑 . This second
tatement is a direct consequence of the following result, which reveals
connection between the polynomial cone 𝛼-SDSOS𝑛,2𝑑 and the block

actor-width-two cone  |B|
𝛼,2.

heorem 5.2 (Zheng, Sootla et al., 2019). A polynomial 𝑝 ∈ R[𝑥]𝑛,2𝑑
elongs to the cone 𝛼-SDSOS𝑛,2𝑑 if and only if it admits a Gram matrix
epresentation (5.8) with B ⊆ N𝑛

𝑑 and 𝑄 ∈  |B|
𝛼,2.

Similar to Theorem 5.1, we can build a hierarchy of inner approxi-
ations for the SOS cone 𝛴𝑛,2𝑑 .

orollary 5.2. Let 𝟏 = {1,… , 1}, 𝛼 = {𝛼1,… , 𝛼𝑔}, 𝛽 = {𝛽1,… , 𝛽ℎ} and
= {𝛾1, 𝛾2} be partitions of |B| such that 𝛼 ⊑ 𝛽. Then,

DSOS𝑛,2𝑑 = 𝟏-SDSOS𝑛,2𝑑 ⊆ 𝛼-SDSOS𝑛,2𝑑
⊆ 𝛽-SDSOS𝑛,2𝑑 ⊆ 𝛾-SDSOS𝑛,2𝑑 = 𝛴𝑛,2𝑑 . (5.10)

Consider now an optimization problem of the form

𝑤∗ ∶= min
𝑢

𝑤𝖳𝑢

subject to 𝑝(𝑥) ∶= 𝑝0(𝑥) +
𝑡

∑

𝑖=1
𝑢𝑖𝑝𝑖(𝑥) ≥ 0 ∀𝑥 ∈ R𝑛,

(5.11)

here 𝑝0, … , 𝑝𝑡 ∈ R[𝑥]𝑛,2𝑑 are given polynomials, 𝑤 ∈ R𝑡 is a given
ost vector, and 𝑢 ∈ R𝑡 is the decision variable. Let 𝛼 be any partition
f
(𝑛+𝑑

𝑑

)

. To compute an upper bound on the optimal cost 𝑤∗, one can
trengthen the nonnegativity constraint on 𝑝 with the SOS constraints
∈ 𝛴𝑛,2𝑑 , the SDSOS constraint 𝑝 ∈ SDSOS𝑛,2𝑑 , or the block-SDSOS con-

traint 𝑝 ∈ 𝛼-SDSOS𝑛,2𝑑 . The first approach replaces (5.11) with an SDP,
he second one leads to an SOCP, and the third yields a block-factor-
idth cone program that can be reformulated as a standard-form SDP.
ccording to Corollary 5.2, the SOS constraint provides the best upper
ound on 𝑤∗, but is the most computationally expensive. At the other
xtreme is the SDSOS constraint, which offers the fastest computations
ut may be too restrictive—in fact, the corresponding SOCP may even
e infeasible. The block-SDSOS constraint 𝑝 ∈ 𝛼-SDSOS𝑛,2𝑑 , instead,
an balance the computational speed and upper bound quality thanks
o the freedom one has in choosing the partition 𝛼. This expectation
267
s confirmed by the numerical experiments of Zheng, Sootla et al.
2019), but the problem of choosing an optimal partition for given
omputational resources remains an open problem.

. Applications

The matrix decomposition techniques reviewed in the previous
ections can be used to reduce the computational complexity of a wide
ariety of analysis and control problems that can be formulated as SDPs
r SOS programs. As anticipated in Section 3.1, complex large-scale
ynamical systems at the heart of modern technology often possess
natural graph-like structure, due for example to sparse interactions

etween subsystems in a network (Andersen, Hansson et al., 2014;
all’Anese et al., 2013; Riverso et al., 2014; Zheng, Mason et al., 2018;
heng et al., 2020). The key to enabling efficient numerical treatment
f control problems for such systems is to devise SDP or SOS relaxations
hat preserve this graph structure as much as possible. Precisely, one
ims to obtain SDPs with aggregate sparsity (cf. Section 3) or polyno-
ial optimization problems with term sparsity (cf. Section 4). If this can

e done, then the sparsity exploiting techniques discussed in Sections 3
nd 4 can bring considerable computational gains and enable the study
f very large systems.

This section describes how chordal sparsity can be exploited for
small selection of problems in control and machine learning. Sec-

ion 6.1 focuses on stability analysis for linear and nonlinear sys-
ems, and on decentralized control of networked linear systems. In
ection 6.2, we review sparsity-promoting relaxations of nonconvex
uadratically constrained quadratic programs (QCQPs) and apply them
o the well-known Max-Cut problem from graph theory, as well as to

network sensor location problem. Finally, Section 6.3 shows how
hordal sparsity allows for efficient verification of neural networks in
achine learning. We stress that these are only a few of the application
omains in which chordal decomposition has enabled considerable
rogress in recent years; other fields include, for instance, fluid me-
hanics, model predictive control, and optimal power flow. Table 2
rovides a (non-exhaustive) list of references.

.1. Stability analysis and decentralized control

Stability analysis and control synthesis problems for dynamical
ystems governed by ordinary differential equations can often be re-
ormulated as SDPs or SOS programs using Lyapunov functions (Boyd
t al., 1994; Lasserre, 2010; Papachristodoulou & Prajna, 2005; Par-
ilo, 2000; Zhou et al., 1996). If the interactions between individual
omponents of the system have a sparse graph structure, considering
yapunov functions with a separable or nearly-separable structure can
ead to sparse SDPs and SOS programs, which can be solved efficiently
sing the techniques in Sections 3 and 4. Here, we give three simple
xamples of this fact.

.1.1. Stability of linear networked systems
Consider a continuous-time linear autonomous system

𝑥̇(𝑡) = 𝐴𝑥(𝑡), (6.1)

here 𝑥(𝑡) ∈ R𝑛 is the system state at time 𝑡 and 𝐴 ∈ R𝑛×𝑛 is the system
atrix. It is well known (Boyd et al., 1994; Zhou et al., 1996) that

he equilibrium state 𝑥(𝑡) = 0 is asymptotically stable if and only if all
igenvalues of 𝐴 have negative real part. Classical Lyapunov stability
heory guarantees that this is true if and only if there exists a positive
efinite matrix 𝑃 such that the (positive definite) Lyapunov function
(𝑥) = 𝑥𝖳𝑃𝑥 decays monotonically along all system trajectories 𝑥(𝑡).
quivalently, 𝑃 must satisfy the strict LMIs

≻ 0, 𝐴𝖳𝑃 + 𝑃𝐴 ≺ 0. (6.2)
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Table 2
Applications of exploiting chordal sparsity in control, machine learning, relaxation of QCQP (Quadratically-constrained quadratic program), fluid dynamics, and beyond.

Area Topic References

Control Linear system analysis Andersen, Pakazadet al. (2014), Deroo et al. (2015), Mason and Papachristodoulou (2014),
Pakazad, Hansson, Andersen and Rantzer (2017), Zheng, Kamgarpour et al. (2018)

Decentralized control Deroo, Meinel, Ulbrich, and Hirche (2014), Heinke, Schug, and Werner (2020), Zheng,
Kamgarpour, Sootla, and Papachristodoulou (2020), Zheng, Mason et al. (2018)

Nonlinear system analysis Schlosser and Korda (2020), Tacchi, Cardozo et al. (2019), Zheng, Fantuzzi et al. (2019); Mason
(2015, Chapter 5)

Model predictive control Ahmadi, Hansson and Pakazad (2019), Hansson and Pakazad (2018)

Machine learning Verification of neural networks Batten et al. (2021), Dvijotham, Stanforth, Gowal, Qin, De, and Kohli (2020), Newton and
Papachristodoulou (2021), Zhang (2020)

Lipschitz constant estimation Chen, Lasserre et al. (2020), Latorre et al. (2020)
Training of support vector machine Andersen and Vandenberghe (2010)
Geometric perception & coarsening Chen, Liu, Jacobson and Levin (2020), Liu, Jacobson, and Ovsjanikov (2019), Yang and Carlone (2020)
Covariance selection Dahl et al. (2008), Zhang et al. (2018)
Subspace clustering Miller, Zheng, Roig-Solvas, Sznaier and Papachristodoulou (2019)

Relaxation of
QCQP and
POPs

Sensor network locations Jing, Wan, and Dai (2019), Kim et al. (2009), Nie (2009)
Max-Cut problem Andersen, Dahl et al. (2010), Garstka et al. (2021), Zheng et al. (2020)
Optimal power flow (OPF) Andersen, Hansson et al. (2014), Dall’Anese et al. (2013), Jabr (2011), Jiang (2017), Molzahn

and Hiskens (2014), Molzahn et al. (2013)
State estimation in power systems Weng, Li, Negi, and Ilić (2013), Zhang, Madani, and Lavaei (2017), Zhu and Giannakis (2014)

Others Fluid dynamics Arslan, Fantuzzi, Craske, and Wynn (2021), Fantuzzi, Pershin, and Wynn (2018)
Partial differential equations Mevissen (2010), Mevissen, Kojima, Nie, and Takayama (2008), Mevissen, Lasserre, and Henrion

(2011), Mevissen, Yokoyama, and Takayama (2009)
Robust quadratic optimization Andersen, Vandenberghe et al. (2010)
Binary signal recovery Fosson and Abuabiah (2019)
Solving polynomial systems Cifuentes and Parrilo (2016, 2017), Li, Xia, Zhang, and Zheng (2021), Mou, Bai, and Lai (2021),

Tacchi, Weisser, Lasserre and Henrion (2019)
Other problems Baltean-Lugojan, Bonami, Misener, and Tramontani (2019), Jeyakumar, Kim, Lee, and Li (2016),

Madani, Sojoudi, Fazelnia and Lavaei (2017), Pakazad, Hansson, Andersen and Nielsen (2017),
Yang and Deng (2020)
g
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t
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n
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e
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Now, suppose that (6.1) is a compact representation of a network
f 𝑙 linear subsystems with states 𝑥1 ∈ R𝑛1 , …, 𝑥𝑙 ∈ R𝑛𝑙 , whose interac-
ions can be represented by a static undirected graph 𝑑 ({1,… , 𝑙}, 𝑑 )

with (𝑖, 𝑗) ∈ 𝑑 if and only if systems 𝑖 and 𝑗 are directly coupled. In
particular, the dynamics of each subsystem are given explicitly by

̇ 𝑖 = 𝐴𝑖𝑖𝑥𝑖 +
∑

𝑗∈𝑖

𝐴𝑖𝑗𝑥𝑗 , 𝑖 = 1,… , 𝑙, (6.3)

where 𝑖 ∶= {𝑗 ∶ (𝑗, 𝑖) ∈ 𝑑} denotes the neighbors of system 𝑖. Systems
of this type are encountered, for example, when modeling power grids
(Riverso et al., 2014) and traffic systems (Wang, Zheng, Chen, Xu & Li,
2020; Zheng et al., 2020).

If the matrix 𝑃 in (6.2) is assumed to be block-diagonal with 𝑙 blocks
of size 𝑛1,… , 𝑛𝑙, meaning that we consider a quadratic Lyapunov func-
tion in the separable form (Boyd & Yang, 1989; Geromel, Bernussou, &
Peres, 1994; Zheng et al., 2020; Zheng, Mason et al., 2018)

𝑉 (𝑥) =
𝑙

∑

𝑖=1
𝑥𝖳𝑖 𝑃𝑖𝑥𝑖, (6.4)

then it is not hard to see that the block-sparsity graph of the matrix
𝐴𝖳𝑃+𝑃𝐴 in (6.2) is the same as the system graph 𝑑 . When this graph is
chordal with small maximal cliques, or admits a chordal extension with
the same property, a feasible block-diagonal matrix 𝑃 satisfying (6.2)
can be constructed for significantly larger networks than those that
can be handled without sparsity exploitation. Equivalently, for a given
network size, CPU time requirements can be reduced dramatically.

As an example, consider a network with a master node and 𝑙 − 1
independent subsystems connected to it, sketched in Fig. 6.1(a). For
simplicity, suppose that the subsystems have size 𝑛1 = ⋯ = 𝑛𝑙 = 10.
With a block-diagonal 𝑃 , the second LMI in (6.2) has the chordal
268

e

Fig. 6.1. (a) Graph 𝑑 for the network of 10-dimensional linear systems used to
enerate the results reported in Table 3. (b) Block sparsity pattern of the matrix

𝑃𝐴 + 𝐴𝖳𝑃 when 𝑃 is block-diagonal; each block has size 10 × 10, and there are 𝑙
diagonal blocks.

‘‘arrow-type’’ block sparsity shown in Fig. 6.1(b). Table 3 reports the
CPU time required to construct a feasible 𝑃 with MOSEK as a function
of the number 𝑙 of subsystems when the sparsity of this LMI is and
s not exploited.3 It is evident that exploiting chordal sparsity using
he methods described in Section 3 leads to a significant reduction in
PU time. Similar results are obtained for systems with more realistic
etwork graphs if their maximal cliques are small; see Deroo et al.
2015), Mason and Papachristodoulou (2014) and Zheng, Kamgarpour
t al. (2018), Zheng, Mason et al. (2018).

3 Computations were performed using the MATLAB toolboxes YALMIP and
parseCoLO on a laptop with 16GB RAM and an Intel i7 processor. The
onzero system matrices 𝐴𝑖𝑗 were generated randomly whilst ensuring the
xistence of a feasible block-diagonal 𝑃 .
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Table 3
CPU time (in seconds) required by the SDP solver MOSEK to construct
a block-diagonal Lyapunov matrix 𝑃 satisfying the LMIs in (6.2) for a
network of 𝑙 10-dimensional systems with connectivity graph 𝑑 shown
in Fig. 6.1(a).
𝑙 No sparsity exploitation Sparsity exploitation

10 0.55 0.26
50 14.92 0.90
100 86.09 1.21
125 113.06 1.17
150 185.42 1.96
175 334.13 2.69
200 498.49 3.55

Remark 6.1 (Separable Lyapunov Functions). Searching for a Lyapunov
unction 𝑉 (𝑥) with the separable structure (6.4) is convenient to ensure
hat the sparsity of the system matrix 𝐴 is inherited by the LMI 𝐴𝖳𝑃 +
𝐴 ≺ 0. The existence of such a separable Lyapunov function can
e guaranteed for special classes of stable linear systems (Carlson,
ershkowitz, & Shasha, 1992; Sootla, Zheng, & Papachristodoulou,
017, 2019), but not in general. When a separable Lyapunov function
(𝑥) fails to exist, the structure of the network graph 𝑑 may be still be

everaged to promote sparsity in (6.2); for instance, the case of banded
raphs, cycles and trees was studied by Mason and Papachristodoulou
2014). Determining a suitable structure for 𝑉 (𝑥) (equivalently, for the
atrix 𝑃 ) a priori for general graph structures, however, remains a

hallenging problem. ■

.1.2. Stability of sparse polynomial systems
Structured Lyapunov functions can bring computational advantages

lso when studying the asymptotic stability of sparse nonlinear systems
ith polynomial dynamics. As an example, consider a nonlinear system
ith the structure (Zheng, Fantuzzi et al., 2019, Section VI.D)

𝑥̇1 = 𝑓1(𝑥1, 𝑥2),

𝑥̇𝑖 = 𝑓𝑖(𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1), 𝑖 = 2,… , 𝑙 − 1,

𝑥̇𝑙 = 𝑓𝑙(𝑥𝑙−1, 𝑥𝑙),

(6.5)

where each vector field 𝑓𝑖 depends polynomially on its arguments and
𝑥𝑖 ∈ R𝑛𝑖 . Let 𝑥 = (𝑥1,… , 𝑥𝑙) be the collection of all system states and
write 𝑓 = (𝑓1,… , 𝑓𝑙). Suppose the system has an equilibrium at the
origin. This equilibrium is locally asymptotically stable if there exists a
region  ⊂ R𝑛1 × ⋯R𝑛𝑙 containing the origin, a constant 𝜖 > 0, and a
Lyapunov function 𝑉 ∶ R𝑛1 ×⋯ × R𝑛𝑙 → R such that

𝑉 (0) = 0, (6.6a)

𝑉 (𝑥) ≥ ‖𝑥‖22 ∀𝑥 ∈ , (6.6b)

− 𝑓 (𝑥) ⋅ ∇𝑉 (𝑥) ≥ 𝜖‖𝑥‖22 ∀𝑥 ∈ . (6.6c)

Upon fixing  = {𝑥 ∶ 𝑟2𝑖 − ‖𝑥𝑖‖2 ≥ 0 ∀𝑖 = 1,… , 𝑙}, which has a fully
separable structure, and requiring 𝑉 to be a polynomial, the last two in-
equalities become polynomial inequalities on a basic semialgebraic set.
One can therefore search for 𝑉 using SOS optimization. Moreover, the
structure of 𝑉 can be chosen to ensure that these polynomial inequal-
ities are correlatively sparse (cf. Sections 4.2.2 and 4.2.5), enabling
efficient implementation.

For example, if one takes

𝑉 (𝑥) =
𝑙

∑

𝑖=1
𝑉𝑖(𝑥𝑖) (6.7)

to have a fully separable structure as in the case of linear systems
considered previously, then the correlative sparsity graph of inequal-
ities (6.6b) is a graph with no edges, while that of (6.6c) is the same
chain graph characterizing the cascaded interactions between the state
269
Fig. 6.2. Correlative sparsity graphs for the polynomial inequality in (6.6c) when the
Lyapunov function 𝑉 has (a) the separable form (6.7), and (b) the partially separable
form (6.8).

Table 4
CPU time, in seconds, required by MOSEK to construct a structured quadratic Lyapunov
function (6.8) for a locally asymptotically stable, degree-3 polynomial system of the
form (6.5). Entries marked oom indicate memory errors.
𝑙 10 15 20 30 40 50

Standard SOS 1.4 21.3 262.1 oom oom oom
Sparse SOS 0.6 0.7 0.8 1.0 1.2 1.4

vectors 𝑥1,… , 𝑥𝑙, shown in Fig. 6.2(a) for 𝑙 = 8. If this choice for 𝑉 is
nsufficient, one can try the structured choice

(𝑥) =
𝑙−1
∑

𝑖=2
𝑉𝑖(𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1). (6.8)

n this case, the correlative sparsity graph of (6.6b) is the chain graph
entioned above, while that of (6.6c) is a chordal graph with maximal

liques {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3} for 𝑖 = 1,… , 𝑙 − 3, which is shown in
ig. 6.2(b) for 𝑙 = 8. One can of course build an entire hierarchy
f structured Lyapunov functions with increasing degree of couplings
etween subsystem variables, at the expense of increasing the number
f edges in the correlative sparsity graph of the polynomial inequalities
6.6b) and (6.6c). Numerical experiments by Zheng, Fantuzzi et al.
2019) for the structured Lyapunov function in (6.8), which we report
n Table 4, show that this approach can significantly reduce the com-
utation time and resources required to prove stability for nonlinear
ystems compared to standard SOS techniques.

Similar ideas can be used to partition nonlinear systems into sub-
ystems (Anderson & Papachristodoulou, 2011) and can be adapted to
roblems beyond stability analysis, such as the estimation of region of
ttractions, positively invariant sets, and global attractors (Schlosser &
orda, 2020; Tacchi, Cardozo et al., 2019).

.1.3. Decentralized control of linear networked systems
Consider a network of linear system with control inputs and distur-

ances,

𝑥̇𝑖 = 𝐴𝑖𝑖𝑥𝑖 +
∑

𝑗∈𝑖

𝐴𝑖𝑗𝑥𝑗 + 𝐵𝑖𝑢𝑖 +𝑀𝑖𝑑𝑖, 𝑖 = 1,… , 𝑙,

where 𝑥𝑖 ∈ R𝑛𝑖 , 𝑢𝑖 ∈ R𝑚𝑖 and 𝑑𝑖 ∈ R𝑞𝑖 denote the local state, input, and
disturbance of subsystem 𝑖, respectively, and 𝑖 is the index set of all
systems connected to system 𝑖. Setting 𝑥 = (𝑥1,… , 𝑥𝑙), 𝑢 = (𝑢1,… , 𝑢𝑙)
and 𝑑 = (𝑑1,… , 𝑑𝑙), the system can be written compactly as

̇ (𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) +𝑀𝑑(𝑡),

where 𝐴 has block sparsity induced by the system graph (cf. Sec-
tion 6.1.1), while 𝐵 = diag(𝐵1,… , 𝐵𝑙) and 𝑀 = diag(𝑀1,… ,𝑀𝑙) are
block-diagonal.

The optimal decentralized control problem (Geromel et al., 1994)
seeks to design static state feedback laws,
𝑢𝑖(𝑡) = −𝐾𝑖𝑖𝑥𝑖(𝑡), ∀𝑖 = 1,… , 𝑙, (6.9)
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that minimize the 2 norm of the transfer function from the distur-
bance 𝑑 to the output

𝑧 =

[

𝑄
1
2

0

]

𝑥 +

[

0

𝑅
1
2

]

𝑢.

ere, 𝑄 ∶= diag(𝑄1,… , 𝑄𝑙) and 𝑅 ∶= diag(𝑅1,… , 𝑅𝑙) are given block-
iagonal matrices. The decentralized constraint (6.9) makes the control
roblem challenging to solve (Furieri, Zheng, Papachristodoulou, &
amgarpour, 2019; Geromel et al., 1994). One simple strategy is to en-

orce that the closed-loop system admits a separable Lyapunov function
n the form (6.4). This allows translating the decentralized constraint
n the controller to other auxiliary design variables (Furieri et al.,
019; Furieri, Zheng, Papachristodoulou, & Kamgarpour, 2020). In
articular, a suboptimal decentralized controller can be computed using
he formula 𝐾𝑖𝑖 = 𝑍𝑖𝑋−1

𝑖 for each 𝑖 = 1,… , 𝑙 (Geromel et al., 1994;
heng et al., 2020, Section II.B), where the matrices 𝑍1,… , 𝑍𝑙 and
1,… , 𝑋𝑙 solve the SDP

min
𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖

𝑙
∑

𝑖=1
⟨𝑄𝑖, 𝑋𝑖⟩ + ⟨𝑅𝑖, 𝑌𝑖⟩

subject to (𝐴𝑋−𝐵𝑍) + (𝐴𝑋−𝐵𝑍)𝖳+𝑀𝑀𝖳⪯0, (6.10a)
[

𝑌𝑖 𝑍𝑖

𝑍𝖳
𝑖 𝑋𝑖

]

⪰ 0, 𝑋𝑖 ≻ 0 ∀𝑖 = 1,… , 𝑙 (6.10b)

nd 𝑋 = diag(𝑋1,… , 𝑋𝑙) and 𝑍 = diag(𝑍1,… , 𝑍𝑙) are block-diagonal
oncatenations of the matrix variables.

The cost function of this SDP and the constraints in (6.10b) are
ully separable, as they depend only on variables corresponding to

single subsystem. The coupling constraint (6.10a), instead, has a
lock sparsity pattern induced by the system graph by virtue of the
lock-diagonal structure of 𝐵, 𝑀 , 𝑋 and 𝑍. As in Section 6.1.1,
herefore, the chordal decomposition techniques of Section 3 allow for
fast numerical solution when the underlying system graph is sparse,
hich enables control synthesis for large-scale but sparse networks. In
ddition, customized distributed design methods that combine chordal
ecomposition with ADMM can solve (6.10) in a privacy-safe way,
ithout requiring subsystems to share information about their local
ynamics (Zheng et al., 2020).

.2. Relaxation of nonconvex QCQPs

A (nonconvex) quadratically constrained quadratic program (QCQP)
s an optimization problem in the form

min
𝑥

𝑥𝖳𝑃0𝑥 + 2𝑞𝖳0 𝑥 + 𝑟0

subject to 𝑥𝖳𝑃𝑖𝑥 + 2𝑞𝖳𝑖 𝑥 + 𝑟𝑖 ≤ 0, 𝑖 = 1,… , 𝑚,
(6.11)

here 𝑥 ∈ R𝑛 is the optimization variable and 𝑃𝑖 ∈ S𝑛, 𝑞𝑖 ∈ R, 𝑟𝑖 ∈
, 𝑖 = 0, 1,… , 𝑚 are given problem data. QCQPs have very powerful
odeling capabilities; for instance, many hard combinatorial and dis-

rete optimization problems can written in the form (6.11) (Nesterov,
olkowicz, & Ye, 2000). This also means that QCQPs are hard to solve

n general, so many different relaxation strategies have been proposed
o find approximate bounds and feasible values for the optimization
ariable 𝑥 (Nesterov et al., 2000; Park & Boyd, 2017). One approach
hat provides good bounds, both empirically and theoretically (Nes-
erov et al., 2000), is to introduce the positive semidefinite matrix
= 𝑥𝑥𝖳 and rewrite (6.11) as

min
𝑥,𝑋

⟨𝑃0, 𝑋⟩ + 2𝑞𝖳0 𝑥 + 𝑟0

subject to ⟨𝑃𝑖, 𝑋⟩ + 2𝑞𝖳𝑖 𝑥 + 𝑟𝑖 ≤ 0, 𝑖 = 1,… , 𝑚,

𝑋 = 𝑥𝑥𝖳.

Upon relaxing the intractable constraint 𝑋 = 𝑥𝑥𝖳 into the inequality
⪰ 𝑥𝑥𝖳 and applying Schur’s complement to rewrite the latter as an
270
LMI, we arrive at the semidefinite relaxation

min
𝑥,𝑋

⟨𝑃0, 𝑋⟩ + 2𝑞𝖳0 𝑥 + 𝑟0

subject to ⟨𝑃𝑖, 𝑋⟩ + 2𝑞𝖳𝑖 𝑥 + 𝑟𝑖 ≤ 0, 𝑖 = 1,… , 𝑚,
[

1 𝑥𝖳

𝑥 𝑋

]

⪰ 0,

hich is equivalent to the following primal-form SDP with nonnegative
ariables

min
𝑍∈S𝑛+1 ,𝑤

⟨(

𝑟0 𝑞𝖳0
𝑞0 𝑃0

)

, 𝑍
⟩

subject to
⟨(

𝑟𝑖 𝑞𝖳𝑖
𝑞𝑖 𝑃𝑖

)

, 𝑍
⟩

+𝑤𝑖 = 0, 𝑖 = 1,… , 𝑚,

𝑍11 = 1,

𝑍 ⪰ 0, 𝑤 ≥ 0.

(6.12)

t is not difficult to see that the optimal value of problem (6.12) bounds
hat of the QCQP (6.11) from below and that, if an optimal solution 𝑍⋆

as rank one, then the relaxation is exact and 𝑍⋆ =
(

1 𝑥𝖳⋆
𝑥⋆ 𝑥⋆𝑥𝖳⋆

)

where
𝑥⋆ solves (6.11).

If the data matrices 𝑃0,… , 𝑃𝑚 are sparse, then the aggregate sparsity
pattern  of the SDP (6.12) is also sparse, and the positive semidef-
inite constraint on 𝑍 can be replaced with the conic constraint 𝑍 ∈
S𝑛+1+ ( , ?). The chordal decomposition techniques described in Section 3
can therefore be applied to solve (6.12) efficiently. The following
subsections briefly discuss two types of problem for which sparsity can
be exploited effectively: Max-Cut problems (Goemans & Williamson,
1995) and sensor network location problems (Jing et al., 2019; Kim
et al., 2009; Nie, 2009; So & Ye, 2007).

6.2.1. Max-Cut problem
The maximum cut (Max-Cut) problem is a classic problem in graph

theory (Goemans & Williamson, 1995). Consider an undirected graph
( , ) with 𝑛 vertices such that each edge (𝑖, 𝑗) ∈  is assigned a
onzero weight 𝑊𝑖𝑗 , and set 𝑊𝑖𝑗 = 0 if (𝑖, 𝑗) ∉  . The Max-Cut problem
ims to partition the graph’s vertices into two complementary sets 1
nd 2 such that the total weight of all edges linking 1 and 2 is
aximized. Given a binary variable 𝑥 ∈ {−1,+1}𝑛 assigning nodes to

ne of the two partitions, one seeks to maximize
1
2

∑

𝑖,𝑗∶𝑥𝑖𝑥𝑗=−1
𝑊𝑖𝑗 =

1
4
∑

𝑖,𝑗
𝑊𝑖𝑗 (1 − 𝑥𝑖𝑥𝑗 ).

his is equivalent to solving

min
𝑥

𝑥𝖳𝑊 𝑥

subject to 𝑥2𝑖 = 1, 𝑖 = 1,… , 𝑛,
(6.13)

here 𝑊 is the given matrix of weights.
This problem is a particular QCQP, and can easily be rewritten in the

generic form (6.11) using data matrices 𝑃0, 𝑃1,… , 𝑃𝑛 whose aggregate
sparsity graph coincides with the original graph . If  is sparse with
small maximal cliques, therefore, SDP relaxations of (6.13) can be
solved efficiently using the sparsity-exploiting techniques in Section 3.
Indeed, numerical experiments by Andersen, Dahl et al. (2010) and
Zheng et al. (2020) demonstrated that the sparsity-exploiting solvers
SMCP and CDCS can solve benchmark Max-Cut problems from the
SDPLIB problem library (Borchers, 1999) order of magnitude faster
than standard conic solvers.

6.2.2. Sensor network location
The sensor network location problem, also known as Graph Real-

ization (So & Ye, 2007), has important applications such as inventory
management and environment monitoring. At a basic level, the prob-
lem is to find unknown sensor points 𝑥1,… , 𝑥𝑛 ∈ R𝑑 (𝑑 = 2 or
3) satisfying some specified distance constraints, as well as distance
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constraints with respect to 𝑚 known anchor points 𝑎1,… , 𝑎𝑚 ∈ R𝑑 .
Precisely, given pairing sets

𝑥 ⊆ {1,… , 𝑛} × {1,… , 𝑛},

𝑎 ⊆ {1,… , 𝑚} × {1,… , 𝑛},

we seek to find sensor locations 𝑥1,… , 𝑥𝑛 ∈ R𝑑 such that

‖𝑥𝑖 − 𝑥𝑗‖
2 = 𝑑2𝑖𝑗 , (𝑖, 𝑗) ∈ 𝑥,

‖𝑎𝑖 − 𝑥𝑗‖
2 = 𝑓 2

𝑖𝑗 , (𝑖, 𝑗) ∈ 𝑎,
(6.14)

where the numbers 𝑑𝑖𝑗 and 𝑓𝑖𝑗 are specified distances.
One way to relax the sensor location problem into an SDP is to

consider (6.14) as a set of quadratic constraints for 𝑥1,… , 𝑥𝑛, and apply
the generic SDP relaxation strategy to the QCQP (Kim et al., 2009)

min
𝑥1 ,…,𝑥𝑛∈R𝑑

0

subject to (6.14).
(6.15)

It is clear that the data matrices and vectors of this QCQP are very
sparse, and that the aggregate sparsity pattern of the corresponding
SDP relaxation is determined only by the edge sets 𝑎 and 𝑥. Then,
the techniques in Section 3 can be applied to solve the relaxed problem
quickly; we refer the interested reader to Kim et al. (2009) for a more
detailed discussion and experiment results. Similar ideas can be used
to analyze sensor location problems where the distance measurements
𝑑𝑖𝑗 and 𝑓𝑖𝑗 are affected by noise (Kim et al., 2009).

Remark 6.2. There are other ways to formulate an SDP relaxation
for (6.15). One (So & Ye, 2007) is to introduce a matrix variable
𝑌 = 𝑋𝑋𝖳 with 𝑋 =

[

𝑥1, 𝑥2,… , 𝑥𝑛
]

∈ R𝑑×𝑛, rewrite all the constraints
in (6.15) as linear equalities in 𝑋 and 𝑌 , relax the nonconvex relation
between these variables into the inequality 𝑌 ⪰ 𝑋𝑋𝖳 and apply Schur’s
complement to obtain an SDP. A sparsity-exploiting version of this
approach is described by Kim et al. (2009, Section 3.3). Another option
(Nie, 2009) is to formulate the search for the sensor locations as an
unconstrained polynomial optimization problem,

min
𝑥1 ,…,𝑥𝑛

∑

(𝑖,𝑗)∈𝑎

(‖𝑎𝑖 − 𝑥𝑗‖
2 − 𝑓 2

𝑖𝑗 )
2 +

∑

(𝑖,𝑗)∈𝑥

(‖𝑥𝑖 − 𝑥𝑗‖
2 − 𝑑2𝑖𝑗 )

2.

The polynomial objective is term-sparse when the coupling set 𝑥 con-
tains only a small subset of all pairs (𝑖, 𝑗) (precisely, it is correlatively
sparse; see Section 4.2 for definitions of these concepts). Therefore, the
sparse SOS techniques outlined in Section 4.2 can be applied to solve
the problem efficiently. The interested reader is referred to Nie (2009)
for experiment results. ■

6.3. Machine learning: Verification of neural networks

Neural networks are one of the fundamental building blocks of
modern machine-learning methods. For safety-critical applications, it is
essential to ensure that they are provably robust to input perturbations.
Given a neural network 𝑓 (𝑥0) ∶ R𝑑 → R𝑚, a nominal input 𝑥̄ ∈ R𝑑 , a
linear function 𝜙 ∶ R𝑚 → R on the network’s output, and a perturbation
radius 𝜖 ∈ R, the network verification problem (Raghunathan et al.,
2018; Salman, Yang, Zhang, Hsieh, & Zhang, 2019; Tjandraatmadja,
Anderson, Huchette, Ma, Patel, & Vielma, 2020) asks to either verify
that

𝜙(𝑓 (𝑥0)) > 0 ∀𝑥0 ∶ ‖𝑥0 − 𝑥̄‖∞ ≤ 𝜖, (6.16)

or to identify at least one counterexample to this relation.
Consider an 𝐿-layer feedforward neural network where

𝑓 (𝑥0) = 𝑊𝐿𝑥𝐿 + 𝑏𝐿,

𝑥𝑖+1 = ReLU(𝑊𝑖𝑥𝑖 + 𝑏𝑖), 𝑖 = 0,… , 𝐿 − 1,

where 𝑊𝑖 ∈ R𝑛𝑖+1×𝑛𝑖 and 𝑏𝑖 ∈ R𝑛𝑖+1 are the network weights and biases,
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respectively, and the so-called Rectified Linear Unit (ReLU) activation
Fig. 6.3. Abstraction of (a) a 4-layer neural network into (b) a chordal chain graph
with four vertices and maximal cliques {𝑖 − 1, 𝑖}, {𝑖, 𝑖 + 1} and {𝑖 + 1, 𝑖 + 2}.

Fig. 6.4. CPU time (seconds) required to solve SDP relaxations of the neural network
verification problem (6.17) for image verification, with and without sparsity exploita-
tion. The SDP solver was MOSEK, and sparsity was exploited using SparseCoLO. The
neural network, with 𝐿 = 2 layers and 𝑛𝑖 = 64 neurons per layer, was trained for image
classification on the MNIST dataset.

function ReLU ∶ R𝑘 → R𝑘 is the element-wise positive part of its
argument, ReLU(𝑧) = [max(𝑧𝑖, 0)]𝑘𝑖=1. Condition (6.16) can be decided
by solving the optimization problem

𝛾⋆ ∶= min
𝑥0 ,…,𝑥𝐿

𝑐𝖳𝑥𝐿 + 𝑐0

subject to 𝑥𝑖+1 = ReLU(𝑊𝑖𝑥𝑖 + 𝑏𝑖), 𝑖 ∈ [𝐿], (6.17a)

‖𝑥0 − 𝑥̄‖∞ ≤ 𝜖, (6.17b)

where [𝐿] ∶= {0, 1,… , 𝐿 − 1} and 𝑐, 𝑐0 are problem data related
to the linear function 𝜙(⋅). If 𝛾⋆ > 0, then (6.16) holds, otherwise
counterexamples can be found.

Since the action of the ReLU function can be described by quadratic
constraints,

𝑦 = ReLU(𝑧) ⟺ 𝑦 ≥ 𝑧, 𝑦 ≥ 0, 𝑦(𝑦 − 𝑧) = 0,

problem (6.17) can be reformulated into a QCQP with variable 𝑥 =
[

𝑥𝖳0 , 𝑥
𝖳
1 ,… , 𝑥𝖳𝐿

]𝖳 (Raghunathan et al., 2018), and subsequently relaxed
into an SDP as described in Section 6.2 above. If the optimal value of
this SDP is positive, the network is verified; otherwise, nothing can be
said.

Since the constraints (6.17a) have a very natural cascading struc-
ture, the interaction among variables 𝑥0,… , 𝑥𝐿 can be modeled by a
line graph with maximal cliques 𝑖 = {𝑖, 𝑖 + 1} for 𝑖 = 0,… , 𝐿 − 1
(see Fig. 6.3 for illustration with 𝐿 = 4). The SDP relaxation of (6.17)
inherits this cascading structure, in addition to any sparsity coming
from the structure of the weight matrices 𝑊𝑖. The chordal decompo-
sition techniques described in Section 3 can therefore be applied to
solve it efficiently. This idea has been recently validated by Batten
et al. (2021), who considered robustness verification in the context
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of image classifiers. For instance, the results reproduced in Fig. 6.4
for a neural network with 𝐿 = 2 layers and 𝑛𝑖 = 64 neurons per
layer show that exploiting sparsity reduced by two orders of magnitude
the CPU time required to verify the robustness of an image classi-
fier on the MNIST dataset. Similar results were obtained by Newton
and Papachristodoulou (2021), and interested readers are invited to
consult Table 2 for references to more machine learning applications
where sparsity exploitation can dramatically reduce computational
complexity.

7. Conclusion and outlook

In this paper, we reviewed theory and applications of decomposi-
tion methods for large-scale semidefinite and polynomial optimization.
Specifically, we presented classical chordal decomposition results for
sparse positive semidefinite matrices (cf. Theorems 2.1–2.4) and we
discussed how they can be exploited to implement efficient first- and
second-order algorithms for SDPs (Section 3). We then showed how
matrix decomposition (primarily, but not necessarily, chordal) can be
leveraged to exploit term sparsity and structural sparsity in large-scale
polynomial optimization (Section 4). In particular, we demonstrated
that many sparsity-exploiting techniques for polynomial inequalities—
including the well-known correlatively sparse SOS representations and
the recent TSSOS, CS-TSSOS and chordal-TSSOS hierarchies—are based
on the general matrix decomposition strategy outlined in Section 4.2.1.
We also discussed how the classical chordal decomposition theorem
(Theorem 2.1) can be generalized in different ways to obtain SOS
chordal decomposition theorems for sparse polynomial matrices (cf.
Theorems 4.4–4.6 and further results by Zheng and Fantuzzi (2020)).
In Section 5, we reviewed factor-width decompositions for SDPs with
dense semidefinite constraints, to which chordal decomposition cannot
be applied. Finally, in Section 6 we demonstrated how some of these
techniques can be used to reduce the computational complexity of
SDPs and polynomial optimization problems encountered in a number
of control and machine learning applications. References to these and
other applications are summarized in Table 2.

Despite the considerable progress made in recent years, numerical
methods for semidefinite and polynomial optimization are still far from
being mature. The most pressing open challenge, in our opinion, lies
in bridging the gap between the size of SDPs that can currently be
solved with tractable computational resources, and the size of the SDPs
that arise from complex control applications. Indeed, the state-of-the-
art decomposition techniques reviewed in this article are often still
not enough to enable the use of semidefinite programming to analyze
and control large-scale nonlinear systems. The same is true for control
problems with systems of smaller size, but which require real-time
computations.

Achieving significant progress is likely to require theoretical ex-
tensions of the decomposition approaches we have discussed, as well
as the development of efficient software that can effectively exploit
modern multi-core and distributed-memory computer architectures. We
conclude this article by outlining some possible research directions that
may bear fruit in the near future.

Combining matrix decomposition with other structures

SDPs encountered in applications often have structural properties
beyond sparsity, which can also be leveraged to reduce computational
complexity; examples are symmetries, the existence of low-rank so-
lutions, and low-rank data matrices (De Klerk, 2010; Gatermann &
Parrilo, 2004; Majumdar et al., 2020). It is natural to try and combine
the exploitation of such additional structure with matrix decomposi-
tion, but, to the best of our knowledge, a unified and theoretically
robust framework to do so is yet to be developed. Particular questions
to be answered in this context include whether there exist symmetry
reduction techniques that preserve (or even promote) sparsity in SDPs,
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and whether low-rank positive semidefinite completions (Dancis, 1992,
Theorem 1.5) can be exploited in SDPs with aggregate sparsity and low-
rank optimal solutions (see Jiang, 2017 and Miller, Zheng, Roig-Solvas
et al., 2019 for some results in this direction).

In addition, although we have presented chordal and factor-width
decompositions separately, they can be combined if either one, ap-
plied in isolation, does not reduce the complexity of a large-scale SDP
enough. A relatively straightforward approach (Miller, Zheng, Sznaier
et al., 2019) is to first apply the standard chordal decomposition,
and then enforce the positive semidefinite constraints associated to
large maximal cliques using factor-width approximations. This idea can
be taken forward in various directions; for instance, one could use
block-chordal and block-factor-width decompositions, or extend ideas
by Garstka, Cannon, and Goulart (2020) to formulate adaptive strate-
gies wherein cliques are either combined or factor-width decomposed,
depending on their relative sizes and on the available computational
resources. Both ideas remain largely unexplored, and further work is
required to determine if they can be brought to bear on real-life control
problems.

Tailored hierarchies for sparse polynomial optimization

Almost all existing methods for exploiting term sparsity in polyno-
mial optimization rely on the general matrix decomposition approach
presented in Section 4.2.1, where the Gram matrix associated with SOS
certificates of nonnegativity is decomposed according to the maximal
cliques of a sparsity graph to be prescribed a priori. While the correl-
tively sparse, TSSOS, and related hierarchies described in Section 4.2
ive useful general strategies to select this sparsity graph, there is ample
cope for tailoring the graph structure in particular control applica-
ions. It is not unreasonable to expect that problem-specific choices,
otivated for example by physical intuition on the dynamical system

ne is trying to analyze or control, may bring significant further gains.
owever, it remains to be seen whether this expectation can be met in
ractice. Better integration between the development of optimization
ools and application-related modeling, discussed further below, seems
ey to achieving progress in this direction.

ecomposition and completion of polynomial matrices

The exploitation of sparsity for polynomial matrix inequalities can
e improved in various directions, reducing computational complexity
eyond what can be achieved using only the SOS chordal decomposi-
ion results summarized in Section 4.3. For instance, those results can
e combined in a natural way with techniques to leverage term-sparsity
n scalar polynomial inequalities. Indeed, when a polynomial matrix
nequality 𝑃 (𝑥) ⪰ 0 is ‘‘scalarized’’ into a nonnegativity condition for
he polynomial 𝑝(𝑥, 𝑦) = 𝑦𝖳𝑃 (𝑥)𝑦, the structural sparsity of 𝑃 translates
nto correlative sparsity of 𝑝 with respect to 𝑦. The matrix decomposi-
ion results of Section 4.3 have equivalent statement at the scalar level
Zheng & Fantuzzi, 2020, Section 4) that can be used to refine or extend
erm-sparse SOS decomposition hierarchies for polynomials. The latter,
n turn, can be used to efficiently handle (scalarized) polynomial matrix
nequalities.

It would also be interesting to establish SOS completion results for
parse polynomial matrices, in the spirit of Theorem 2.2. Preliminary
esults in this direction exist (Zheng, Fantuzzi, & Papachristodoulou,
018a), but are far from complete. Extension of the results in this
eference will contribute to building a comprehensive theory for SOS
hordal decomposition and completion of polynomial matrices, which
an be used to build tractable SDP approximations of large-scale opti-

ization problems with sparse polynomial matrix inequalities.
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To chordality and beyond

Exploiting sparsity in semidefinite and polynomial optimization
without modifying the problem usually requires chordality (cf. Theo-
rems 2.1–2.4 for SDPs, and Theorems 4.3, 4.5 and 4.6 for polynomial
optimization). Enforcing chordality with traditional chordal extension
strategies, even if approximately minimal, may lead to graphs with
unacceptably large maximal cliques. The largest maximal clique size
plays a major role in determining the computational complexity of a
decomposed SDP (or SDP relaxation of a polynomial optimization prob-
lem). Therefore, systematic techniques to produce chordal extensions
that approximately minimize the largest maximal cliques size would
be very valuable.

If good chordal extensions prove hard to find, a compelling al-
ternative is to sacrifice chordality and use nonchordal graphs with
small cliques that can be determined analytically. This was done, for
instance, by Nie and Demmel (2009) and Kočvara (2020). While clique
decompositions of matrix inequalities based on nonchordal graphs are
conservative in general, it may still be possible to identify classes of ma-
trices for which the equivalence between the original and decomposed
inequalities can be guaranteed. For example, sparse (scaled)-diagonally
dominant matrices always admit a clique decomposition, even when
their sparsity graph is not chordal (Miller, Zheng, Sznaier et al., 2019,
Proposition 1). The same is true for certain positive semidefinite ma-
trices whose sparsity pattern can be extended to be of a ‘‘block-arrow’’
type (Kočvara, 2020). Necessary and sufficient cycle conditions for pos-
itive semidefinite completion problem with nonchordal sparsity graphs
were investigated by Barrett, Johnson, and Loewy (1996). Extensions
of these results, even if limited to particular application domains, are
likely to enable considerable progress in the solution of large-scale SDPs
with nonchordal sparsity.

Efficient software for modern computers

Reliable and user-friendly implementations of the cutting-edge de-
composition techniques for SDPs and polynomial optimization prob-
lems reviewed in this paper are, in our opinion, just as important
as further theoretical advances. Most of the available open-source
packages mentioned in Sections 3.5 and 4.5 have not yet reached the
level of maturity required to solve robustly a wide range of SDPs or
polynomial optimization problems arising from real-life applications.
Moreover, many of the commonly-used optimization modeling environ-
ments on which these packages rely are by now over a decade old, and
often cannot handle extremely large problems of industrial relevance
efficiently.

The lack of very-high-performance software currently limits the
scale of problems that can be solved without ad-hoc implementa-
tions. Since such implementations require considerable expertise in
large-scale optimization, the deployment of SDP-based frameworks for
system analysis and control to real-world problems is currently hin-
dered. We expect that improvements in software reliability, efficiency,
user-friendliness, and the ability to leverage modern multi-processor
and/or distributed computing platforms will considerably increase the
practical impact of decomposition methods for SDPs, bringing great
benefit to the community of application-oriented researchers.

Blending application-driven modeling with optimization

The decomposition techniques reviewed in Sections 3–5 apply to
generic standard-form SDPs and polynomial optimization problems,
irrespective of the context in which they arise. In control-related ap-
plication, however, SDPs and polynomial optimization problems often
come from modeling or relaxation frameworks for the study of dy-
namical systems, the details of which strongly affect the structure of
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the eventual optimization problem. Bridging the existing gaps between
application-driven modeling and the development of large-scale opti-
mization algorithm promises to enable significant progress in the study
of linear and nonlinear systems. On the one hand, it may be possible to
implement tailored SDP solvers that target special structures arising in
particular applications. On the other hand, given a particular control
or analysis task, one should attempt to formulate modeling approaches
that lead to optimization problems with a ‘‘computationally friendly’’
structure. For example, when studying fluid flows using semidefinite
programming (see, e.g., Fantuzzi et al., 2018 and Arslan et al., 2021),
a smart discretization of the flow field leads to SDPs with chordal ag-
gregate sparsity that can be solved in minutes even though their linear
matrix inequalities have more than 10 000 rows/columns. Similarly,
using structured Lyapunov (or Lyapunov-like) functions as explained
in Section 6.1 can lead to structured SDPs, enabling the analysis of
increasingly large systems in fields such as robotics, smart energy grid,
and autonomous transportation.

Of course, the design of analysis and control frameworks that
combine system-level modeling with algorithmic considerations will
present a number of challenges. Resolving these challenges, however,
promises to remove long-standing barriers to the study of complex
systems, especially nonlinear ones. Success seems likely to require
a collaborative effort between researchers working in different areas
and an increasing awareness of outstanding problems in particular
application domains, as well as of state-of-the-art tools for large-
scale optimization. We hope that the present review of decomposition
methods for semidefinite and polynomial optimization takes a step in
the right direction and can inspire new discoveries in the near future.
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Appendix A. Cholesky factorization with no fill-in

The no fill-in property of the Cholesky factorization for positive
definite matrices with chordal sparsity is one of the most important
results for sparsity exploitation in matrix calculations. For instance,
it enables a simple proof of Theorem 2.1 and efficient computations
involving barrier functions for sparse matrix cones (cf. Section 3.4.2).
To formally introduce this no fill-in property, we first define the notions
of simplicial vertices and perfect elimination ordering for graphs.

Definition A.1. A vertex 𝑣 in a graph ( , ) is called simplicial if all
its neighbors are connected to each other.

Definition A.2. An ordering 𝜎 = {𝑣1,… , 𝑣𝑛} of the vertices in a graph
 is a perfect elimination ordering if each 𝑣𝑖, 𝑖 = 1,… , 𝑛, is a simplicial
vertex in the subgraph induced by the vertices {𝑣𝑖, 𝑣𝑖+1,… , 𝑣𝑛}.

For example, vertices 2, 4, 6 are simplicial for the graph in
Fig. A.1(a), and the ordering 𝜎 = {2, 4, 6, 1, 3, 5} is a perfect elimination
ordering. A graph  is chordal if and only if it has at least one perfect
elimination ordering (Vandenberghe & Andersen, 2015, Theorem 4.1).
The maximal cardinality search (Algorithm 1) either returns one of the
perfect elimination orderings or certifies that none exists in (||+ ||)

time (Tarjan & Yannakakis, 1984).



Annual Reviews in Control 52 (2021) 243–279Y. Zheng et al.

u
d
K
C
s

A

a
g
a

Algorithm 1 Maximal cardinality search
Input: A graph ( , )
Output: An elimination ordering 𝛼 of 
for all vertices 𝑣 in  do

𝑤(𝑣) = 0.
end for
for 𝑖 = 𝑛 to 1 do

pick an unnumbered vertex 𝑣 with maximum weight in 𝑤;
set 𝛼(𝑣) = 𝑖;
for all unnumbered vertices 𝑢 adjacent to 𝑣 do

𝑤(𝑢) ← 𝑤(𝑢) + 1;
end for

end for

Fig. A.1. Chordal graph decomposition: (a) a chordal graph with six nodes; (b)
maximal cliques; (c) a clique tree that satisfies the clique intersection property.

Fig. A.2. (a) A symbolic 6 × 6 sparse positive definite matrix 𝑍 with chordal sparsity
graph shown in Fig. A.1(a). (b) Sparsity pattern of 𝑃𝜎𝑍𝑃 𝖳

𝜎 for the perfect elimination
ordering 𝜎 = {2, 4, 6, 1, 3, 5}. (c) Cholesky factor of 𝑍; the entries marked by denote
nonzero fill-ins. (d) Cholesky factor of 𝑃𝜎𝑍𝑃 𝖳

𝜎 with no fill-in.

Now, given a positive definite matrix 𝑍 ∈ S𝑛+( , 0) with a chordal
sparsity pattern  , we have a sparse Cholesky factorization with zero
fill-in (Rose, 1970), (Vandenberghe & Andersen, 2015, Theorem 9.1):

𝑃𝜎𝑍𝑃 𝖳
𝜎 = 𝐿𝐿𝖳, 𝑃 𝖳

𝜎 (𝐿 + 𝐿𝖳)𝑃𝜎 ∈ S𝑛( , 0), (A.1)

where 𝑃𝜎 is a permutation matrix corresponding to the perfect elimina-
tion ordering 𝜎 and 𝐿 is a lower-triangular matrix. This can be proven
sing an elimination process according to the perfect elimination or-
ering 𝜎; see Vandenberghe and Andersen (2015, Chapter 9.1) and
akimura (2010) for details. Fig. A.2 illustrates the process of sparse
holesky factorization for a 6 × 6 positive definite matrix with chordal
274

parsity graph shown in Fig. A.1(a).
ppendix B. A proof of Theorem 2.1

The sparse Cholesky factorization (A.1) with zero fill-in allows for
simple proof of Theorem 2.1. For simplicity, but without loss of

enerality, assume that the matrix 𝑍 has already been permuted in such
way that 𝜎 = {1, 2,… , 𝑛} is a perfect elimination ordering, so 𝑃𝜎 = 𝐼

in (A.1). We denote the columns of 𝐿 by 𝑙1, 𝑙2,… , 𝑙𝑛, and write

𝑍 = 𝐿𝐿𝖳 =
𝑛
∑

𝑖=1
𝑙𝑖𝑙

𝖳
𝑖 .

Since 𝐿+𝐿𝖳 has the same sparsity pattern  as 𝑍, the non-zero elements
of each column vector 𝑙𝑖 must be indexed by a maximal clique ℎ𝑖 for
some ℎ𝑖 ∈ {1,… , 𝑡}. Thus, the non-zero elements of 𝑙𝑖 can be extracted
through multiplication by the matrix 𝐸𝑖 , and we have

𝑙𝑖 = 𝐸𝖳
ℎ𝑖

𝐸ℎ𝑖
𝑙𝑖 ⇒ 𝑙𝑖𝑙

𝖳
𝑖 = 𝐸𝖳

ℎ𝑖

(

𝐸ℎ𝑖
𝑙𝑖𝑙

𝖳
𝑖 𝐸

𝖳
ℎ𝑖

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑄𝑖

𝐸ℎ𝑖
.

Now, let 𝐽𝑘 = {𝑖 ∶ ℎ𝑖 = 𝑘} be the set of column indices 𝑖 such that
column 𝑖 is indexed by clique 𝑘. These index sets are disjoint and
∪𝑘𝐽𝑘 = {1,… , 𝑛}, so we obtain

𝑍 = 𝐿𝐿𝖳 =
𝑛
∑

𝑖=1
𝐸𝖳
ℎ𝑖

𝑄𝑖𝐸ℎ𝑖

=
𝑡

∑

𝑘=1

∑

𝑖∈𝐽𝑘

𝐸𝖳
𝑘
𝑄𝑖𝐸𝑘

=
𝑡

∑

𝑘=1
𝐸𝖳
𝑘

(

∑

𝑖∈𝐽𝑘

𝑄𝑖

)

𝐸𝑘 .

Introducing the matrices 𝑍𝑘 =
∑

𝑖∈𝐽𝑘 𝑄𝑖, each of which is in S|𝑘|+ by
construction, we obtain the decomposition (2.3) in Theorem 2.1.

Appendix C. Some properties of maximal cliques

A connected chordal graph ( , ) with 𝑛 vertices has at most
𝑛 − 1 maximal cliques that can be identified in linear time—more
precisely, with a complexity of (||+||) (Berry et al., 2004; Tarjan &
Yannakakis, 1984). Algorithm 2 is a simple strategy with such a com-
plexity, and it finds all maximal cliques based on a perfect elimination
ordering. For example, the chordal graph in Fig. A.1(a) has the perfect
elimination ordering 𝜎 = {2, 4, 6, 1, 3, 5}, and Algorithm 2 constructs the
sets

1 = {2, 1, 3}, 2 = {4, 3, 5}, 3 = {6, 5, 1},

4 = {1, 3, 5}, 5 = {3, 5}, 6 = {5}.

The sets 1,… ,4 are maximal cliques, while 5,6 are not because
they are subsets of 4.

The maximal cliques of a chordal graph can be arranged in a so-
called clique tree, that is, a graph  (𝛤 ,𝛯) with the maximal cliques
𝛤 = {1,… ,𝑡} as its vertices and an edge set 𝛯 ⊆ 𝛤 ×𝛤 . In particular,
the clique tree can be chosen to satisfy the clique intersection property,
meaning that 𝑖 ∩ 𝑗 ⊆ 𝑘 if clique 𝑘 lies on the path between cliques
𝑖 and 𝑗 in the tree and the intersection 𝑖 ∩ 𝑗 is nonempty (Blair &
Peyton, 1993). For example, the clique tree in Fig. A.1(c) satisfies the
clique intersection property.

The maximal cliques of a chordal graph play a central role in the
sparse matrix decomposition results stated in Theorems 2.1–2.4. It is
important to remember that these theorems require one to use all
maximal cliques in the (chordal) sparsity graph of a matrix 𝑋, even

when a subset of cliques already covers all nonzero entries of 𝑋. For
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Algorithm 2 Maximal clique search
Input: A chordal graph ( , ), and a perfect elimination ordering

𝛼 = {𝑣1,… , 𝑣𝑛}
utput: All maximal cliques 1,… ,𝑡
Initialize 0 = ∅;
for 𝑖 = 1 to 𝑛 do

𝑖 = {𝑣𝑖} ∪ {𝑢 adjacent to 𝑣𝑖 and behind 𝑣𝑖 in 𝛼};
if 𝑖 is not a subset of 0 then

𝑖 is a maximal clique;
0 = 𝑖;

end if
end for

example, consider the indefinite matrix

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 2 2 0 1 1

2 2 2 0 0 0

2 2 2 2 2 0

0 0 2 2 2 0

1 0 2 2 2 1

1 0 0 0 1 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

hose chordal sparsity graph is shown in Fig. A.1 and has the four
aximal cliques identified above. Even though the maximal cliques 1,
2, and 3 already cover all nonzero entries of the matrix, the maximal
lique 4 is necessary when applying Theorem 2.2 to check whether 𝑋
dmits a positive semidefinite completion. Indeed, observing that

1𝑋𝐸𝖳
1

= 𝐸2𝑋𝐸𝖳
2

=

⎡

⎢

⎢

⎢

⎣

2 2 2

2 2 2

2 2 2

⎤

⎥

⎥

⎥

⎦

∈ S3+

nd

3𝑋𝐸𝖳
3

=

⎡

⎢

⎢

⎢

⎣

2 1 1

1 2 1

1 1 2

⎤

⎥

⎥

⎥

⎦

∈ S3+,

s not sufficient to conclude 𝑋 ∈ S6+( , ?) because the submatrix

4𝑋𝐸𝖳
4

=

⎡

⎢

⎢

⎢

⎣

2 2 1

2 2 2

1 2 2

⎤

⎥

⎥

⎥

⎦

ndexed by clique 4 has one negative eigenvalue. Similarly, the matrix

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4 2 2 0 1 1

2 4 2 0 0 0

2 2 3 2 2 0

0 0 2 3 2 0

1 0 2 2 3 1

1 0 0 0 1 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

s positive semidefinite and has the same sparsity graph as above, but
t does not admit a decomposition

=
3
∑

𝑘=1
𝐸𝖳
𝑘
𝑍𝑘𝐸𝑘 , 𝑍𝑘 ⪰ 0

hat uses only cliques 1, 2, and 3; the last maximal clique 4 is
ecessary for Theorem 2.1 to apply. Indeed, any decomposition using
nly the first three maximal cliques requires

1 =

⎛

⎜

⎜

⎜

𝛼 2 2

2 4 2

⎞

⎟

⎟

⎟

,
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⎝
2 2 𝛽

⎠

2 =

⎛

⎜

⎜

⎜

⎝

3 − 𝛽 2 2

2 3 2

2 2 𝛾

⎞

⎟

⎟

⎟

⎠

,

3 =

⎛

⎜

⎜

⎜

⎝

4 − 𝛼 1 1

1 3 − 𝛾 1

1 1 3

⎞

⎟

⎟

⎟

⎠

,

here 𝛼, 𝛽 and 𝛾 must be selected to make these three matrices positive
emidefinite. For this, it is necessary that the diagonal elements and
ll 2 × 2 principal minors of 𝑍1, 𝑍2 and 𝑍3 be nonnegative; in
articular,

𝛼, 𝛽, 𝛾 ≥ 0, 3 − 𝛽 ≥ 0, 4 − 𝛼 ≥ 0, (C.1a)

4𝛼 − 4 ≥ 0, 𝛼𝛽 − 4 ≥ 0, (3 − 𝛽)𝛾 − 4 ≥ 0, (C.1b)

4 − 𝛼)(3−𝛾) − 1 ≥ 0. (C.1c)

owever, this set of inequalities is infeasible. Specifically, inequality
C.1c) can be rearranged to show that

≤ 11 − 3𝛼
4 − 𝛼

.

We must also have 3 − 4∕𝛼 ≥ 3 − 𝛽 ≥ 0, so 𝛼 ≥ 4∕3, and therefore
4𝛼

3𝛼 − 4
≤ 4

3 − 𝛽
≤ 𝛾 ≤ 11 − 3𝛼

4 − 𝛼
.

ut this cannot be true because 4∕3 ≤ 𝛼 ≤ 4, so 4𝛼
3𝛼−4 > 11−3𝛼

4−𝛼 .
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