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Learning goals:

1. Inner products and norms

2. Dual norms

3. Positive semidefinite matrices

In this lecture, we review some basic concepts from linear algebra, analysis, and positive semidefinite matrices.

1 Inner products, and norms

We work with n-dimensional Euclidean space Rn. The elements in Rn are called points or vectors of dimension
n. We also work with the space of real m×n matrices Rm×n. Each element (matrix) in Rm×n can be viewed
as a collection of n vectors in Rm. Meanwhile, a matrix in Rm×n can be seen as a linear operator from Rn

to Rm.

1.1 Inner products

Definition 2.1 (Inner product). A function ⟨·, ·⟩ : Rn × Rn → R is called an inner product if

1. ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 ⇒ x = 0 (positivity);

2. ⟨x, y⟩ = ⟨y, x⟩,∀x, y ∈ Rn (symmetry);

3. ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩,∀x, y, z ∈ Rn (additivity);

4. ⟨cx, y⟩ = c⟨x, y⟩,∀x, y ∈ Rn, c ∈ R (homogeneity).

The properties of additivity and homogeneity in the second argument follows from the symmetry property,
i.e., ⟨x, y + z⟩ = ⟨y + z, x⟩ = ⟨y, x⟩ + ⟨z, x⟩ = ⟨x, y⟩ + ⟨x, z⟩,∀x, y, z ∈ Rn, and ⟨x, cy⟩ = ⟨cy, x⟩ = c⟨y, x⟩ =
c⟨x, y⟩,∀x, y ∈ Rn, c ∈ R. Property (4) indicates that ⟨0, x⟩ = 0× ⟨0, x⟩ = 0,∀x ∈ Rn.

The standard inner product on Rn is

⟨x, y⟩ = xTy =

n∑
i=1

xiyi, ∀x, y ∈ Rn.

The standard inner product on Rm×n is

⟨X,Y ⟩ = trace(XTY ) =

n∑
j=1

m∑
i=1

XijYij , ∀X,Y ∈ Rm×n,
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where trace(Z) denotes the trace of a real matrix Z ∈ Rn×n, i.e., trace(Z) =
∑n

i=1 Zii. Note that the inner
product of two matrices in Rm×n is the same as the standard inner product between two vectors of length
mn obtained by stacking the columns of the two matrices: denoting these two vectors as vec(X) ∈ Rmn and
vec(Y ) ∈ Rmn, we have ⟨X,Y ⟩ = vec(X)Tvec(Y ).

Example 2.1 (Weighted inner products). There are many other inner products on Rn. For example, any
symmetric matrix Q with positive eigenvalues (which is a positive definite matrix; see Section 2) can be used
to define an inner product ⟨x, y⟩ = xTQy. This is known as a weighted inner product. A concrete example
on R2 is

Q =

[
2 −1
−1 2

]
⇒ ⟨x, y⟩ = 2x1y1 − x1y2 − x2y1 + 2x2y2.

Properties (2), (3), (4) in Definition 2.1 are obvious. We verify the positivity as follows

⟨x, x⟩ = 2x2
1 − 2x1x2 + 2x2

2 = (x1 − x2)
2 + x2

1 + x2
2 ≥ 0,∀x ∈ R2,

⟨x, x⟩ = 0 ⇔ (x1 − x2)
2 = 0, x2

1 = 0, x2
2 = 0 ⇔ x = 0.

The usual inner product is same as choosing Q = I. □

Two vectors x and y are called orthogonal if ⟨x, y⟩ = 0. Given any inner product, we define the length of
x ∈ Rn as ∥x∥ =

√
⟨x, x⟩ (which is a norm; see Lemma 2.2). For the usual inner product, this is also called

the Euclidean norm, or l2 norm, denoted as ∥x∥2 =
√
xTx = (x2

1 + . . .+ x2
n)

1/2.

Lemma 2.1 (Cauchy–Schwarz inequality). For any x, y ∈ Rn, we have

|⟨x, y⟩| ≤ ∥x∥∥y∥. (1)

The equality is achieved if and only if x and y are linearly dependent, i.e., there exist α, β ∈ R not all zero
such that αx+ βy = 0.

Proof. Given any x, y ∈ Rn, define a real function p(t) = ⟨tx+y, tx+y⟩. By properties (2)-(4) in Definition 2.1,
it is easy to verify

p(t) = t2∥x∥2 + 2t⟨x, y⟩+ ∥y∥2,

which is a quadratic function in t. By property (1), we know p(t) ≥ 0,∀t ∈ R. Thus, the discriminant
satisfies ∆ := 4⟨x, y⟩2 − 4∥x∥2∥y∥2 ≤ 0. This is the same as (1).

It remains to prove that ∆ = 0 is equivalent to the condition that x and y are linearly dependent. If x or y or
both are zero, we obviously have |⟨x, y⟩| = 0 = ∥x∥∥y∥. Suppose they are both nonzero, we can write y = t0x,
then |⟨x, y⟩| = |t0|∥x∥2 = ∥x∥∥y∥. Conversely, if ∆ = 0, we have ⟨x, y⟩ = ∥x∥∥y∥ or ⟨x, y⟩ = −∥x∥∥y∥. We
focus on the former case (the latter case follows the same argument), in which we have p(t) = (t∥x∥+ ∥y∥)2.
If x ̸= 0, we let t0 = ∥y∥/∥x∥, which leads to

0 = p(−t0) = ⟨−t0x+ y,−t0x+ y⟩ ⇒ y = t0x.

If x = 0, then x and y are obviously linearly dependent. We now complete the proof.

We note that Cauchy–Schwarz inequality holds for any inner product ⟨x, y⟩ and its induced length ∥x∥ =√
⟨x, x⟩. As in Example 2.1, given any symmetric matrix Q with positive eigenvalues, we have

|xTQy| ≤
√
xTQx

√
yTQy, ∀x, y ∈ Rn.

1.2 Vector norms

We define a generalized length of a vector x ∈ Rn below.
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Definition 2.2 (Vector Norm). A function f : Rn → R is called a norm if

1. f(x) ≥ 0,∀x ∈ Rn and f(x) = 0 ⇔ x = 0 (positivity);

2. f(λx) = |λ|f(x),∀x ∈ Rn, λ ∈ R (homogeneity);

3. f(x+ y) ≤ f(x) + f(y) (triangle inequality).

We use the notation f(x) = ∥x∥ to denote a norm. When specifying a particular norm, we use ∥x∥symb in
which the subscript indicates which norm is meant. Note that property (2) indicates ∥ − x∥ = ∥x∥, and
property (3) also implies that ∥x− y∥ ≤ ∥x∥+ ∥y∥.

A simple example of a norm is the Euclidean or l2-norm, defined above in Section 1.1. Another two frequently
used norms on Rn are

• the sum-absolute-value, or l1-norm, defined as ∥x∥1 = |x1|+ · · ·+ |xn|,

• the Chebyshev or l∞-norm, defined as ∥x∥∞ = max{|x1|, . . . , |xn|}.

These three norms are part of a family of so-called lp-norm (with p ≥ 1), defined as

∥x∥p = (|x1|p + · · ·+ |xn|p)1/p. (2)

When p = 1, we get the l1 norm, and when p = 2, we get the Euclidean or l2-norm. It is easy to see when
p → ∞, we get the l∞ norm. Note that if 0 < p < 1, then (2) does not define a norm. In particular, the
triangle property does not hold. For example, let x = [1, 0]T and y = [0, 1]T, we have

∥x+ y∥p = 21/p > 2 = ∥x∥p + ∥y∥p, if 0 < p < 1.

In many applications, we are interested in the number of non-zero elements in x ∈ Rn: defining 00 = 0, the
“zero or l0 norm” of x is ∥x∥0 = |x1|0 + · · · + |xn|0. Again, this “l0 norm” is not a norm because it is not
homogeneous (we have ∥λx∥0 = ∥x∥0,∀λ ̸= 0).

In addition to lp-norm, any inner product on Rn can be used to define a norm.

Lemma 2.2. Given any inner product ⟨·, ·⟩, let f(x) =
√

⟨x, x⟩. Then, f(x) is a norm.

Proof. Positivity follows from Definition 2.1(1). Homogeneity can be seen from

f(λx) =
√
⟨λx, λx⟩ =

√
λ2⟨x, x⟩ = |λ|f(x).

The triangle inequality is from Cauchy-Schwarz inequality. Let ∥x∥ =
√

⟨x, x⟩. We have

⟨x, y⟩ ≤ ∥x∥∥y∥ ⇒ 2⟨x, y⟩+ ⟨x, x⟩+ ⟨y, y⟩ ≤ 2∥x∥∥y∥+ ⟨x, x⟩+ ⟨y, y⟩

⇒ ⟨x+ y, x+ y⟩ ≤
(√

⟨x, x⟩+
√
⟨y, y⟩

)2
⇒ f(x+ y) ≤ f(x) + f(y).

This completes the proof.

Example 2.2 (Quadratic norms). Similar to Example 2.1, an important family of norms are the quadratic
norms. Given any symmetric matrix Q with positive eigenvalues, we define the Q-quadratic norm as

∥x∥Q =
√
xTQx.

By the definition of symmetric square root Q1/2 (see Section 2.1), it is easy to see that the Q-quadratic norm
is related to the l2 norm as ∥x∥Q = ∥Q1/2x∥2. □
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If a norm ∥x∥ is induced by an inner product ⟨·, ·⟩, then we have the parallelogram identity

2∥x∥2 + 2∥y∥2 = ∥x+ y∥2 + ∥x− y∥2, ∀x, y ∈ Rn. (3)

This can be easily verified by observing that

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ∥x∥2 + 2⟨x, y⟩+ ∥y∥2,
∥x− y∥2 = ⟨x− y, x− y⟩ = ∥x∥2 − 2⟨x, y⟩+ ∥y∥2.

A remarkable fact is that any norm satisfying the parallelogram law (3) arises from an inner product 1.

Theorem 2.1. A norm ∥x∥ is induced by an inner product ∥x∥ =
√
⟨x, x⟩ if and only if the parallelogram

identity (3) holds.

When (3) holds, the inner product can be constructed as ⟨x, y⟩ = 1
4 (∥x+ y∥2 − ∥x− y∥2). We note that not

every norm comes from an inner product. For example, for the lp norm (2), only when p = 2, it arises from
the usual inner product ⟨x, y⟩ = xTy. The l1 and l∞ norms do not come from any inner product. It is easy
to find examples for which (3) fails for l1 and l∞ norms. The following norm is a mixture between l1 and

l∞ norms: letting k ∈ {1, . . . , n}, we define ∥x∥1,k =
∑k

i=1 |x|[i], where |x|[i] denote the i-th largest absolute
value of elements of x ∈ Rn. This norm ∥x∥1,k also makes (3) fail.

1.3 Matrix norms

Matrix norms are functions f : Rm×n → R that satisfy the same properties (positivity, homogeneity, triangle
inequality) of the vector norms in Definition 2.2. Three common norms on Rm×n are element-wise defined
as follows

• the Frobenius norm ∥A∥F =
√

trace(ATA) =
(∑n

j=1

∑m
i=1 A

2
ij

)1/2
;

• the sum-absolute-value norm ∥A∥sav =
∑n

j=1

∑m
i=1 |Aij |;

• the max-absolute-value norm ∥A∥mav = maxi=1,...,m;j=1,...,n |Aij |.

These three norms coincide with the Euclidean, l1, l∞ norms of vec(A) ∈ Rmn respectively. However, it
should be careful that the lp (with p = 1, 2,∞) norm of a matrix is different from its element-wise defined
version ∥vec(A)∥p, as we define it below.

Another frequently used class of matrix norms are the operator (or induced) norms.

Definition 2.3 (Operator norms). An operator or induced norm ∥ · ∥a,b : Rm×n → R is defined as

∥A∥a,b = max
∥x∥b≤1

∥Ax∥a, (4)

where ∥ · ∥a is a vector norm on Rm and ∥ · ∥b is a vector norm on Rn.

It can be verified that (4) defines a norm on Rm×n (positivity and homogeneity are obvious, and triangle
inequality comes from ∥(A+B)x∥a ≤ ∥Ax∥a + ∥Bx∥a).

When the same vector norm is used on both spaces Rm and Rn, we write

∥A∥c = max
∥x∥c≤1

∥Ax∥c.

Accordingly, the lp norm on vectors lead to the lp operator norm on matrices Rm×n:

1https://math.stackexchange.com/questions/21792/norms-induced-by-inner-products-and-the-parallelogram-law

https://math.stackexchange.com/questions/21792/norms-induced-by-inner-products-and-the-parallelogram-law
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• If both ∥ · ∥a and ∥ · ∥b are the l2 norm, the operator norm of A is its maximum singular value:

∥A∥2 =
√

λmax(ATA),

where λmax(·) denotes the largest eigenvalue of a symmetric matrix. This norm is also called the
spectral norm or l2 norm of A ∈ Rm×n.

• If both ∥ · ∥a and ∥ · ∥b are the l1 norm, (4) leads to the max-column-sum norm

∥A∥1 = max
j=1,...,n

m∑
i=1

|Aij |,

• If both ∥ · ∥a and ∥ · ∥b are the l∞ norm, we get the max-row-sum norm

∥A∥∞ = max
i=1,...,m

n∑
j=1

|Aij |.

Lemma 2.3. Every induced norm is submultiplicative, i.e.,

∥AB∥c ≤ ∥A∥c∥B∥c, ∀A ∈ Rm×n, B ∈ Rn×p

Proof. By the definition ∥A∥c = max∥x∥c≤1 ∥Ax∥c, we have ∥Ax∥c ≤ ∥A∥c∥x∥c,∀x ∈ Rn. Therefore, the
following inequality holds

∥AB∥c = max
∥x∥c≤1

∥ABx∥c ≤ max
∥x∥c≤1

∥A∥c∥Bx∥c

= ∥A∥c max
∥x∥c≤1

∥Bx∥c = ∥A∥c∥B∥c.

This completes the proof.

Lemma 2.3 is true for operator norms induced by the same vector norm in all three spaces Rm,Rn and Rp.
Otherwise, the submultiplicative property may fail.

Example 2.3. Not every matrix norm is an induced norm. For example, the Frobenius norm is not an
induced norm. This is because for any induced norm, we have ∥I∥c = 1, while ∥I∥F =

√
n.

Not all matrix norms are submultiplicative. For example, the max-absolute-value norm ∥A∥mav does not
satisfy the submultiplicative property. Consider

A =

[
1 1
1 1

]
, A2 =

[
2 2
2 2

]
.

Then, ∥A2∥mav = 2 > 1 = ∥A∥2mav.

Finally, not all submultiplicative norms are induced norms. An example is the Frobenius norm for which we
have

∥AB∥F ≤ ∥A∥F∥B∥F, ∀A ∈ Rm×n, B ∈ Rn×p. (5)

This inequality comes from the Cauchy-Schwarz inequality (Lemma 2.1). □

Note that λmax(A
TA) ≤ trace(ATA) (see Lemma 2.5 in Section 2.2), thus we always have ∥A∥2 ≤ ∥A∥F. A

better bound than (5) is
∥AB∥F ≤ ∥A∥2∥B∥F, ∀A ∈ Rm×n, B ∈ Rn×p,

which can be proved as follows: let bi, i = 1, . . . , p be the columns of B, and we have

∥AB∥2F =

p∑
i=1

∥Abi∥22 ≤
p∑

i=1

∥A∥22∥bi∥22 = ∥A∥22
p∑

i=1

∥bi∥22 = ∥A∥22∥B∥2F.
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1.4 Dual norms

Dual norms are also very frequently used.

Definition 2.4 (Dual norms). Let ∥ · ∥ be any norm on Rn. Its dual norm is defined as

∥x∥∗ = max
∥y∥≤1

xTy. (6)

The dual norm is indeed a norm. Positivity and homogeneity are straightforward, and the triangle inequality
follows from the fact

∥x+ z∥∗ = max
∥y∥≤1

(x+ z)Ty ≤ max
∥y∥≤1

xTy + max
∥y∥≤1

zTy = ∥x∥∗ + ∥z∥∗.

The dual norm (6) can be considered as the operator norm (4) of xT that is a matrix of dimension 1 × n,
with ∥ · ∥ on Rn and the absolute value | · | on R. Some common examples are

• The dual of the Euclidean norm is the Euclidean norm:

max
∥y∥2≤1

xTy = ∥x∥2,

since xTy ≤ ∥x∥2∥y∥2 by the Cauchy-Schwarz inequality (Lemma 2.1).

• The dual of the l1 norm is the l∞ norm:

max
∥y∥1≤1

xTy = max{|x1|, . . . , |xn|} = ∥x∥∞.

• The dual of the l∞ norm is the l1 norm:

max
∥y∥∞≤1

xTy = |x1|+ · · ·+ |xn| = ∥x∥1.

Note that these three dual norms are consistent with the lp operator norms of xT ∈ R1×n, discussed before
Lemma 2.3. More generally, the dual of the lp norm (where p ≥ 1) is the the lq norm, with q satisfying
1/p+ 1/q = 1. By construction, we have the following inequality, which can be considered as a generalized
Cauchy-Schwartz inequality.

Lemma 2.4. Consider any norm ∥ · ∥ and its associated dual norm ∥ · ∥∗ on Rn. We have

|yTx| ≤ ∥y∥∥x∥∗, ∀ x, y ∈ Rn. (7)

This result is directly from the definition (6). For example, we have |yTx| ≤ ∥y∥1∥x∥∞. In (7), the norm
∥ · ∥ and its dual norm ∥ · ∥∗ may not be associated with an inner product (see Theorem 2.1).

We conclude this section by discussing the dual norm of the l2 or spectral norm on Rm×n

∥X∥2∗ = max
∥Y ∥2≤1

trace(Y TX),

which can be shown to be the sum of the singular values

∥X∥2∗ = σ1(X) + . . .+ σr(X),

where r = rank(X). This is also known as the nuclear norm. It can be verified that ∥X∥F = (σ2
1(X) + . . .+

σ2
r(X))1/2, thus we have ∥X∥2 ≤ ∥X∥F ≤ ∥X∥2∗.
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Remark 2.1 (Intuition behind dual norms). We can consider the dual norm ∥x∥∗ = max∥y∥≤1 xTy as the

operator norm of xT which is a matrix of dimension 1× n. Then, the dual norm ∥x∥∗ can be viewed as the
maximal stretch of the linear map xT when it is applied to any vector in Rn (again we need to define a norm
in Rn first).

• When we consider 2 norm, we have ∥A∥2 = σmax(A) (the maximal singular value). For any vector
x ∈ Rn, the maximal singular value is its 2 norm ∥x∥2 =

√
x2
1 + . . .+ x2

n.

• When we consider 1 norm, ∥A∥1 = maxj=1,...,n

∑m
i=1 |Aij |, which is the maximum column sum. The

maximum column sum of xT is just its inf norm. So ∥x∥1,∗ = ∥x∥∞.

• When we consider inf norm, ∥A∥∞ = maxi=1,...,m

∑n
j=1 |Aij |, which is the maximum row sum. The

maximal row sum of xT is just its 1 norm. So ∥x∥∞,∗ = ∥x∥1.

Another way to see dual norms is that it gives a measure of the size of the linear function f(x) = xTy for
any y ∈ Rn. In particular, how big is the number f(x) = xTy relative to the size (norm) of y? We can see
it is

xT y

∥y∥
.

Now, we want to see the maximum size of this, which is

max
∥y∦=0

xT y

∥y∥
,

This is the same as the definition of dual norms in (6) 2. □

2 Positive semidefinite matrices

One central object in semidefinite optimization is the set of positive semidefinite matrices. In this section,
we collect some basic facts and properties.

2.1 Basic facts

We let Sn denote set of real symmetric n×n matrices, and In denote the identity matrix of dimension n×n.
A fundamental property of any real symmetric matrix A ∈ Sn is that it has all real eigenvalues and a set of
real eigenvectors v1, . . . , vn forming an orthonormal basis of Rn. This is known as the spectral decomposition
theorem, one of the most important properties about real symmetric matrices.

Theorem 2.2 (Spectral decomposition theorem). Let A ∈ Sn. Then, we can write A as

A =
[
v1 v2 . . . vn

]

λ1

λ2

. . .

λn

 [v1 v2 . . . vn
]T

, (8)

where λ1, . . . , λn ∈ R are the eigenvalues of A, and v1, . . . , vn are the corresponding eigenvectors that form
an orthonormal basis of Rn.

Another convenient way to look at (8) is A =
∑n

i=1 λiviv
T
i which is in the form of rank-one decomposition.

Let V ∈ Rn×n be an orthogonal matrix with vi’s as its columns, and D be the diagonal matrix with λi’s on
the diagonal. We can also read (8) as A = V DV T with V −1 = V T (or V V T = V TV = In).

2https://math.stackexchange.com/questions/903484/dual-norm-intuition

https://math.stackexchange.com/questions/903484/dual-norm-intuition
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Another fundamental result in linear algebra states that if a set of symmetric matrices A1, . . . , Am commute
with each other (i.e., AiAj = AjAi,∀i, j = 1, . . . ,m), then they have a common set of eigenvectors, which
implies that they can be “simultaneously diagalized”,

Ai = V ΛiV
T, i = 1, . . . ,m,

where V is a common orthogonal matrix and Λi is a diagonal matrix with the eigenvalues of Ai being the
diagonal entries.

Let Sn+ (resp. Sn++) denote the set of positive semidefinite (resp. definite) matrices, i.e., the set of real
symmetric matrices with nonnegative (resp. strictly positive) eigenvalues. Throughout this course, we shall
use the following notations

A ⪰ 0 ⇔ A ∈ Sn+ ⇔ A is positive semidefinite,

and
A ≻ 0 ⇔ A ∈ Sn++ ⇔ A is positive definite.

We have the following characterizations for Sn+ and Sn++.

Theorem 2.3 (Positive semidefinite matrices). Let A ∈ Sn. The following statements are equivalent.

1. A ∈ Sn+.

2. Its spectral decomposition has the form A =
∑n

i=1 λiviv
T
i with all λi ≥ 0.

3. xTAx ≥ 0,∀x ∈ Rn.

4. There exists a lower triangular matrix L ∈ Rn×n such that A = LLT (Cholesky factorization).

5. All principle minors of A are nonnegative, i.e., det(A[S, S]) ≥ 0 for any nonempty S ⊂ {1, 2, . . . , n}
where A[S, S] is the submatrix of A consisting of the rows and columns indexed by S (Sylvester crite-
rion).

Proof. The equivalence between (1) and (2) is by definition. The direction (1) ⇒ (3) is observed from the
fact

xTAx = xT

(
n∑

i=1

λiviv
T
i

)
x =

n∑
i=1

λi(v
T
i x)

2 ≥ 0, ∀x ∈ Rn.

The converse holds by observing that vTi Avi = λi∥vi∥2 ≥ 0 implies λi ≥ 0 for all i. The equivalence (1) ⇔
(5) can be found in any standard textbook on linear algebra.

We discuss the equivalence (1) ⇔ (4). The Cholesky factorization of a positive semidefinite matrix A = LLT

requires a lower triangular matrix L. If one only seeks for a matrix Q ∈ Rn×n such that A = QQT, then we
can choose the ith column of Q as

√
λivi from the spectral decomposition of A in (8) where λi ≥ 0 when

A ⪰ 0. Let qi be the i-th column of QT. Applying the Gram-Schmidt orthogonalization process, we can find
another orthonormal basis u1, . . . , un and a lower triangular matrix L ∈ Rn×n such that qi =

∑i
j=1 Lijuj ,

i.e., QT = ULT where U = [u1, . . . , un]. Then, we have

A = QQT = LUTULT = LLT,

which proves (1) ⇒ (4). The converse holds true since xTAx = xTLLTx = (LTx)T(LTx) ≥ 0,∀x ∈ Rn.

Note that in the discussion for (1) ⇔ (4), we can further make Q = QT by choosing

Q = V diag(
√
λ1, . . . ,

√
λn)V

T,

which leads to A = Q2 since V TV = V V T = In. In this case, we denote the symmetric square root of
A as A1/2 = Q ⪰ 0. Upon letting QT = [q1, . . . , qn] that satisfies A = QQT, we have Aij = qTi qj for all
i, j = 1, . . . , n. These vectors q1, . . . , qn are also called a Gram representation of A.

The interior of Sn+ are the set of positive definite matrices.
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Theorem 2.4 (Positive definite matrices). Let A ∈ Sn. The following statements are equivalent.

1. A ∈ Sn++.

2. Its spectral decomposition has the form A =
∑n

i=1 λiviv
T
i with all λi > 0.

3. xTAx > 0,∀x ∈ Rn\{0}.

4. There exists a lower triangular matrix L ∈ Rn×n with Lii > 0, i = 1, . . . , n such that A = LLT

(Cholesky factorization).

5. All leading principle minors of A are strictly positive, i.e., det(A[S, S]) > 0 for S = {1, . . . , k}, k =
1, . . . , n (Sylvester criterion).

The Sylvester criterion in Theorems 2.3 and 2.4 indicates that A ∈ Sn+ and A ∈ Sn++ are defined by a set of
polynomial inequalities on its element Aij . For example, consider

A =

[
a b
b c

]
.

We have A ≻ 0 ⇔ a > 0, ac− b2 > 0, and A ⪰ 0 ⇔ a ≥ 0, c ≥ 0, ac− b2 ≥ 0. Consider

A =

a b c
b d e
c e f

 .

We have A ≻ 0 ⇔ a > 0, ad− b2 > 0,det(A) > 0, and

A ⪰ 0 ⇔


a ≥ 0, d ≥ 0, f ≥ 0,

ad− b2 ≥ 0, af − c2 ≥ 0, df − e2 ≥ 0,

det(A) > 0.

2.2 Basic operations

The trace of a square matrix is a linear mapping, i.e.,

trace(αA+ βB) = αtrace(A) + βtrace(B),∀α, β ∈ R, A,B ∈ Rn×n.

The trace also satisfies the following properties trace(A) = trace(AT),∀A ∈ Rn×n and

trace(AB) = trace(BA), ∀A ∈ Rn×m, B ∈ Rm×n. (9)

The last property (9) indicates that trace(uuT) = uTu = ∥u∥2,∀u ∈ Rn. Together with the spectral
decomposition theorem (Theorem 2.2), it is easy to see that the trace of A ∈ Sn is equal to the sum of its
eigenvalues.

Lemma 2.5. Let A ∈ Sn with eigenvalues λ1, . . . , λn ∈ R. We have trace(A) = λ1 + . . . , λn.

Proof. By the spectral decomposition theorem A =
∑n

i=1 λiviv
T
i , we have

trace(A) =

n∑
i=1

λitrace(viv
T
i ) =

n∑
i=1

λi∥vi∥2 =

n∑
i=1

λi,

which completes the proof.
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We note that the trace property in Lemma 2.5 indeed holds for any square matrices Rn×n (not necessarily
symmetric)3. Further, the determinant of a square matrix is the product of its eigenvalues.

Lemma 2.6. Let A ∈ Rn×n with eigenvalues λ1, . . . , λn ∈ C. we have

trace(A) =

n∑
i=1

λi, det(A) =

n∏
i=1

λi.

For symmetric matrices A,B ∈ Sn, their inner product is given by

⟨A,B⟩ = trace(ATB) = trace(AB) =

n∑
i,j=1

AijBij .

We further review two useful facts about positive semidfinite matrices.

Lemma 2.7. Let P ∈ Rn×n be an invertible matrix. Then,

A ∈ Sn+ ⇔ PAPT ∈ Sn+, and A ∈ Sn++ ⇔ PAPT ∈ Sn++,

Proof. If A ∈ Sn+, then yTPAPTy = xTAx ≥ 0,∀y ∈ Rn, where x = PTy, which implies PAPT ∈ Sn+.
Conversely, if PAPT ∈ Sn+, then xTAx = yTPAPTy ≥ 0,∀x ∈ Rn, where y = (P−1)Tx since P is invertible.
Thus, A ∈ Sn+.

The equivalence A ∈ Sn++ ⇔ PAPT ∈ Sn++ can be proved similarly.

Definition 2.5 (Schur complement). Consider a symmetric matrix X ∈ Sm+n partitioned as

X =

[
A B
BT C

]
, (10)

with A ∈ Sn, B ∈ Rn×m, C ∈ Sm. If A is non-singular (i.e., det(A) ̸= 0), the matrix C −BTA−1B is called
the Schur complement of A in X.

Lemma 2.8. Consider a block-partitioned matrix X in (10). Suppose A is non-singular. Then, we have

1. X ⪰ 0 ⇔ A ⪰ 0 and C −BTA−1B ⪰ 0;

2. X ≻ 0 ⇔ A ≻ 0 and C −BTA−1B ≻ 0.

We end this lecture with a useful property of the kernel of a positive semidefinite matrix. Recall that the
kernel (or null space) of a matrix A ∈ Rm×n is the subspace

kerA = {x ∈ Rn | Ax = 0}.

Lemma 2.9. Let A be a positive semidefinite matrix. Then, we have

Ax = 0 ⇔ xTAx = 0.

Proof. The direction ⇒ is obvious. Consider the converse direction. Let λ1, . . . , λn be the eigenvalues of
A and v1, . . . , vn ∈ Rn be the corresponding orthonormal eigenvectors. Then, we can write the vector x in
terms of v1, . . . , vn ∈ Rn as

x = α1v1 + · · ·+ αnvn = V diag(α1, . . . , αn),

3See proofs https://www.adelaide.edu.au/mathslearning/ua/media/120/evalue-magic-tricks-handout.pdf.

https://www.adelaide.edu.au/mathslearning/ua/media/120/evalue-magic-tricks-handout.pdf
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where V = [v1, v2, . . . , vn]. Now, it is straightforward to verify that

0 = xTAx = diag(α1, . . . , αn)V
T V diag(λ1, . . . , λn)V

T︸ ︷︷ ︸
A

V diag(α1, . . . , αn)

=

n∑
i=1

λiα
2
i .

Then, we have αi = 0 whenever λi > 0. This indicates that x is a linear combination of the eigenvectors
corresponding to λi = 0. Therefore, we have Ax = 0.

A direct application of Lemma 2.9 is the following fact.

Lemma 2.10. Let A = LTL where L ∈ Rk×n. Then we have kerA = kerL, and thus

rank(A) = rank(L) ≤ min{k, n}.

Notes

For more mathematical background materials, see [1, Appendix A] and [2, Chapter 1].
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